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Abstract. In this paper, we consider the following fractional Kirchhoff equation with discontinuous nonlinearity{ (
ε2αa + ε4α−3b

∫
R3 |(−Δ)

α
2 u|2dx

)
(−Δ)αu + V (x)u = H(u − β)f(u) in R

3,

u ∈ Hα(R3), u > 0 in R
3,

where ε, β > 0 are small parameters, α ∈ ( 3
4
, 1) and a, b are positive constants, (−Δ)α is the fractional Laplacian operator,

H is the Heaviside function, V is a positive continuous potential, and f is a superlinear continuous function with subcritical
growth. By using minimax theorems together with the non-smooth theory, we obtain existence and concentration properties
of positive solutions to this non-local system.

Mathematics Subject Classification. 35J25, 35Q51, 34A36.
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1. Introduction and results

This paper is devoted to the qualitative analysis of solutions for the fractional Kirchhoff equation in R
3.

We are concerned with the existence and multiplicity of solutions, as well as with concentration properties
of solutions for small values of two positive parameters. A feature of this paper is that the reaction has
lack of regularity, which allows to consider larger classes of nonlinearities. The main result is described
in the final part of this section.

1.1. Overview

In the last decade, the investigation of nonlinear problems involving fractional and non-local operators
has achieved an immense popularity. This is due to the fundamental role of such problems in the anal-
ysis of several complex phenomena such as phase transition, game theory, image processing, population
dynamics, minimal surfaces and anomalous diffusion, as they are the typical outcome of stochastically
stabilization of Lévy processes; see, for instance, the monograph [35] for more details. Moreover, such
equations and the associated fractional operators allow us to develop a generalization of quantum mechan-
ics and also to describe the motion of a chain or an array of particles that are connected by elastic springs
as well as unusual diffusion processes in turbulent fluid motions and material transports in fractured
media; for more details, see [13,14] and the references therein.

The purpose of this paper is to study the existence and concentration of positive solutions for the
following fractional Kirchhoff-type equation:{(

ε2αa + ε4α−3b
∫
R3 |(−Δ)

α
2 u|2dx

)
(−Δ)αu + V (x)u = H(u − β)f(u) in R

3,
u ∈ Hα(R3), u > 0 in R

3,
(K)

http://crossmark.crossref.org/dialog/?doi=10.1007/s00033-022-01849-y&domain=pdf
http://orcid.org/0000-0003-4615-5537


211 Page 2 of 23 Z. Liu, V. D. Rădulescu and Z. Yuan ZAMP

where α ∈ (0, 1) and a, b are positive constants, ε, β > 0 are positive parameters, H is the Heaviside
function given by

H(t) :=
{

1, if t > 0,
0, if t ≤ 0.

The operator (−Δ)α is the fractional Laplacian defined as F−1(|ξ|2αF (u)), where F denotes the Fourier
transform on R

3. The potential V : R3 → R is a continuous function satisfying the following conditions
introduced by Rabinowitz in [40]:
(V0) there exist V0, V∞ > 0 such that

V0 := inf
x∈R3

V (x) < lim inf
|y|→∞

V (y) = V∞,

and f : R → R is a continuous function fulfilling the following hypotheses:
(f1) f(t) = 0 for all t < 0 and f(t) = o(t3) as t → 0+.
(f2) There exists 4 < p < 2∗

α − 1 such that

lim
t→∞

f(t)
tp

= 0,

where α ∈ ( 3
4 , 1), 2∗

α = 6
3−2α is the fractional critical exponent.

(f3) The function t → f(t)
t3 is increasing in (0,∞).

(f4) f(t) ≥ γtσ for all t > 0 with some γ > 0 and σ ∈ (3, p − 1).
Obviously, it follows from the conditions of (f1)-(f3) that

F (t) ≥ 0, 4F (t) ≤ f(t)t, ∀t ∈ R, (1.1)

where F (t) =
∫ t

0
f(s)ds.

When a = 1, b = 0, (K) reduces to the following fractional Schrödinger equation

ε2α(−Δ)αu + V (x)u = f(u) in R
3, (1.2)

which has been proposed by Laskin [26] in fractional quantum mechanics as a result of extending the
Feynman integrals from the Brownian like to the Lévy like quantum mechanical paths. For such a class of
fractional and non-local problems, Caffarelli and Silvestre [14] expressed (−Δ)α as a Dirichlet–Neumann
map for a certain local elliptic boundary value problem on the half-space. This method is a valid tool to
deal with equations involving fractional operators to get regularity and handle variational methods. We
refer the readers to [22,43] and to the references therein. Investigated first in [20] via variational methods,
there has been a lot of interest in the study of the existence and multiplicity of solutions for (1.2) when V
and f satisfy general conditions. We cite [17,42] with no attempts to provide a complete list of references.

If α = ε = 1 and R
3 is replaced by bounded domain Ω, then problem (K) formally reduces to the

well-known Kirchhoff equation

−
⎛
⎝a + b

∫
Ω

|∇u|2dx

⎞
⎠ Δu + V (x)u = f(u) in Ω, (1.3)

related to the stationary analogue of the Kirchhoff–Schrödinger-type equation

∂2u

∂t2
−

(
a + b

∫
Ω

|∇u|2dx
)
Δu = f(t, x, u),

where u denotes the displacement, f is the external force, b is the initial tension, and a is related to the
intrinsic properties of the string. Equations of this type were first proposed by Kirchhoff [25] in the one-
dimensional case, without forcing term and with Dirichlet boundary conditions, in order to describe the
transversal free vibrations of a clamped string in which the dependence of the tension on the deformation
cannot be neglected. This is a quasilinear partial differential equation; namely, the nonlinear part of the
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equation contains as many derivatives as the linear differential operator. The Kirchhoff equation is an
extension of the classical d’Alembert wave equation for free vibrations of elastic strings. Kirchhoff’s model
takes into account the changes in length of the string produced by transverse vibrations. Besides, we also
point out that such non-local problems appear in other fields like biological systems, where u describes
a process depending on the average of itself; see Alves et al. [1]. The solvability of the Kirchhoff-type
equations has been well studied in a general dimension by various authors only after J.-L. Lions [28]
introduced an abstract framework to such problems. For more recent results concerning Kirchhoff-type
equations in bounded or unbounded domain, we refer, e.g., to [11,23,27,29,30,33,34,37,45,48] and their
references.

In the non-local fractional framework, Fiscella and Valdinoci in [21], proposed the following stationary
Kirchhoff variational equation with critical growth{

M
( ∫

R3 |(−Δ)
α
2 u|2dx

)
(−Δ)αu = λf(x, u) + |u|2∗

α−2u in Ω,
u = 0 in R

3 \ Ω,
(1.4)

which models non-local aspects of the tension arising from measurements of the fractional length of
the string. They in [21] obtained the existence of non-negative solutions when M and f are continuous
functions satisfying suitable assumptions. After that, some existence and multiplicity results to problem
(1.4) were obtained in [9,10,38,39,46] and their references. Recently, several authors have also been
paid attention to the existence and multiplicity of solutions for fractional Kirchhoff equations in R

N

via variational and topological methods. Precisely, Ambrosio and Isernia [7] considered the fractional
Kirchhoff problem ⎛

⎝a + b

∫
R3

|(−Δ)
α
2 u|2dx

⎞
⎠ (−Δ)αu = f(u) in R

3, (1.5)

where f is an odd subcritical nonlinearity satisfying the well known Berestycki–Lions assumptions. By
minimax arguments, the authors establish a multiplicity result in the radial space Hα

rad(R3) when the
parameter b is sufficiently small. Liu et al. [31] used the monotonicity trick and the profile decomposition
to prove the existence of ground states to a fractional Kirchhoff equation with critical nonlinearity in
low dimension. In [8], the authors employed penalization method and Lusternik–Schnirelmann category
theory to study the existence and multiplicity of solutions for a fractional Schrödinger–Kirchhoff equation
with subcritical nonlinearities. see also [6,24] and their references.

Though there have been many works on the existence and concentration of solutions for Kirchhoff-type
problem involving continuous nonlinearities, to the best of our knowledge, it seems that no result has been
done for the discontinuous case. In the present paper, we will study a class of fractional Kirchhoff-type
problem involving discontinuous nonlinearities. We emphasize that since many obstacle problems and free
boundary problems may be reduced to partial differential equations with discontinuous nonlinearities [15,
16], the existence, multiplicity and concentration of solutions for the elliptic problem with discontinuous
nonlinearities have been studied in recent years, see [1–5,41,47] and their references.

1.2. Main results and strategy

Motivated by the works above, in this paper we aim to study the existence and concentration of positive
solutions to the fractional Kirchhoff equation with a discontinuous nonlinearity. In order to study (K),
we use the change of variable x 	→ εx and we will look for solutions to⎧⎪⎨

⎪⎩
(

a + b
∫
R3

|(−Δ)
α
2 u|2dx

)
(−Δ)αu + V (εx)u = H(u − β)f(u) in R

3,

u ∈ Hα(R3), u > 0 in R
3.

(Kε)
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Now we state our main result.

Theorem 1.1. Assume (V0)–(V3) holds. Then, there exist ε∗, β∗ > 0 such that (Kε) has a positive solution
uε,β for ε ∈ (0, ε∗) and β ∈ (0, β∗). Moreover, there exists a maximum point xε,β ∈ R

3 of uε,β such that

lim
(ε,β)→(0,0)

V (εxε,β) = V0.

For such a xε,β, vε(x) ≡ uε(x + xε,β) converges to a positive ground state solution of⎛
⎝a + b

∫
R3

|(−Δ)
α
2 u|2dx

⎞
⎠ (−Δ)αu + V0u = f(u), u ∈ Hα(R3).

Since we deal with the fractional Kirchhoff-type equation with a discontinuous nonlinearity, some
estimates are totally different from those used in the mentioned paper. The minimax method and the
non-smooth theory are our main approach in present paper, which are motivated by [3,29,44]. The main
obstacles are as follows.

Firstly, observe that the energy functional is only locally Lipschitz continuous due to the effect of the
Heaviside function, so that we are not able to use variational methods for C1-functionals. For this item,
we have to use the variational framework for non-differentiable functionals which will be introduced in
Sect. 2. Secondly, for the case with continuous nonlinearity, one can establish one equivalent relationship
between the mountain pass level and infimum of energy functional on Nehari manifold, and then use the
Fatou lemma to prove the existence of positive ground state solutions for the corresponding limit equation.
However, the method of Nehari manifold does not work for locally Lipschitz continuous functionals, and
so some new technique needs to be developed to obtain fine estimates to the mountain pass levels.
Finally, with the presence of the Kirchhoff term, the main obstacle arises in getting the compactness of
the corresponding locally Lipschitz continuous energy functional. Precisely, this does not hold in general:
for any ϕ ∈ C∞

0 (RN ),∫
R3

|(−Δ)
α
2 un|2dx

∫
RN

(−Δ)
α
2 un(−Δ)

α
2 ϕdx →

∫
R3

|(−Δ)
α
2 u|2dx

∫
RN

(−Δ)
α
2 u(−Δ)

α
2 ϕdx,

where {un}n∈N is a (PS)-sequence of the energy functional satisfying un ⇀ u in Hα(R3). Then, it is
not clear that weak limits are critical points of energy functional, which is totally different from those in
[2,3,23]. For this reason, it is necessary to give one specific profile decomposition of the Kirchhoff term
(
∫
R3 |(−Δ)

α
2 un|2dx)2 which enables us to establish refined energy estimate to the mountain pass level.

Finally, the above information together with the mountain pass geometry behaviors of energy functional
helps us to obtain the compactness (see Lemma 3.6).

Throughout this paper, C will denote a generic positive constant. We denote by | · |r the Lr-norm
and use o(1) to denote any quantity which trends to zero when n → ∞. For any ρ > 0 and z ∈ R

3,
Bρ(z) := {x ∈ R

3 : |x − z| ≤ ρ}. The symbol ′ ⇀′ stands for the weak convergence in space E and its
dual space E∗.

The paper is organized as follows. In Sect. 2, the variational setting and some preliminary lemmas are
presented. In Sect. 3, we study existence of positive solutions to (Kε) with ε = 1. Section 4 is devoted by
the existence and concentration of positive solutions to (Kε).

2. Variational setting

In this section, we outline the variational framework for (K) and recall some preliminary lemmas. First,
we fix the notations and we recall some useful preliminary results on fractional Sobolev spaces, see [35].
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For any α ∈ (0, 1), the fractional Sobolev space Hα(R3) is defined by

Hα(R3) :=

{
u ∈ L2(R3) :

|u(x) − u(y)|
|x − y| 3+2α

2

∈ L2(R3 × R
3)

}
.

It is known that ∫
R6

|u(x) − u(y)|2
|x − y|3+2α

dxdy = C−1
α

∫
R3

|(−Δ)
α
2 u|2dx,

where

Cα =
1
2

⎛
⎝ ∫

R3

1 − cos ζ1

|ζ|3+2α
dζ

⎞
⎠

−1

.

We endow the space Hα(R3) with the norm

‖u‖Hα(R3) :=

⎛
⎝ ∫

R3

|u|2dx +
∫
R3

|(−Δ)
α
2 u|2dx

⎞
⎠

1/2

.

Hα(R3) is also the completion of C∞
0 (R3) with ‖ · ‖Hα(R3) and it is continuously embedded into Lq(R3)

for q ∈ [2, 2∗
α]. The homogeneous space Dα,2(R3) is

Dα,2(R3) :=

{
u ∈ L2∗

α(R3) :
|u(x) − u(y)|
|x − y| 3+2α

2

∈ L2(R3 × R
3)

}
,

and it is also the completion of C∞
0 (R3) with respect to the norm

‖u‖Dα,2 :=

⎛
⎝ ∫

R3

|(−Δ)
α
2 u|2dx

⎞
⎠

1/2

.

Let

E :=

⎧⎨
⎩u ∈ Hα(R3) :

∫
R3

V (x)u2dx < ∞
⎫⎬
⎭

be the Hilbert space equipped with the inner product

〈u, v〉E := a

∫
R3

(−Δ)
α
2 u(−Δ)

α
2 v dx +

∫
R3

V (x)uv dx,

and the corresponding induced norm

‖u‖ :=

⎛
⎝ ∫

R3

a|(−Δ)
α
2 u|2dx +

∫
R3

V (x)u2dx

⎞
⎠

1/2

.

We now recall some definitions and basic results on the critical point theory of locally Lipschitz continuous
functionals as developed by Chang [16], Clarke [18].

Let E be a real Banach space. A functional I : E → R is locally Lipschitz continuous, I ∈ Liploc(E,R)
for short, if given u ∈ E there is an open neighborhood V := Vu ⊂ E and some constant K = KV > 0
such that

|I(v2) − I(v1)| ≤ K‖v2 − v1‖, vi ∈ V, i = 1, 2.
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The directional derivative of I at u in the direction of v ∈ E is defined by

I0(u; v) = lim
h→0

sup
λ↓0

I(u + h + λv) − I(u + h)
λ

.

So I0(u; ·) is continuous, convex and its subdifferential at z ∈ E is given by

∂I0(u; z) = {μ ∈ E∗; I0(u; v) ≥ I0(u; z) + 〈μ, v − z〉, v ∈ E},

where 〈·, ·〉 is the duality pairing between E∗ and E. The generalized gradient of I at u is the set

∂I(u) = {μ ∈ E∗; 〈μ, v〉 ≤ I0(u; v), v ∈ E}.

Since I0(u; 0) = 0, ∂I(u) is the subdifferential of I0(u; 0). A few definitions and properties will be recalled
below. ∂I(u) ⊂ E∗ is convex, non-empty and weak∗-compact,

λ(u) = min{‖μ‖E∗ ; μ ∈ ∂I(u)},

and

∂I(u) = {I ′(u)}, if I ∈ C1(E,R).

A critical point of I is an element u0 ∈ E such that 0 ∈ ∂I(u0) and a critical value of I is a real number
c such that I(u0) = c for some critical point u0 ∈ E.

By a solution for (Kε), we understand as a function u ∈ W
2α, p+1

p

loc (R3) ∩ Hα(R3) verifying{(
a + b

∫
R3 |(−Δ)

α
2 u|2dx

)
(−Δ)αu + V (εx)u ∈ [f

H
(u(x)), fH(u(x))] a.e. in R

3,

u ∈ Hα(R3), u > 0 in R
3,

(K)

where fH(t) = H(t − β)f(t), fH(t) = lim supδ→0+ fH(t + δ) and f
H

(t) = lim infδ→0+ fH(t − δ).
Now, we recall the following mountain pass theorem which was established in Radulescu [41].

Theorem 2.1. ([41]) Let I ∈ Liploc(E,R) with I(0) = 0 and satisfying the following hypotheses:

(i) there are r > 0 and ρ > 0 such that I(u) ≥ ρ for ‖u‖ = r, u ∈ E;
(ii) there exists e ∈ E \ Br(0) with I(e) < 0.

We set

cβ = inf
γ∈Γ

max
s∈[0,1]

I(γ(s)) > 0,

where

Γ := {γ ∈ C([0, 1], E) | γ(0) = 0, I(γ(1)) < 0}.

Then, c ≥ ρ and there is a sequence {un} ⊂ E verifying I(un) → cβ and λn(un) → 0 in E′.

Lemma 2.2. ([16,18]) Let {un} ⊂ E and {ρn} ⊂ E∗ with ρn ∈ ∂I(un). If un → u in E and ρn ⇀ ρ in
E∗, then ρ0 ∈ ∂I(u).

Lemma 2.3. ([16,18]) Let R > 0 and Ψ(u) =
∫
R3 G(u)dx and ΨR(v) =

∫
BR(0)

G(v)dx, where G(t) =∫ t

0
g(s)ds. Then, Ψ ∈ Liploc(Lp+1(R3),R), ΨR ∈ Liploc(Lp+1(BR(0)),R), ∂Ψ(u) ∈ L

p+1
p (R3) and

∂ΨR(u) ∈ L
p+1

p (BR(0)). Moreover, if ρ ∈ ∂Ψ(u) and ζ ∈ ∂ΨR(v), then

ρ(x) ∈ [g(u(x)), g(u(x))] a. e. in R
3

and

ζ(x) ∈ [g(v(x)), g(v(x))] a. e. in BR(0).
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Lemma 2.4. (Lions lemma, see [42]) Assume that {un}n∈N is bounded in Hα(R3) and

lim
n→∞ sup

y∈R3

∫
Br(y)

|un|2dx = 0,

for some r > 0. Then, un → 0 in Ls(R3) for all s ∈ (2, 2∗
α).

3. Existence of positive solutions to (Kε) with ε = 1

The energy functional associated with (Kε) with ε = 1, I : E → R is defined as

Iβ(u) =
1
2
‖u‖2 +

b

4

⎛
⎝ ∫

R3

|(−Δ)
α
2 u|2dx

⎞
⎠

2

−
∫
R3

FH(u)dx, u ∈ E,

with FH(u) =
∫ u

0
fH(s)ds. Obviously, Iβ ∈ Liploc(Hα(R3),R).

We now verify the functional Iβ satisfies the mountain pass geometry.

Lemma 3.1. The following properties hold:
(i) there are r > 0 and ρ > 0 such that Iβ(u) ≥ ρ for ‖u‖ = r, u ∈ E;
(ii) there exists v ∈ E \ Br(0) with Iβ(v) < 0.

Proof. (i) Observe from the definition of H that for β > 0, there exists Cβ > 0 such that

fH(t) ≤ Cβtp, for all t ∈ R. (3.1)

So from Sobolev’s imbedding inequality, we infer that

Iβ(u) ≥ 1
2
‖u‖2 − 1

p + 1

∫
R3

|u|p+1dx ≥ 1
2
‖u‖2 − C‖u‖p+1.

Hence, there exist r, ρ > 0, independent of β, such that for ‖u‖ = r, Iβ(u) ≥ ρ > 0.
(ii) Take e ∈ C∞

0 (R3) \ {0} with e > 0 and Θ := mes{x| e(x) > β} > 0, then by (f4) one has

Iβ(te) =
t2

2
‖e‖2 +

bt4

4

⎛
⎝ ∫

R3

|(−Δ)
α
2 e|2dx

⎞
⎠

2

−
∫
R3

FH(te)dx

≤ t2

2
‖e‖2 +

bt4

4

⎛
⎝ ∫

R3

|(−Δ)
α
2 e|2dx

⎞
⎠

2

−
∫

{te(x)>β}

F (te) − F (β)dx

≤ t2

2
‖e‖2 +

bt4

4

⎛
⎝ ∫

R3

|(−Δ)
α
2 e|2dx

⎞
⎠

2

− γtσ+1

σ + 1

∫
Θ

|e|σ+1dx + F (β) · |supt{e(x)}|,

which implies that

Iβ(te) → −∞, as t → +∞. (3.2)

So, take t0 > 0 large enough, then v = t0e satisfies v ∈ E \ Br(0) with I(v) < 0. �

Combining Lemma 3.1 with Theorem 2.1, there exists a sequence {un} ⊂ E satisfying

Iβ(un) → cβ and λβ(un) → 0, (3.3)

where cβ is the mountain pass level of the functional Iβ . In what follows, we show that sequence {un} is
bounded in E.
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Lemma 3.2. The sequence {un} is bounded in E.

Proof. Set

A(u) :=
1
2
‖u‖2 +

b

4

⎛
⎝ ∫

R3

|(−Δ)
α
2 u|2dx

⎞
⎠

2

, B(u) :=
∫
R3

FH(u)dx.

From now on, we consider {wn} ⊂ Hα(R3)∗ such that λβ(un) = ‖ωn‖E∗ and ωn = A′(un) − ρn, where
{ρn} ⊂ ∂B(un). Then,

‖un‖2 + b

⎛
⎝ ∫

R3

|(−Δ)
α
2 un|2dx

⎞
⎠

2

= 〈ωn + ρn, un〉. (3.4)

Since ρn ∈ [f
H

(un(x)), fH(un(x))] a.e in R
3, then by (1.1) we have

〈ρn, un〉 ≥
∫
R3

f
H

(un)undx ≥
∫

{un>β}

f(un)undx ≥ 4
∫

{un>β}

F (un)dx.

It then follows from (3.4) that

cβ + on(1) = Iβ(un) − 1
4
〈ωn, un〉

=
1
4
‖un‖2 +

1
4
〈ρn, un〉 −

∫
{un>β}

FH(un)dx

≥ 1
4
‖un‖2,

(3.5)

which finishes the proof of the lemma. �

Recalling (3.3) and Lemma 3.2, up to subsequence, there exists a subsequence of {un} (still denoted
by {un}) such that

un ⇀ u0 in E, un → u0 in Ls
loc(R

3), s ∈ (2, 2∗
α). (3.6)

Lemma 3.3. Let {ρn} ⊂ ∂B(un) with ρn ⇀ ρ0 in L
p+1

p (R3). Then,

ρ0(x) ∈ [f
H

(u(x)), fH(u(x))] a.e in R
3.

Proof. Since un ⇀ u in E, one has un → u in Lp+1
loc (R3). Hence, for any ϕ ∈ C∞

0 (R3), the following holds∫
R3

unϕdx →
∫
R3

uϕdx,

∫
R3

ρnϕdx →
∫
R3

ρ0ϕdx.

Recalling Lemma 2.2 we get

ρ0(x) ∈ [f
H

(u(x)), fH(u(x))] a.e in R
3.

The proof is now complete. �

Lemma 3.4. As for sequence {un} ⊂ E defined in (3.3), there exists a sequence {yn} ⊂ R
3 and constants

R, τ > 0 such that

lim inf
n→∞

∫
BR(yn)

u2
ndx ≥ τ > 0. (3.7)
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Proof. Suppose by contradiction that (3.7) does not hold. Then, it follows from Lemma 2.4 that un → 0 in
Ls(R3) for s ∈ (2, 2∗

α). By (3.1) and (3.4), there exists {ρn} ⊂ ∂B(un) with ρn ∈ [f
H

(un(x)), fH(un(x))]
a.e in R

3 such that

‖un‖2 ≤
∫
R3

ρnundx ≤
∫
R3

fH(un)undx

≤
∫

{un≥β}

f(un)undx → 0.
(3.8)

This implies that un → 0 in E. Furthermore, Iβ(un) → 0 as n → ∞. This contradicts cβ > 0. The proof
is complete. �

Let c∞ be the mountain pass level associated with the functional I∞ : Hα(R3) → R defined by

I∞(u) =
1
2

∫
R3

(a|(−Δ)
α
2 u|2 + V∞u2)dx +

b

4

⎛
⎝ ∫

R3

|(−Δ)
α
2 u|2dx

⎞
⎠

2

−
∫
R3

F (u)dx. (3.9)

Lemma 3.5. Assume that there exists β1 > 0 small such that (1 + β2)cβ < c∞ for fixed β ∈ (0, β1), then
u0 �= 0.

Proof. Suppose on the contrary that u0 = 0. The Sobolev’s embedding together with Lemma 4.2 yields
{yn} is unbounded. That is, up to subsequence, |yn| → +∞. Let us set vn(x) := un(x + yn). It is easy to
check that {vn} is bounded in Hα(R3). Recalling Lemma 4.2, up to subsequence, there exists v ∈ E \{0}
such that for s ∈ [1, 2∗

α)

vn ⇀ v in E, vn → v in Ls
loc(R

3). (3.10)

For any R > 0, let ϕR ∈ C∞
0 (R3) be such that ϕR(x) = 1 in BR and ϕR(x) = 0 in R

3 \ {B2R}, with
0 ≤ ϕR ≤ 1 and |∇ϕR| ≤ C

R , where C is a constant independent of R. Since the sequence {(ϕRvn)(·−yn)}
is bounded in E, the following holds

(a + b‖un‖2
D2,α)

∫
R3

(−Δ)
α
2 un(−Δ)

α
2 (ϕRvn)(· − yn)dx +

∫
R3

V (x)un(ϕRvn)(· − yn)dx

=
∫
R3

ρn(ϕRvn)(· − yn)dx + on(1), v ∈ E.

(3.11)

Using the fact that ρn ∈ [f
H

(un(x)), fH(un(x))] a.e in R
3, we have

∫
R3

ρn(ϕRvn)(· − yn)dx ≤
∫
R3

fH(vn)vnϕRdx ≤
∫
R3

f(vn)vnϕRdx. (3.12)

It follows from (3.10) that ∫
R3

f(vn)vnϕRdx =
∫
R3

f(v)vϕRdx + on(1). (3.13)
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Observe that ∫
R3

(−Δ)
α
2 un(−Δ)

α
2 (ϕRvn)(· − yn)dx

= Cα

∫
R3×R3

[vn(x) − vn(y)]2ϕR(x)
|x − y|3+2α

dxdy

+ Cα

∫
R3×R3

[vn(x) − vn(y)][ϕR(x) − ϕR(y)]
|x − y|3+2α

vn(y)dxdy.

(3.14)

Using the Hölder inequality, the boundedness of {un} in E and |∇ϕR| ≤ C
R , we have

∫
R3×R3

[vn(x) − vn(y)][ϕR(x) − ϕR(y)]
|x − y|3+2α

vn(y)dxdy

≤ ‖vn‖2
D2,α

( ∫
R3×R3

[ϕR(x) − ϕR(y)]2

|x − y|3+2α
v2

n(y)dxdy

)1/2

≤ ‖vn‖2
D2,α

(
C

R2

∫
R3

∫
|x−y|≤4R

1
|x − y|1+2α

v2
n(y)dxdy

)1/2

≤ C

R
‖vn‖2

D2,α

( ∫
R3

v2
n(y)dy

4R∫
0

1
r2α−1

dr

)1/2

≤ C

Rα
,

(3.15)

where we have used polar coordinate transformation in the third inequality. Taking into account (3.11)-
(3.15), by Fatou’s lemma we infer that

(a + b‖v‖2
D2,α)Cα

∫
R3×R3

[v(x) − v(y)]2ϕR(x)
|x − y|3+2α

dxdy +
∫
R3

V∞v2ϕRdx

≤
∫
R3

f(v)vϕRdx +
C

Rα
.

(3.16)

Let R → +∞ in (3.16), then

(a + b‖v‖2
D2,α)

∫
R3

|(−Δ)
α
2 v|2dx +

∫
R3

V∞v2dx ≤
∫
R3

f(v)vdx. (3.17)

Since v �= 0, there exists t ∈ (0, 1) such that tv ∈ N (see [23]), where N is the Nehari manifold associated
with I∞ given by

N := {u ∈ E \ {0}; I ′
∞(u)u = 0}.
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As a consequence, using (f3) and Fatou’s lemma, we have

I∞(tv) − 1
4
I ′
∞(tv)tv =

t2

4

∫
R3

[(|(−Δ)
α
2 v|2 + V∞v2]dx +

∫
R3

[
1
4
f(tv)tv − F (tv)

]
dx

≤ lim inf
n→∞

⎛
⎝1

4
‖un‖2 +

∫
R3

(
1
4
f(un)un − F (un)

)
dx

⎞
⎠ .

(3.18)

Recalling the definitions of f
H

and fH , we deduce from (f1) that there exists β1 > 0 such that f(t) ≤ V0t
3

for t ∈ (0, β1) and then by (3.5) and cβ < c∞, we have for large n∫
R3

f(un)un =
∫

{un≤β}

f(un)un +
∫

{un>β}

f(un)un

≤ β2‖un‖2 +
∫
R3

f
H

(un)un

≤ 4β2(cβ + on(1)) +
∫
R3

f
H

(un)un

(3.19)

for any fixed β ∈ (0, β1). Putting (3.19) into (3.18), by c∞ = infu∈N I(u) (see [23]) and (3.18), one has

c∞ ≤ I∞(tv) − 1
4
I ′
∞(tv)tv

≤ lim inf
n→∞

⎛
⎝1

4
‖un‖2 + β2(cβ + on(1)) +

∫
R3

(
1
4
f

H
(un)un − FH(un)

)
dx

⎞
⎠

≤ lim inf
n→∞

⎛
⎝1

4
‖un‖2 + β2(cβ + on(1)) +

∫
R3

(
1
4
ρnun − FH(un)

)
dx

⎞
⎠

≤ lim inf
n→∞

(
Iβ(un) − 1

4
〈A′(un) − ρn, un〉 + β2(cβ + on(1))

)
= (1 + β2)cβ ,

which is a contradiction. Therefore, u0 ≥ 0 and u0 �= 0. �

The next result establishes the existence of mountain pass solutions to (Kε) with ε = 1; that is, there
exists u0 ∈ E satisfying

Iβ(u0) = cβ and 0 ∈ ∂Iβ(u0),

where cβ is the mountain pass level associated with Iβ .

Lemma 3.6. Assume that there exists β1 > 0 such that (1 + β2)cβ < c∞ for fixed β ∈ (0, β1), then (Kε)
with ε = 1 has a non-trivial solution u0 ∈ E, and set Λ := {x ∈ R

3 : u0(x) = β} has null measure.
Moreover,

Iβ(u0) = max
t≥0

Iβ(tu0).

Proof. In view of Lemma 3.5, u0 given in (3.6) is nonzero. Hence, there exists constant B > 0 such
that ‖un‖2

Dα,2 → B as n → ∞, where {un} has been defined in (3.3). Indeed, we need to prove that
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u0 ∈ W
2α, p+1

p

loc (R3) ∩ Hα(R3) and u0 solves⎛
⎝a + b

∫
R3

|(−Δ)
α
2 u|2dx

⎞
⎠ (−Δ)αu + V (x)u ∈ [f

H
(u(x)), fH(u(x))] a.e. in R

3.

Since {un} ⊂ E is a (PS)cβ
sequence, there exists {ρn} ⊂ ∂B(un) such that

∫
R3

(
a(−Δ)

α
2 un(−Δ)

α
2 v + V (x)unv

)
dx + b

(∫
R3

|(−Δ)
α
2 un|2dx

)2 ∫
R3

(−Δ)
α
2 un(−Δ)

α
2 vdx

=
∫
R3

ρnvdx, v ∈ E,

(3.20)

with ρn ∈ [f
H

(un(x)), fH(un(x))] a.e. in R
3. It then follows from the boundedness of {un}, the definition

of H, (f1) and (f2) that sequence {ρn} is bounded in L
p+1

p (R3). Thus, up to subsequence, there exists
ρ0 ∈ L

p+1
p (R3) such that

ρn ⇀ ρ0 in L
p+1

p (R3), (3.21)

which implies by (3.6) that for any v ∈ E∫
R3

[
a(−Δ)

α
2 u0(−Δ)

α
2 v + V (x)u0v

]
dx + bB

∫
R3

(−Δ)
α
2 u0(−Δ)

α
2 vdx =

∫
R3

ρ0vdx. (3.22)

Recalling Lemma 3.3, one has ρ0 ∈ [f
H

(u0(x)), fH(u0(x))] a.e in R
3. From elliptic regularity theory,

we deduce that u ∈ W 2α, p+1
p (R3). As a consequence, from (3.22), we immediately obtain that u0 is a

non-negative weak solution of the following equation{
(a + bB)(−Δ)αu + V (x)u = H(u − β)f(u) a. e. in R

3,
u ∈ Hα(R3), (3.23)

whose energy functional is

Jβ(u) =
a + bB

2

∫
R3

|(−Δ)
α
2 u|2dx +

1
2

∫
R3

V (x)u2dx −
∫
R3

FH(u)dx.

By using the Stampacchia theorem, we immediately obtain that Λ = {x ∈ R
3 : u0(x) = β} has

null measure for β small enough. Using v = u−
0 := min{u0, 0} in (3.22) and the fact that ρ0 ∈

[f
H

(u0(x)), fH(u0(x))] a.e in R
3, we have

(a + bB)
∫
R3

((−Δ)αu0u
−
0 + V (x)|u−

0 |2)dx =
∫
R3

ρ0u
−
0 dx = 0,

which implies that u0 ≥ 0 (see [32]). Moreover, we can use an iteration method which was firstly introduced
in [12] to prove u0 ∈ L∞(R3). Using Proposition 2.9 in [43] and 2α > 1, we have u0 ∈ C1,s(R3) for
s ∈ (0, 2α − 1). Using the maximum principle in [43], we can conclude that u > 0 in R

3.
Note that one of the following cases must occur.
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Case 1. B = ‖u0‖2
Dα,2 . Thus, un → u0 in Dα,2(R3) as n → ∞. It is easy to see from (4.5) that u0 is

a non-trivial weak solution of (K1). Moreover, by the Hölder inequality and the fractional Gagliardo–
Nirenberg–Sobolev inequality, we have∣∣∣∣

∫
R3

(ρnun − ρ0u0)dx

∣∣∣∣ =
∣∣∣∣
∫
R3

ρn(un − u0)dx

∣∣∣∣ +
∣∣∣∣
∫
R3

(ρn − ρ0)u0dx

∣∣∣∣
≤ ‖ρn‖ p+1

p
‖un − u0‖p+1

p+1 + on(1)

≤ C‖ρn‖ p+1
p

‖un − u0‖
3(p−1)

2α

Dα,2 ‖un − u0‖p+1− 3(p−1)
2α

2 + on(1)

= on(1).

As a consequence, letting v = un in (3.20) and v = u0 in (3.22), one has

‖un − u0‖2 =
∫
R3

(ρnun − ρ0u0)dx + on(1) = on(1).

We conclude that un → u0 in E as n → ∞.

Case 2. ‖u0‖2
Dα,2 < B. Let us claim that there exists t∗ ∈ (0, 1) such that

max
t≥0

Iβ(tu0) = Iβ(t∗u0). (3.24)

Since h(t) := Iβ(tu0) is locally Lipschitz continuous function, h is differentiable almost everywhere. A
direct computation shows that there exist δ, t0 > 0 such that

h(t) > 0, for all t ∈ (0, δ) and h(t) < 0 for all t ≥ t0, (3.25)

which implies that there exists t∗ > 0 such that (3.24) holds. Let us denote I ⊂ R by the set of the points
where h′ does not exist, we have |I| = 0, where |I| denotes the Lebesgue’s measure of I. The claim is
proved by showing that

(a) h′(t) > 0 for any t ∈ (0, t∗) ∩ Ic and h′(t) < 0 for any t ∈ (t∗,+∞) ∩ Ic, where t∗ ∈ (0, 1).

Using the chain rule for locally Lipschitz continuous function, there is w ∈ ∂Iβ(tu0) such that h′(t) =
〈w, u0〉. That is to say, there exists ρ0 ∈ ∂B(tu0) satisfying

h′(t) = t

(∫
R3

a|(−Δ)
α
2 u0|2dx +

∫
R3

V (x)u2
0dx

)
+ t3b‖u0‖4

Dα,2 −
∫
R3

ρ0u0dx.

It follows from 0 ∈ ∂Jβ(u0), |Λ| = 0 and (3.22) that

(a + bB)
∫
R3

|(−Δ)
α
2 u0|2dx +

∫
R3

V (x)u2
0dx =

∫
R3

fH(u0)u0dx. (3.26)

Based on the above facts, one has

h′(t) = t

(∫
R3

fH(u0)u0dx − bB‖u0‖2
Dα,2

)
+ t3b‖u0‖4

Dα,2 −
∫
R3

ρ0u0dx,
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which implies by |Λ| = 0 and the fact that ρ0 ∈ [f
H

(tu0(x)), fH(tu0(x))] a.e in R
3 that

h′(t) ≤ t

(∫
R3

fH(u0)u0dx −
∫
R3

f
H

(tu0)u0dx

)
+ t3b‖u0‖4

Dα,2 − bBt‖u0‖2
Dα,2

= t3
(∫

R3

f
H

(u0)
t2

u0dx −
∫
R3

f
H

(tu0)
t3

u0dx + b‖u0‖4
Dα,2 − bB

t2
‖u0‖2

Dα,2

)

≤ t3
( ∫

{u0>β}

f(u0)
t2

u0dx −
∫

{tu0>β}

f(tu0)
t3

u0dx + b‖u0‖4
Dα,2 − bB

t2
‖u0‖2

Dα,2

)
.

(3.27)

Similarly, we can also obtain

h′(t) ≥ t3
( ∫

{u0>β}

f(u0)
t2

u0dx −
∫

{tu0≥β}

f(tu0)
t3

u0dx + b‖u0‖4
Dα,2 − bB

t2
‖u0‖2

Dα,2

)
.

Define H : (0,+∞) → R by

H(t) :=
∫

{u0>β}

f(u0)
t2

u0dx −
∫

{tu0>β}

f(tu0)
t3

u0dx + b‖u0‖4
Dα,2 − bB

t2
‖u0‖2

Dα,2 .

Obviously, H(1) < 0 due to ‖u0‖2
Dα,2 < B. It follows from (f1)-(f3) and (3.27) that there exists t̃ ∈ (0, 1)

such that H(t̃) = 0 and h′(t) < 0 for all t ∈ (t̃,+∞) ∩ Ic. Based on (3.25) and the above facts, h has a
global maximum in t = t∗ ∈ (0, t̃]. Thus, conclusion (a) holds and then the claim is true. Recalling the
definition of cβ , we obtain

cβ ≤ Iβ(t∗u0). (3.28)

Observe by |Λ| = 0 and the definition of H that

∫
{u0≤β}

FH(u0)dx = 0. (3.29)

Since t∗ is a global maximum point of h(t), there exist sequence {tn} ⊂ (t∗,+∞) ∩ Ic with tn → t∗ and
ρn ∈ ∂B(tnu0) such that

h′(tn) = t

(∫
R3

a|(−Δ)
α
2 u0|2dx +

∫
R3

V (x)u2
0dx

)
+ t3b‖u0‖4

Dα,2 −
∫
R3

ρnu0dx ≤ 0,
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which implies by (3.28), (3.29), the definition of Iβ and tn ∈ (0, 1) that

cβ ≤ Iβ(t∗u0)

≤ Iβ(tnu0) − 1
4
h′(tn)tn + on(1)

≤ t2n
4

‖u0‖2 −
∫
R3

FH(tnu0)dx +
1
4

∫
R3

ρntnu0dx + on(1)

≤ t2n
4

‖u0‖2 +
∫

{tnu0≥β}

1
4
f(tnu0)tnu0dx + on(1)

−
∫

{tnu0>β}

[F (tnu0) − F (β)]dx −
∫

{tnu0≤β}

FH(tnu0)dx

=
t2n
4

‖u0‖2 +
∫

{tnu0≥β}

[
1
4
f(tnu0)tnu0 − F (tnu0)

]
dx +

∫
{tnu0≥β}

F (β)dx + on(1)

<
1
4
‖u0‖2 +

∫
{u0>β}

[
1
4
f(u0)u0 − F (u0)

]
dx +

∫
{u0>β}

F (β)dx

≤ 1
4
‖u0‖2 +

∫
R3

[
1
4
f

H
(u0)u0 − FH(u0)

]
dx +

∫
{u0≤β}

FH(u0)dx

≤ lim inf
n→∞

{
1
4
‖un‖2 +

∫
R3

[
1
4
f

H
(un)un − FH(un)

]
dx

}

≤ lim inf
n→∞ [Iβ(un) − 1

4
〈ωn, un〉]

< cβ ,

(3.30)

which is a contradiction. Here, ωn has been defined in Lemma 3.2. We conclude that Case 2 does not
occur. The proof is complete. �

4. Existence and concentration of positive solutions to (Kε)

Let us consider the following Hilbert space

Eε :=
{

u ∈ Hα(R3) :
∫
R3

V (εx)u2dx < ∞
}

endowed with the norm

‖u‖2
ε =

∫
R3

[a|(−Δ)
α
2 u|2 + V (εx)u2]dx.

The energy functional associated with (Kε) is given by

Iε,β(u) =
1
2
‖u‖2

ε +
b

4

⎛
⎝ ∫

R3

|(−Δ)
α
2 u|2dx

⎞
⎠

2

−
∫
R3

FH(u)dx, u ∈ Eε.
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Using the same argument as Lemma 3.1, we can prove that Iε,β has the corresponding mountain pass
geometry. The mountain pass level of Iε,β is denoted by cε,β , where is defined by

cε,β := inf
γ∈Γε

max
s∈[0,1]

Iε,β(γ(s)) > 0,

where

Γε := {γ ∈ C([0, 1], Eε) | γ(0) = 0, Iε,β(γ(1)) < 0}.

4.1. Existence

Define IV0 : Hα(R3) :→ R by

IV0(u) :=
1
2

∫
R3

(a|(−Δ)
α
2 u|2 + V0u

2)dx +
b

4

⎛
⎝ ∫

R3

|(−Δ)
α
2 u|2dx

⎞
⎠

2

−
∫
R3

F (u)dx,

where V0 ∈ (0, V∞). There exists a positive function v ∈ Hα(R3) (see [31]) such that I ′
V0

(v) = 0 and
IV0(v) = cV0 , where cV0 is the mountain pass level. Define the corresponding manifold of IV0 by

NV0 := {u ∈ Hα(R3) : I ′
V0

(u)u = 0},

then cV0 = infu∈NV0
IV0(u). For any R > 0, let ϕR ∈ C∞

0 (R3) be such that ϕR(x) = 1 in BR(0) and
ϕR(x) = 0 in R

3 \ {B2R(0)}, with 0 ≤ ϕR ≤ 1 and |∇ϕR| ≤ C
R , where C is a constant independent of R.

Denote by vR the function

vR(x) := ϕR(x)v(x).

It is not hard to show that

vR → v in Hα(R3) as R → +∞.

For each R > 0, there exists tR > 0 such that

IV0(tRvR) = max
t≥0

IV0(tvR).

Thus, I ′
V0

(tRvR) = 0 and

1
t2R

∫
R3

(|(−Δ)
α
2 vR|2 + V0v

2
R)dx + b

⎛
⎝ ∫

R3

|(−Δ)
α
2 vR|2dx

⎞
⎠

2

=
∫
R3

f(tRvR)
t3Rv3

R

v4
Rdx,

(4.1)

which implies by I ′
V0

(v) = 0 that tR → 1 as R → ∞. Thus, it is obvious that tRvR → v in Hα(R3) as
R → ∞. It then follows from cV0 < c∞ that there exist δ > 0, R > 0 such that

cV0 + δ < c∞ and IV0(tRvR) < cV0 +
δ

2
. (4.2)

Similarly to Lemma 3.1, there exists t∗ > 0 such that Iε,β(t∗tRvR) < 0 uniformly for ε, β > 0 small
enough. Let us consider γ(t) = tt∗tRvR for t ∈ [0, 1], and then γ ∈ Γε. By the definition of cε,β , we have

cε,β ≤ max
t∈[0,1]

Iε,β(γ(t)) = max
t≥0

Iε,β(ttRvR) = Iε,β(t̄tRvR) (4.3)
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for some t̄ > 0 which depends on parameters ε, β,R. It is easy to prove that for each R > 0 given, there
exist positive constants C1, C2 > 0 such that C1 < t̄ < C2 for ε, β > 0 small enough. Without loss of
generality, we assume that V (0) = V0. For any σ > 0, there exists ε0 > 0 such that

0 ≤ V (εx) − V0 < σ

for all ε ∈ (0, ε0) and x ∈ B2R(0). It then follows that∫
R3

V (εx)(tRvR)2dx <

∫
R3

(V0 + σ)(tRvR)2dx.

By virtue of the above facts, from (f1)-(f3), we deduce that there exist C3, C4 > 0 such that

cε,β ≤ IV0(ttRvR) +
σ

2

∫
R3

(tRvR)2dx

+
∫

B2R∩{tRvR≤β}

F (tRvR)dx +
∫

B2R∩{tRvR>β}

F (β)dx

≤ cV0 + CRσ + C̄Rβ4,

(4.4)

where CR, C̄R are independent of ε, β. Thus, there exist σ, β∗ > 0 small enough that

(1 + β2)cε,β ≤ (1 + β2)[cV0 + CRσ + C̄Rβ4] < c∞
for any β ∈ (0, β∗). Therefore, it follows from Lemma 3.6 that (Kε) has a non-trivial solution uε,β ∈
Hα(R3) for ε, β > 0 small enough. Moreover, Iε,β(uε,β) = cε,β . �

4.2. Concentration

Assume that uε,β is the solution of equation (Kε) obtained above. Then, there exists ρε,β ∈ L
p+1

p (R3)
such that uε,β solves{(

a + b
∫
R3 |(−Δ)

α
2 u|2dx

)
(−Δ)αu + V (εx)u = ρε,β a. e. in R

3,
u ∈ Hα(R3), u > 0 in R

3 (4.5)

with ρε,β ∈ [f
H

(uε,β), fH(uε,β)] a.e. in R
3. Take εn, βn → 0 arbitrarily, we denote by un = uεn,βn

and
ρn = ρεn,βn

.
It is important to compare the minimax levels cV0 and cεn,βn

in our arguments.

Lemma 4.1.

lim
n→∞ cεn,βn

= cV0 > 0.

Proof. Due to the arbitrariness of σ in (4.4), we deduce immediately that lim supn→∞ cεn,βn
≤ cV0 . Now

it suffices to verify that

lim inf
n→∞ cεn,βn

≥ cV0 . (4.6)

In fact, we assume on the contrary that there exist positive integer N large and δ > 0 small such that
cεn,βn

≤ cV0 − δ for all n > N . From Lemma 3.6 and the definition of cεn,βn
, we have

cεn,βn
= Iεn,βn

(uεn,βn
) = max

h>0
Iεn,βn

(huεn,βn
) < cV0 − δ

for any fixed n > N . Again by the definition of cV0 , we know that cV0 ≤ maxh>0 IV0(huεn,βn
). It follows

from the fact that V0 ≤ V (εnx) for all given n > N and x ∈ R
3 that

cV0 − δ > max
h>0

Iεn,βn
(huεn,βn

) ≥ max
h>0

IV0(huεn,βn
) ≥ cV0 ,
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which is a contradiction. Thus, (4.6) holds and the proof is complete. �

Lemma 4.2. There exist a sequence {yn} ⊂ R
3 and constants R, τ > 0 such that

lim inf
n→∞

∫
BR(yn)

u2
ndx ≥ τ > 0.

Proof. Suppose on the contrary that the conclusion does not hold. Using the similar arguments as in
Lemma 3.2, we have that {un} is bounded in Hα(R3). It then follows from Lemma 2.4 that un → 0
in Ls(R3) for s ∈ (2, 2∗

α). By virtue of (f1) and (f2), for any ε > 0, there exists Cε > 0 such that
f(un) ≤ ε|un| + Cε|un|p. So from the definition of FH and the fact that ρn ∈ [f

H
(un), fH(un)] a.e. in

R
3, we deduce that

∫
R3 FH(un)dx → 0 and

∫
R3 ρnundx → 0 as n → ∞. It follows that

o(1) = ‖un‖2
εn

+ ‖un‖4
Dα,2 ,

cεn,βn
+ o(1) =

1
2
‖un‖2

εn
+

1
4
‖un‖4

Dα,2 ,

which contradicts Lemma 4.1. The proof is complete. �

It is known that {un} is bounded in Hα(R3). Take vn := un(x + ỹn) such that vn ⇀ v �= 0 in Hα(R3)
and vn(x) → v(x) a.e., in R

3. Then, vn solves the following equation{(
a + b

∫
R3 |(−Δ)

α
2 vn|2dx

)
(−Δ)αvn + Vn(x)vn = ρ̃n a. e. in R

3,
vn ∈ Hα(R3), vn > 0 in R

3 (4.7)

with Vn(x) = V (εnx + εnỹn) and ρ̃n(x) ∈ [f
H

(vn(x)), fH(vn(x))] a.e. in R
3.

Lemma 4.3. {vn} has a convergent subsequence in Hα(R3). Moreover, up to a subsequence, yn := εnỹεn
→

y∗ ∈ Θ, where Θ := {x ∈ R
3|V (x) = V0}.

Proof. For each vn, choosing tn > 0 such that v̄n := tnvn ∈ NV0 , we deduce from 0 ∈ ∂Iεn,ηn
(un) and

Lemma 3.6 that

IV0(tnvn) ≤ t2n
2

∫
R3

a|(−Δ)α/2vn|2 + Vn(x)v2
n)dx +

t4n
4

b

⎛
⎝ ∫

R3

|(−Δ)
α
2 vn|2dx

⎞
⎠

2

−
∫
R3

FH(tnvn)dx

= Iεn,ηn
(tnun) ≤ Iεn,ηn

(un) = cV0 + o(1).

So, it follows from IV0(v̄n) ≥ cV0 that limn→∞ IV0(v̄n) = cV0 . We can show that {tn} is bounded. Indeed,
since ‖un‖2

εn
is bounded uniformly for n, we can easy obtain IV0(v̄n) → −∞ when tn → +∞. This is not

possible since IV0(v̄n) ≥ cV0 for all n ∈ N. Hence, {tn} is bounded. Up to subsequence, we assume that
tn → t ≥ 0. If t = 0, then v̄n → 0 in Hα(R3), because {vn} is bounded in Hα(R3). Hence, IV0(v̄n) → 0
as n → ∞, which contradicts cV0 > 0. So v̄n := tnvn ⇀ v̄ in Hα(R3) \ {0}. By uniqueness, we deduce
v̄ = tv. Using Ekeland’s variational principle in [19], we can prove that {v̄n} ⊂ NV0 is a Palais–Smale
sequence of IV0 (see Lemma 5.1 in [32]), that is,

IV0(v̄n) → cV0 I ′
V0

(v̄n) → 0 in Hα(R3). (4.8)

Although IV0 is of C1 class, we can still use the similar arguments as in Lemma 3.6 to obtain v̄n → v̄ in
Hα(R3) and v̄ ∈ NV0 , and so vn → v in Hα(R3). Let us show that yn := εnỹn is bounded. If not, then
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|yn| → ∞. It follows from v̄n ∈ NV0 , the Fatou Lemma and Lemma 3.6 that

cV0 ≤ IV0(v̄) < IV∞(tv) − 1
4
I ′
V0

(tv)tv

=
∫
R3

[
a

4
|(−Δ)α/2tv|2 +

(
1
2
V∞ − 1

4
V0

)
t2v2

]
dx +

∫
R3

(
f(tv)tv − 1

4
F (tv)

)
dx

≤ lim inf
n→∞

(
1
4

∫
R3

|(−Δ)α/2tnvn|2dx +
∫
R3

(
1
2
V (εnx + yn) − 1

4
V0

)
t2nv2

ndx

+
∫
R3

(f(tnvn)tnvn − 1
4
FH(tnvn))dx

)

= lim inf
n→∞ Iεn,βn

(tnun) ≤ lim inf
n→∞ Iεn,βn

(un) = cV0 ,

which is a contradiction. So {yn} is bounded. Up to subsequence, yn → y∗. Moreover, since f(t) = 0 for
all t ≤ 0, we have as β → 0

f
H

(t), fH(t) →
{

0, if t < 0,
f(t), if t ≥ 0.

Hence, based on the facts that ρ̃n(x) ∈ [f
H

(vn(x)), fH(vn(x))] a.e. in R
3 and vn → v in Hα(R3), using

the Lebesgue dominated convergence theorem, we deduce that for any η ∈ C∞
0 (R3)∫

R3

ρ̃nηdx →
∫
R3

f(v)ηdx, as n → ∞.

For each η ∈ C∞
0 (R3), we then deduce from (4.7) and vn → v in Hα(R3) that

lim
n→∞

(
(a + b‖vn‖2

Dα,2)
∫
R3

(−Δ)α/2vn(−Δ)α/2ηdx +
∫
R3

Vn(x)vnηdx −
∫
R3

ρ̃nηdx

)

= (a + b‖v‖2
Dα,2)

∫
R3

(−Δ)α/2v(−Δ)α/2ηdx +
∫
R3

V (y∗)vηdx −
∫
R3

f(v)ηdx.

Therefore, the limit v of sequence {vn} solves the equation

(a + b‖v‖2
Dα,2)(−Δ)αv + V (y∗)v = f(v) inR

3. (4.9)

Define the functional

Iy∗(u) :=
1
2

∫
R3

(a|(−Δ)α/2u|2 + V (y∗)u2)dx +
b

4
‖v‖4

Dα,2 −
∫
R3

F (u)dx.

If V (y∗) > V0, then we can get a contradiction by similar arguments as above. So V (y∗) = V0 and
Iy∗(v) = cV0 . That is to say, v is a positive ground state solutions of (4.9). The proof is complete. �

We use the Moser iteration method [36] to prove L∞-estimate for problem (4.7).

Lemma 4.4. Let un ∈ Eεn
be a solution of problem (Kεn

) with εn → 0+ and βn → 0. Then, vn =
un(· + ỹn) ∈ L∞(R3) uniformly for n.

Proof. Since |Λ∗| = 0 with Λ∗ := {x ∈ R
3 | vn(x) = β}, our argument is similar to that in Lemma 3.2 of

[6]. So we omit the details of the proof. �
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Now, we claim that there exists c > 0 such that ‖vn‖∞ ≥ c > 0. Otherwise, ‖vn‖∞ → 0 as n → ∞.
By (f1)-(f3) and the definition of fH , for n large enough, we have∫

R3

[a|(−Δ)α/2vn|2 + V0v
2
n]dx ≤

∫
R3

V0

2
v2

ndx,

which is a contradiction. Hence, from Lemma 4.4 there exist c, C > 0 independent of n such that

c ≤ ‖vn‖∞ ≤ C. (4.10)

Observe from (4.7) that vn solves{
(−Δ)αvn + vn = χn a. e. in R

3,
vn ∈ Hα(R3), vn > 0 in R

3,
(4.11)

where

χn(x) :=

⎛
⎝a + b

∫
R3

|(−Δ)
α
2 vn|2dx

⎞
⎠

−1

[ρ̃n − Vn(x)vn] + vn

and Vn(x) = V (εnx+εnỹn) and ρ̃n(x) ∈ [f
H

(vn(x)), fH(vn(x))] a.e. in R
3. From (4.10) and the definitions

of f
H

, fH , we deduce that {ρ̃n} is bounded in L∞(R3). Using the fact that vn → v in Hα(R3), we see that

there exists ρ̃∗(x) ∈ [f
H

(v(x)), fH(v(x))] a.e. in R
3, such that ρ̃n → ρ̃∗ in L

p+1
p (R3), and then ρ̃n → ρ̃∗

in Ls(R3) for s ∈ [p+1
p ,∞). Hence, there exists χ ∈ Lq(R3) such that

χn → χ in Lq(R3) ∀q ∈ [2,+∞),

and there exits C > 0 independent of n such that ‖χn‖∞ ≤ C. Based on the above, vn can be expressed
as

vn(x) := (K ∗ χn)(x) =
∫
R3

K(x − z)χn(z)dz,

where K is the Bessel kernel and satisfies the following properties (see [20]):
(1) K is positive, radially symmetric and smooth in R

3 \ {0},
(2) there is C > 0 such that K(x) ≤ C

|x|3+2α for any x ∈ R
3 \ {0},

(3) K ∈ Lr(R3) for any r ∈ [1, 3
3−2α ).

Arguing as in Theorem 3.4 in [20], we have that

vn(x) → 0 as |x| → ∞ uniformly in n ∈ N.

For c > 0 given in (4.10), we can find R > 0 such that vn(x) < c for all |x| ≥ R and uniformly for n ∈ N.
Let xn denote the maximum point of vn, then |xn| ≤ R. Moreover, we have zn = xn + ỹn where zn is one
maximum point of vn. It is easy to check from Lemma 4.3 that

εnzn = εnxn + εnỹn → y∗ ∈ Θ.

By the continuity of V , we obtain

lim
n→∞ V (εnzn) = V (y∗) = V0.

The proof is complete. �
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