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1. Introduction and Auxiliary Results

Existence and nonexistence of solutions for the nonlinear Schrödinger-type system

(S)

{
∆u = F (x, u, v), x ∈ R

n,

∆v = G(x, u, v), x ∈ R
n,

have been intensively studied in the last few years. The interest in systems of
nonlinear Schrödinger equations is motivated by applications to nonlinear optics.
More precisely, coupled nonlinear Schrödinger systems arise in the description of
several physical phenomena such as the propagation of pulses in birefringent optical
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fibers and Kerr-like photorefractive media, see [1,17]. We also refer to [4,6,8,9,12,
13,16,18–21] and to the references therein for some recent results on the qualitative
analysis of the solutions to systems of this type. Most of these results concern either
the existence and the nonexistence of bounded positive solutions, or the existence
and the nonexistence of large solutions. In the literature, a large solution means a
couple (u, v) of positive smooth functions satisfying (S) and such that both u(x) and
v(x) tend to infinity as |x| → ∞. We would like to quote some references in which
systems of boundary blow-up solutions related to (S) were analyzed. Lotka–Volterra
type systems were considered in [10,11] (competitive type), [7] (predator-prey type)
and [15] (cooperative type), while in [14] the objective was a competitive system
not of Lotka–Volterra type.

Throughout this paper we assume that F (x, u, v) = p(x)g(v), G(x, u, v) =
q(x)f(u), where p and q are smooth potentials, while the nonlinearities f and g are
nonnegative Lipschitz continuous functions on each interval [ε,∞) (with ε > 0). In
particular, this framework includes the sublinear case. In all the results, we estab-
lish in this paper we study only positive solutions, especially because of the physical
meaning of the corresponding unknowns. One of our main purposes of this paper is
to establish necessary and sufficient conditions for the existence of large solutions.
The existence of bounded positive solutions is also studied in this paper, provided
that f and g are nondecreasing and the Green potential of p and q are continuous
and bounded in R

n, n ≥ 3. We recall that the Green potential of a nonnegative
measurable function ϕ is defined on R

n by

V ϕ(x) = cn

∫
Rn

ϕ(y)
|x− y|n−2

dy, where cn =
Γ

(n
2
− 1

)
4π

n
2

, n ≥ 3.

Moreover, V ϕ is a lower semicontinuous function.
In order to discuss the existence of positive radial solutions to this class of non-

linear systems, we are concerned with the following system of nonlinear differential
equations

(P)



1
A

(Au′)′ − p(t)g(v) = 0, t ∈ (0,∞),

1
B

(Bv′)′ − q(t)f(u) = 0, t ∈ (0,∞),

u(0) = a > 0, v(0) = b > 0,

lim
t→0

A(t)u′(t) = 0, lim
t→0

B(t)v′(t) = 0,

where the continuous functions A,B : [0,∞) → [0,∞) are differentiable and positive
on (0,∞) and satisfy the following growth hypotheses:∫ 1

0

1
A(t)

(∫ t

0

A(s)ds
)
dt <∞
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and ∫ 1

0

1
B(t)

(∫ t

0

B(s)ds
)
dt <∞.

In particular, these assumptions are fulfilled if A and B are nondecreasing.
Define the operators K and S on the set of nonnegative measurable functions

on [0,∞) by

Kϕ(t) =
∫ t

0

1
A(s)

(∫ s

0

A(r)p(r)ϕ(r)dr
)
ds

and

Sϕ(t) =
∫ t

0

1
B(s)

(∫ s

0

B(r)q(r)ϕ(r)dr
)
ds.

By induction, it follows that for all t ≥ 0 and m ∈ N,

Km1(t) ≤ [K1(t)]m

m!
and Sm1(t) ≤ [S1(t)]m

m!
, (1.1)

where Kj := Kj−1 ◦K and Sj := Sj−1 ◦ S, for any integer j ≥ 2. Indeed, put

h(t) = K1(t) =
∫ t

0

(
1

A(s)

∫ s

0

A(r)p(r)dr
)
ds

and assume that (1.1) holds for some integer m. Then,

Km+11(t) = K(Km1)(t) ≤ 1
m!
K([h]m)(t)

=
1
m!

∫ t

0

1
A(s)

(∫ s

0

A(r)p(r)[h(r)]mdr
)
ds

≤ 1
m!

∫ t

0

[h(s)]m
(

1
A(s)

∫ s

0

A(r)p(r)dr
)
ds

=
1
m!

∫ t

0

[h(s)]mh′(s)ds =
1

(m+ 1)!
[h(t)]m+1.

Now, since K1 and S1 are nondecreasing, it follows that

(K ◦ S)1(t) = K(S1)(t) =
∫ t

0

1
A(s)

(∫ s

0

A(r)p(r)S1(r)dr
)
ds ≤ S1(t)K1(t)

and similarly

(S ◦K)1(t) ≤ K1(t)S1(t).

Hence, by induction we obtain for each t ≥ 0 and m ∈ N,

(K ◦ S)m1(t) ≤ [K1(t)]m

m!
[S1(t)]m

m!
and (S ◦K)m1(t) ≤ [K1(t)]m

m!
[S1(t)]m

m!
.

(1.2)
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2. Main Results

We are first concerned with the existence and the uniqueness of a nonnegative
solution of the system (P). For this purpose, we assume that p, q, f , and g satisfy
the following hypotheses.

(H1) The functions p, q, f, g : [0,∞) → [0,∞) are continuous.
(H2) For all c > 0, there exits β > 0 such that for all x, y ∈ [c,∞)

|f(x) − f(y)| ≤ β|x − y|
and

|g(x) − g(y)| ≤ β|x− y|.

Remark 2.1. Under the hypotheses (H1) and (H2) there exist λ, µ > 0 such that
for each x ≥ 0 we have

0 ≤ f(x) ≤ λx+ µ,

and

0 ≤ g(x) ≤ λx + µ.

Our first existence result is the following.

Theorem 2.2. Under the hypotheses (H1) and (H2), the problem (P) has a unique
solution (u, v) satisfying u, v ∈ C([0,∞)) ∩C1((0,∞)) and u, v > 0. Moreover,

λa+ µ ≤ λu(t) + µ ≤ [λa+ µ+ (λ2b+ λµ)K1(t)] exp(λ2K(S1)(t))

and

λb+ µ ≤ λv(t) + µ ≤ [λb + µ+ (λ2a+ λµ)S1(t)] exp(λ2S(K1)(t)).

Next, we are concerned with the existence and the nonexistence of large or
bounded solutions to the following system of nonlinear elliptic equations

(Q)

{
∆u = p(x)g(v), x ∈ R

n (n ≥ 3)

∆v = q(x)f(u), x ∈ R
n.

Definition 2.3. Let u, v : R
n → R+ be continuous functions. We say that (u, v) is

a large solution of the problem (Q) if (u, v) satisfies (Q) in the sense of distributions
and lim|x|→∞[u(x) + v(x)] = ∞.

We establish the following necessary and sufficient condition for the existence
of large solutions, under the following additional hypothesis:

(H3) inft≥a f(t) ≥ δ > 0 and inft≥b g(t) ≥ δ > 0.
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Theorem 2.4. Let p and q be radial functions and assume that the hypotheses
(H1)–(H3) are satisfied. Then, the problem (Q) has a large solution on R

n if and
only if ∫ ∞

0

r(p(r) + q(r))dr = ∞. (2.1)

We point out that condition (2.1) is closely related to assumption (2) in [6].
The following result deals with the existence of a positive bounded solution for

the problem (Q). Assume that p, q ∈ L1
loc(R

n) are nonnegative functions and denote
by V p and V q their Green potentials. We refer to [2, 3] for related applications of
Green-type potentials to nonlinear PDEs.

Theorem 2.5. Let f, g be nonnegative nondecreasing continuous functions in
[0,∞). Assume that V p and V q are continuous, bounded in R

n and the following
hypothesis is satisfied:

(H4) there exist a > 0, b > 0 such that a − g(b)‖V p‖∞ > 0 and b − f(a)‖V q‖∞
> 0.

Then, the system (Q) has a positive bounded continuous solution (u, v) satisfying,
for each x ∈ R

n,

a− g(b)V p(x) ≤ u(x) ≤ a and b− f(a)V q(x) ≤ v(x) ≤ b.

In the last part of this paper, we establish a nonexistence result, provided that
f and g satisfy
(H5) ∀ a > 0, ∃ c > 0 such that ∀ ξ ∈ [0, a] we have f(ξ) ≥ cξ and g(ξ) ≥ cξ.

Theorem 2.6. Assume that p and q are two nonnegative continuous functions on
R

n satisfying
∫ ∞
0 rmin|x|=r[p(x)+ q(x)]dr = ∞ and the functions f, g satisfy (H5).

Then, the system (Q) has no positive bounded solution.

3. Proof of Theorem 2.2

Let (um)m≥0 and (vm)m≥0 be sequences of positive continuous functions defined
on [0,∞) by

u0(t) = a,

vm(t) = b+
∫ t

0

1
B(s)

(∫ s

0

B(r)q(r)f(um(r))dr
)
ds = b+ S(f ◦ um)(t),

um+1(t) = a+
∫ t

0

1
A(s)

(∫ s

0

A(r)p(r)g(vm(r))dr
)
ds = a+K(g ◦ vm)(t).

Thus, for all t ≥ 0 and m ∈ N, um(t) ≥ a and vm(t) ≥ b. Now, since
min(a, b) > 0, then by (H2) there exists β > 0 such that for all t ≥ 0{|f(um+1(t)) − f(um(t))| ≤ β|um+1(t) − um(t)|,

|g(vm+1(t)) − g(vm(t))| ≤ β|vm+1(t) − vm(t)|.
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Let c = max(λb+µ, λf(a)). Then, using (1.1) and (1.2), we show by induction that

|um+1(t) − um(t)| ≤ cβ2m

[
[K1(t)](m+1)

(m+ 1)!
[S1(t)]m

m!
+

[K1(t)](m+1)

(m+ 1)!
[S1(t)](m+1)

(m+ 1)!

]
,

and

|vm+1(t) − vm(t)|

≤ cβ2m+1

[
[K1(t)](m+1)

(m+ 1)!
[S1(t)](m+1)

(m+ 1)!
+

[K1(t)](m+1)

(m+ 1)!
[S1(t)](m+2)

(m+ 2)!

]
.

Therefore, the sequences (um)m≥0 and (vm)m≥0 converge locally uniformly to func-
tions u and v that satisfy for each t ≥ 0,

u(t) = a+
∫ t

0

1
A(s)

(∫ s

0

A(r)p(r)g(v(r))dr
)
ds

v(t) = b+
∫ t

0

1
B(s)

(∫ s

0

B(r)q(r)f(u(r))dr
)
ds.

Hence, u, v ∈ C([0,∞)) ∩ C1((0,∞)) and (u, v) is a solution of (P).
Now, we prove the uniqueness of the solution. Indeed, let (u, v) and (ũ, ṽ) be

two solutions of the problem (P). Then, for each R ∈ (0,∞) and t ∈ [0, R], we have

|u(t) − ũ(t)| ≤ βK(|v − ṽ|)(t) and |v(t) − ṽ(t)| ≤ βS(|u − ũ|)(t).
By induction, we deduce that for each m ≥ 0,

|u(t) − ũ(t)| ≤ β2m(K ◦ S)m(|u − ũ|)(t).
Since K ◦ S is a nondecreasing operator, it follows from (1.2) that for each m ≥ 0

|u(t) − ũ(t)| ≤ β2m(K ◦ S)m1(R) sup
r∈[0,R]

(|u(r) − ũ(r)|,

≤ [β2K1(R)S1(R)]m

(m!)2
sup

r∈[0,R]

(|u(r) − ũ(r)|).

Now, letting m → ∞, we deduce that |u(t) − ũ(t)| = 0, for all t ∈ [0, R]. So u = ũ

on [0,∞) and v = ṽ on [0,∞).
Finally, we obtain for each t > 0

u′(t) =
1

A(t)

∫ t

0

A(r)p(r)g(v(r))dr

≤ 1
A(t)

∫ t

0

A(r)p(r)(λv(r) + µ)dr

≤ λ

A(t)

∫ t

0

A(r)p(r)(b + S ◦ f(u(r)))dr + µ(K1)′(t)

≤ λ(λu(t) + µ)
A(t)

∫ t

0

A(r)p(r)S1(r)dr + (λb + µ)(K1)′(t)

≤ λ2u(t)K(S1)′(t) + λµK(S1)′(t) + (λb + µ)(K1)′(t).
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Hence,

u′(t) − λ2u(t)K(S1)′(t) ≤ λµK(S1)′(t) + (λb + µ)(K1)′(t).

For t ≥ 0, let b(t) = λ2K(S1)′(t) and c(t) = λµK(S1)′(t)+ (λb+µ)(K1)′(t). Then,

u′(t) − b(t)u(t) ≤ c(t).

It follows that [
u(t) exp

(
−

∫ t

0

b(s)ds
)]′

≤ c(t) exp
(
−

∫ t

0

b(s)ds
)

and consequently

u(t) exp
(
−

∫ t

0

b(s)ds
)
− a ≤

∫ t

0

c(r) exp
(
−

∫ r

0

b(s)ds
)
dr.

Therefore,

u(t) ≤
[
a+

∫ t

0

c(r) exp
(
−

∫ r

0

b(s)ds
)
dr

]
exp

(∫ t

0

b(s)ds
)

≤
[
a+

∫ t

0

(λµK(S1)′(r) + (λb + µ)(K1)′(r)) exp(−λ2(K(S1)(r)))dr
]

× exp(λ2K(S1)(t))

≤
[
a+

µ

λ
(1 − exp(−λ2K(S1)(t))) + (λb + µ)K1(t)

]
exp(λ2K(S1)(t)).

Finally, we obtain

λa+ µ ≤ λu(t) + µ ≤ [λa+ µ+ (λ2b+ λµ)K1(t)] exp(λ2K(S1)(t)).

Similarly, we prove that

λb + µ ≤ λv(t) + µ ≤ [λb+ µ+ (λ2a+ λµ)S1(t)] exp(λ2S(K1)(t)).

This completes the proof of Theorem 2.2.

Corollary 3.1. (1) Assume that∫ ∞

0

(
1

A(s)

∫ s

0

A(r)p(r)dr
)
ds <∞

and ∫ ∞

0

(
1

B(s)

∫ s

0

B(r)q(r)dr
)
ds <∞.

Then, u and v are bounded.
(2) Assume, moreover, that condition (H3) holds. Then, for each t ≥ 0 we have

u(t) ≥ a+ δK1(t) and v(t) ≥ b+ δS1(t). In particular, u and v are bounded if
and only if ∫ ∞

0

(
1

A(s)

∫ s

0

A(r)p(r)dr
)
ds <∞
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and ∫ ∞

0

(
1

B(s)

∫ s

0

B(r)q(r)dr
)
ds <∞.

Example 3.1. For γ ≥ 0 and ν ≥ 0, we consider the nonnegative functions A and
B defined on [0,∞) by

A(t) = tγ and B(t) = tν .

Let p, q : [0,∞) → [0,∞) be two continuous nonnegative functions and let δ, θ ∈
[0, 1]. Then, the following problem

u′′(t) +
γ

t
u′(t) = p(t)vδ(t),

v′′(t) +
ν

t
v′(t) = q(t)uθ(t),

u(0) = a > 0, v(0) = b > 0,

u′(0) = v′(0) = 0,

has a unique positive solution (u, v) with u, v ∈ C([0,∞))∩C2((0,∞)). Moreover, u
and v are bounded if and only if γ > 1, ν > 1,

∫ ∞
0
tp(t)dt <∞ and

∫ ∞
0
tq(t)dt <∞.

Corollary 3.2. Let p, q, f and g satisfying (H1)–(H2) and let ρ, θ : (0,∞) → R be
two continuous functions. Then, the following problem

(∗)
{

∆u+ ρ(|x|)x · ∇u = p(|x|)g(v), x ∈ R
n (n ≥ 3),

∆v + θ(|x|)x · ∇v = q(|x|)f(u), x ∈ R
n,

has infinitely many positive radial solutions (u, v).

Proof. Let u and v be two radial functions. Then, (u, v) is a solution of (∗) if and
only if 

u′′(r) +
[
n− 1
r

+ rρ(r)
]
u′(r) = p(r)g(v(r)) r > 0

v′′(t) +
[
n− 1
r

+ rθ(r)
]
v′(r) = q(r)f(u(r)) r > 0

or, equivalently, 
1
A

(Au′)′ = p(r)g(v), r > 0

1
B

(Bv′)′ = q(r)f(u), r > 0,

where A(r) = rn−1 exp(
∫ r

1 sρ(s)ds) and B(r) = rn−1 exp(
∫ r

1 sθ(s)ds). So, the result
follows from Theorem 2.2.
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4. Large and Bounded Solutions

4.1. Proof of Theorem 2.4

If p and q satisfy the condition (2.1), then using Theorem 2.2 and Corollary 3.1 for
A(t) = B(t) = tn−1, we obtain a large radial solution for (Q).

Now, we assume that∫ ∞

0

rp(r)dr <∞ and
∫ ∞

0

rq(r)dr <∞

and let (u, v) be a solution for the problem (Q). We define the functions ũ and ṽ

on (0,∞) by

ũ(t) =
∫

Sn−1
u(tw)dσ(w) and ṽ(t) =

∫
Sn−1

v(tw)dσ(w),

where Sn−1 is the united sphere in R
n and σ denotes the Lebesgue measure on

Sn−1. Then, for all t > 0,

∆ũ(t) =
1

tn−1
(tn−1ũ′)′ =

∫
Sn−1

∆u(tw)dσ(w) = p(t)
∫

Sn−1
g(v(tw))dσ(w)

∆ṽ(t) =
1

tn−1
(tn−1ṽ′)′ =

∫
Sn−1

∆v(tw)dσ(w) = q(t)
∫

Sn−1
f(u(tw))dσ(w)

ũ′(t) =
1

tn−1

∫
B(0,t)

∆u(x)dx =
1

tn−1

∫
B(0,t)

p(|x|)g(v(x))dx ≥ 0

ṽ′(t) =
1

tn−1

∫
B(0,t)

∆v(x)dx =
1

tn−1

∫
B(0,t)

q(|x|)f(u(x))dx ≥ 0.

Thus, ũ and ṽ are nondecreasing. Using now hypothesis (H2), we obtain

ũ′(t) =
1

tn−1

∫
B(0,t)

∆u(x)dx ≤ [λṽ(t) + µ]
1

tn−1

∫ t

0

rn−1p(r)dr

≤ [λ(ũ(t) + ṽ(t)) + µ]
1

tn−1

∫ t

0

rn−1p(r)dr

and

ṽ′(t) =
1

tn−1

∫
B(0,t)

∆v(x)dx ≤ [λũ(t) + µ]
1

tn−1

∫ t

0

rn−1q(r)dr

≤ [λ(ũ(t) + ṽ(t)) + µ]
1

tn−1

∫ t

0

rn−1q(r)dr.

Hence,

ũ′(t) + ṽ′(t)
λ(ũ(t) + ṽ(t)) + µ

≤ 1
tn−1

∫ t

0

rn−1(p(r) + q(r))dr.
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Consequently,

λ(ũ(t) + ṽ(t)) + µ ≤ [λ(ũ(0) + ṽ(0)) + µ] exp
(

λ

n− 2

∫ ∞

0

r(p(r) + q(r))dr
)
.

This implies that ũ+ ṽ is bounded and consequently (u, v) is not a large solution.
This completes the proof.

4.2. Proof of Theorem 2.5

We start with the following auxiliary result.

Lemma 4.1. Let ϕ and ψ be two measurable functions such that 0 ≤ ϕ ≤ ψ. If
V ψ is continuous then V ϕ is also continuous.

Proof. Let θ ≥ 0 such that ψ = ϕ+θ. Since V ϕ and V θ are lower semi-continuous
and V ϕ + V θ = V ψ which is continuous, then V ϕ is an upper and lower semi-
continuous function. So, V ϕ is a continuous function.

We consider the sequences (uk)k≥0 and (vk)k≥0 defined by
u0 = a− V (pg(b)),

uk+1 = a− V (pg(vk)),

vk = b− V (qf(uk)).

We claim that for each k ≥ 0,

a− g(b)V p ≤ uk ≤ uk+1 ≤ a and b− f(a)V q ≤ vk+1 ≤ vk ≤ b.

Indeed, from hypothesis (H4), we have 0 < u0 = a− g(b)V p ≤ a. So

b ≥ v0 = b− V (qf(u0)) ≥ b− V (qf(a)) > 0

u1 − u0 = −V [p(g(v0) − g(b))] ≥ 0

and

v1 − v0 = −V [q(f(u1) − f(u0))] ≤ 0.

Let us assume that the claim holds for some k ∈ N. Then, we have

vk+2 − vk+1 = −V [q(f(uk+1) − f(uk))] ≤ 0

and

uk+2 − uk+1 = −V [p(g(vk+1) − g(vk))] ≥ 0.

Moreover, for all integer k we have uk ≤ a, vk ≤ b, uk+1 = a − V (pg(vk)) ≥
a− g(b)V p and vk+1 = b− V (qf(uk+1)) ≥ b− f(a)V q. This completes the proof of
the claim. Therefore, the sequences (uk)k≥0 and (vk)k≥0 converge, respectively, to
two functions u and v satisfying 0 < a−g(b)V p ≤ u ≤ a and 0 < b−f(a)V q ≤ v ≤ b.
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By the dominated convergence theorem we deduce that u and v satisfies{
u = a− V (pg(v))

v = b− V (qf(u)).
(4.1)

Now, using the fact that V p and V q are continuous and V (pg(v)) ≤
g(b)V p, V (qf(u)) ≤ f(a)V q, we deduce from Lemma 4.1 that u and v are continu-
ous. Finally, we deduce from relation (4.1) that (u, v) is a weak bounded positive
solution of problem (Q). This completes the proof of Theorem 2.5.

Remark 4.2. The condition (H4) is satisfied in the particular case where f(t) = tα,
g(t) = tβ with 0 ≤ α, β and αβ 
= 1. Hence, Theorem 2.5 generalizes Theorem 1
in [21].

Remark 4.3. Let p be a nonnegative function in Lm(Rn)∩L1(Rn) with m > n
2 ≥

3
2 . Then, it follows from [5, pp. 64–66] that V p is continuous in R

n and tends to
zero at infinity.

For the next result we fix two nonnegative functions p, q ∈ Lm(Rn) ∩ L1(Rn)
with m > n

2 ≥ 3
2 and a > 0, b > 0. Put λ0 = a

g(b)‖V p‖∞
and µ0 = b

f(a)‖V q‖∞
.

Corollary 4.4. Let f, g be two nonnegative nondecreasing continuous functions and
a, b > 0. Then, for each λ ∈ [0, λ0) and µ ∈ [0, µ0), the nonlinear elliptic system

∆u = λp(x)g(v),

∆v = µq(x)f(u),

lim
x→∞u(x) = a,

lim
x→∞ v(x) = b

has a positive bounded continuous solution (u, v) satisfying

a

(
1 − λ

λ0

)
≤ u ≤ a and b

(
1 − µ

µ0

)
≤ v ≤ b.

Example 4.1. Let p, q be two nonnegative functions in Lm(Rn) ∩ L1(Rn) with
m > n

2 ≥ 3
2 and a > 0, b > 0. Let α ≥ 0 and β ≥ 0. Then, there exist λ0 > 0 and

µ0 > 0 such that for each λ ∈ [0, λ0) and µ ∈ [0, µ0), the nonlinear elliptic system

∆u = λp(x)vβ ,

∆v = µq(x)uα,

lim
x→∞u(x) = a,

lim
x→∞ v(x) = b,

has a positive bounded solution (u, v).
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5. A Nonexistence Result

In this section we are concerned with the proof of Theorem 2.6.
Let M > 0 and assume that (u, v) is a solution of (Q) with 0 < u ≤ M and

0 < v ≤ M . Let ũ and ṽ be as in the proof of Theorem 2.4. Then, for each t > 0
we have

ũ′(t) =
1

tn−1

∫
B(0,t)

p(x)g(v(x))dx

=
1

tn−1

∫ t

0

sn−1

∫
Sn−1

p(sw)g(v(sw))dσ(w)ds ≥ 0 (5.1)

and

ṽ′(t) =
1

tn−1

∫
B(0,t)

q(x)f(u(x))dx

=
1

tn−1

∫ t

0

sn−1

∫
Sn−1

q(sw)f(u(sw))dσ(w)ds ≥ 0. (5.2)

Since ũ and ṽ are nondecreasing, there exist R > 0 and ε > 0 such that ũ(t) ≥ ε

and ṽ(t) ≥ ε (∀ t ≥ R). Using relations (5.1), (5.2) and hypothesis (H5), we obtain
for all t ≥ R,

M ≥ ũ(t) = ũ(0) +
∫ t

0

r1−n

∫ r

0

sn−1

∫
Sn−1

p(sw)g(v(sw))dσ(w)dsdr

≥ ũ(0) +
∫ t

0

r1−n

∫ r

0

sn−1

(
min
|x|=s

p(x)
)∫

Sn−1
g(v(sw))dσ(w)dsdr

≥ ũ(0) + c

∫ t

0

∫ r

0

sn−1

(
min
|x|=s

p(x)
)
ṽ(s)dsdr

≥ ũ(0) + cε

∫ t

R

r1−n

∫ r

R

sn−1

(
min
|x|=s

p(x)
)
dsdr

≥ ũ(0) + cε

∫ t

R

sn−1

(
min
|x|=s

p(x)
) (∫ t

s

r1−ndr

)
ds.

Similarly, we prove that

M ≥ ṽ(t) ≥ ṽ(0) + cε

∫ t

R

sn−1

(
min
|x|=s

q(x)
) (∫ t

s

r1−ndr

)
ds.

Consequently,

2M ≥ ũ(t) + ṽ(t) ≥ ũ(0) + ṽ(0) + cε

∫ t

R

sn−1 min
|x|=s

[p(x) + q(x)]
(∫ t

s

r1−ndr

)
ds.
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Or, from the hypothesis on p and q the right-hand side of this inequality tends to
infinity as t→ ∞. This yields to a contradiction and achieves the proof.
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