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1. Introduction

Let 2 C RY be a bounded domain with a C2-boundary 92 and let £y, % C 92 be two (N — 1)-
dimensional C?-submanifolds of 942 such that 02 = Xy U Xy, X1 N Xy = 0, X1y, € (0,102]y_,), and
X1N Xy =T. Here, |-|y_, denotes the (N — 1)-dimensional Hausdorff (surface) measure and I' C 912 is a
(N — 2)-dimensional C2-submanifold of 912.

In this paper, we study the following logistic-type elliptic problem:

—Au(z) = du(2)"" = f(z,u(2)) in £,
0 P
“|21:0’l =0, u>0, A>0. (Px)
on|y,
When f(z,2) = 2"~! with r € (2,2*), we get the classical logistic equation, which is important in

biological models (see Gurtin & Mac Camy [1]). Depending on the value of ¢ > 1, we distinguish three cases:
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(i) 1 < ¢ < 2 (subdiffusive logistic equation); (ii) 2 = ¢ < r (equidiffusive logistic equation); (iii) 2 < ¢ < r
(superdiffusive logistic equation). In this paper, we deal with the third situation (superdiffusive case), which
exhibits bifurcation-type phenomena for large values of the parameter A > 0 (see also [2]).

Let Ex, = {u € H' () : u|s, = 0}. This space is defined as the closure of C}(£2 U Xy) with respect to
the H'(£2)-norm. Since ||y _, > 0, we know that for the space Ey,, the Poincaré inequality holds (see
Gasinski & Papageorgiou [3, Problem 1.139, p. 58]). So, Ex, is a Hilbert space equipped with the norm
[ull = [[Dull2. Let A € L(Ex,, Ey;) be defined by (A(u),h) = [,(Du, Dh)gndz for all u,h € Eyg,. We
denote by Ny the Nemitsky map associated with f, that is, Ny(u)(-) = f(-,u(-)) for all u € Ex,.

The hypotheses on the perturbation term f(z,x) are the following:

H(f): f: 2 xR — R isa Carathéodory function such that for almost all z € 2, f(2,0) =0, f(z,2) >0
for all z > 0, and

(i) f(z,z) < a(z)(1+2"1) for almost all z € 2 and all z > 0, with a € L®(2), 2 < g < r < 2%;
(ii) limxﬁﬁm ¢ = oo uniformly for almost all z € £2, and the mapping = — M
n (0, —1—00) for almost all z € £2;
(iii) 0 liminf, o+ f(z ) < < 1) uniformly for almost all z € £2;
(iv) for every p > 0, there exists ép > 0 such that for almost all z € 2 the function z — fpx — f(z,2x) is

nondecreasing on [0, p].

is nondecreasing

< limsup,_, o+ Lz’x)

The following functions satisfy hypotheses H(f): (i) f(z) = 2"~ ! for all z > 0 with 2 < ¢ < r < 2%;
(i) f(x) =297t [ln(l +z)+ 5 —} for all x > 0, with 2 < ¢ < 2*.

Let £ = {X > 0: problem (Py) has a positive solution} and let S(\) denote the set of positive solutions
of problem (P,). Let A\, = inf £ (if £ = 0, then inf @ = +o0).

By a solution of problem (P,), we understand a function u € Eyx, such that v > 0, v # 0 and
(A(u),h) = [,[Mud™t — f(z,u)lhdz for all h € Ex, .

We refer to Bonanno, D’Agui & Papageorgiou [4], Filippueci, Pucci & R&dulescu [5], and Li, Ruf, Guo &
Niu [6] for related results. We also refer to the monograph by Pucci & Serrin [7] for more results concerning
the abstract setting of this paper.

2. A bifurcation-type theorem

Proposition 1. If hypotheses H(f) hold, then S(A) C C1*(2)NC%*(2) with o € (0,1/2). For allu € S(\)
we have u(z) > 0 for all z € 2 and A, > 0.

Proof. From DiBenedetto [8] and Colorado & Peral [9], we know that if u € S(\) then u € CL(2)NC%*(12)
with a € (O 1/2). Moreover, using Harnack’s inequality, we deduce that if u € S(A) then u(z) > 0 for all

z € £2. Let Ay be the smallest elgenvalue of —A with mixed boundary conditions. From Colorado & Peral
[9, p. 482], we know that A, = inf { |\|1‘31ﬂg2 tu € By \ {O}} > 0. By H(f)(i), (iii), there exists Ag > 0 such

that

Moz?™! — f(z,2) < Az for almost all z € 2, and all z > 0 (1)

(recall that 2 < ¢ < r). Let A € (0, \p) and suppose that A € £. Then there exists uy € S(\) and by using
Green’s identity, we get

A(uy) = M ™" = Ny(uy) in B, . (2)

We act on (2) with uy € Ex, and obtain HDuAﬂg = )\||uAHq Jo [z un)urdz < )\1||uA||2 (see (1) and recall
that A < Ao, ux(z) > 0 for all z € £2), which contradicts the definition of A;. Therefore A € £ and we have
0<)\0<)\*=infﬁ. O
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Proposition 2. If hypotheses H(f) hold, then L # 0 and “N € Lin>A=ne L”

Proof. Fix A > 0 and let v : Ex;, — R, pa(u) = 3 | Dul} — %||u+||g + [ F(z,u)dz, where
F(z,z) = fox f(z,8)ds. Then p) € C}(Ex,) and ¢, is sequentially weakly lower semicontinuous. Hypotheses
H(f)(i), (ii) imply that given £ > 0, we can find ¢; = ¢1(§) > 0 such that F(z,z) > %zq — ¢ for almost all
z € {2 and for all x > 0. Thus, for all uw € Ex, we have ¢, (u) > %||Du||§ + %Hu"‘HZ — ¢1]92| 5. Choosing
& > A, we deduce that ¢y is coercive. So, by the Weierstrass—Tonelli theorem, there exists uyx € Ex, such
that

cpA(uA):inf{@A(u) :uEEEl}:m,\. (3)
Fix u € Ex, N C(N2) with u(z) > 0 for all z € . For large enough A > 0 we have ¢, (i) < 0, hence
ea(ur) =my < 0=x(0) (see (3)). Thus, uy # 0. By (3), ¢4 (ur) =0, hence

A(ux) = Auy)*" = Ng(uy) in By, . (4)

We act on (4) with —u, € Ex, and obtain ||Du;||§ = 0, hence uyx > 0. So, relation (4) becomes
A(uy) = M~ — Ny(uy). By Green’s identity, uy € S()\), hence A € £ # 0.

Next, let A € £ and n > A. Choose ¥ € (0,1) such that A\ = 99725 (recall that 2 < ¢). Also, let
uy € S(A) C CH(2)NCY»*(N) with a € (0,1/2). Let u = Juy. Then

Alw) = DA@w) =9 [~ = Ny(un)| in B, (5)

From hypothesis H(f)(ii) and since ux(z),u(z) > 0 for all z € £2, we have for a.a. z € £2

fzuz) _ f(zun(z))

u(z) T ua(2)

= f(z,u(z)) < If(z,uxr(z)) (recall that u = Yuy). (6)
Using (5) in (6) and since ¥ € (0,1), we obtain
Alw) <9 nug ! = Ny(w) <nut™' = Ny(u) in B3, (7)

We introduce the following Carathéodory truncation of the reaction term in problem (P,)

_ [nu(2)T7 = fzu(z) i o < u(z)
9n(z,7) = {nxq_l — f(z, ) if u(z) < 2. ()

Let Gy(z, @) = [ gn(2,s)ds and define ¢, : Ex; — R by @y (u) = HIDull3 — [, Gu(z,u)dz.
Hypotheses H(f)(i), (ii) imply that given £ > 0, we can find co = c2(§) > 0 such that

Nzt — f(z,2) < (n — €)z?! + ¢, for almost all z € 2 and all 2 > 0. 9)
Then for all u € Ex,, we have

R 1 2, &1
9077(“) 2 §||DU||2 + q

||u+||g — ¢z for some ¢35 > 0 (see (8), (9)). (10)

Choosing £ > 7, we see from (10) that ¢, is coercive. This function is also sequentially weakly lower
semicontinuous. So, by the Weierstrass-Tonelli theorem, there exists u,, € E'5;; such that ¢, (u,) = inf[@, (u) :
u € Ex,], hence ¢; (u,) = 0. We deduce that

A(upn) = Ng, (uy) in Eg,. (11)
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We act on (11) with (v —u,)" € Ex,. By (8) and (7) we have

(Alug), (u—uy)™) = / ™ — f(z,w)](w—uy)Tdz > (A(w), (uw—uy)™)

0

= (Alu = uy), (u— 1) ™) O = D=1,y <O = u < uy. (12)

Using (8) and (12) we see that relation (11) becomes A(uy) = nud~" — Ny(uy) in EY,, . Thus, by
Proposition 1, we have u, € S(n) C C1*(2)NC%*(R2). Therefore n € L. We also observe that Proposition 2
implies (A, +o00) C L. O

Proposition 3. If hypotheses H(f) hold and X > A, then problem (Py) has at least two positive solutions
ug, & € Ex; NCY(2) for a € (0,1/2) with 0 < ug(2),0(z) for all z € 2.

Proof. Let 1 € (A, A). By Proposition 2 we know that 1 € £. Hence we can find u,, € S(u) C Ex,NC%*(£2)
with o € (0,1/2),u,(2) > 0 for all z € 2. We have A(u,) = pul~" — N¢(u,) in E%; . Next, we define the
following Carathéodory function

A Ay (2)97Y = f(zu,(2 if x <uy,(z

ha(z,2) = {)\xg(l) f(z,J;g ) if u#(z)u<( z) (13)
Let Hy(z,2) = Iy ha(z,s)ds and let 9y : Ex, — R, thy(u) = %||Du||§ - /o Hy(z,u)dz. Then Oy is
coercive and sequentially weakly lower semicontinuous. Thus, we can find ug € Ey, such that ¢y(ug) =
inf {5 (u) : u € Ex, }, hence ¢, (ug) = 0. Thus, A(ug) = Ni, (up). Using (13) and reasoning as in the proof
of Proposition 2 we deduce that u, < ug. By Colorado & Peral [9, Theorem 6.6], we have uy € Ex, NC% ()
with a € (0,1/2) and ug > 0 in 22 (by Harnack’s inequality).

Let po = ||uo|oo and let €,, > 0 be as postulated in hypothesis H(f)(iv). We have

—Aug(2) + Epyuo(2) = Mug(2)77Y = f(2,u0(2)) + Epyuo(2) in 2,

ou 14
UO|E1 =0, (970 =0 ( )
n |y,
and
—Auy,(2) +$p0uu(z) = pu, ()7 = flzuu(z)) + épouu(z) in 2,
ou (15)
q |E =Y, £ =0.
Ml 8TL 5
Let § = up —u, 2 0. Since A > p, up > uy, from (14), (15), and H(f)(iv) we have
= A9(2) + o (2) = Ao (2)7H = pug ()77 + [pguo(2) — f(z,u0(2))]
—[Spoun(2) = f(2,upn(2))] 2 0 in £2.
Let vy € Ex; be the unique function satisfying —Awv(z) + épov(z) =180, v|5 =0, and %z 5 =0 Then

v € CH(2) N C%(2) with a € (0,1/2) (see [8,9]) and vy > 0 in 2. By Lemma 2.1 of Barletta, Livrea &
Papageorgiou [10] (see also Lemma 5.3 of Colorado & Peral [9]), we can find ¢ > 0 such that

Yu1(2) < up(z) and Jv(2) < 9(2) = Jv1(2) < up(z) < up(z) — Jui(z) for all 2 € 0. (16)

Let ) = {y € Ex, NC(N): o
that if B,(0) == {y e C : H%H < 1}, then ug — 9B1(0) C [u,,) N Cy. To see this, let y € B1(0). Then

< oo} and [u,) = {u € Ex, : uu(z) < u(z), aa. z € 2}. We claim

—v1(2) < y(2z) <wvy(z) for all z € 2. (17)
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Fix z € 2. If y(z) > 0, then 0 < u,(2) < uu(z) +9y(2) < uu(z) +9v1(2) < up(z) (see (16), (17)), hence
uu(2) <wup(z) —Vy(2). If y(2) <0, then 0 < uy(2) — Yvi(2) < up(z) +9y(2) < up(z) + 9vi(2) < up(z) (see
(16), (17)), hence u,(z) < ug(z) — Vy(z). We conclude that u, € ug —9B;(0), which proves the claim. It
follows that

up € inte [uy,) N C(0). (18)
By (13) it is clear that
a(u) = a(u) + ¢4 for some ¢4 € R and for all u € [u,,) . (19)

It follows from (18) and (19) that ug is a local Cy-minimizer of ¢j.

Claim. wug is a local Ex, -minimizer of .

Suppose that this assertion is not true. Then for every p > 0, we have inf{px(uo +v) : y € Ex,, |ly|| <
p} < @a(uo). By the Weierstrass—Tonelli theorem, there exists y, € Ex, \ {0}, |lyp]] < p such that
ox(ug +y,) = inf{oa(uo +v) : y € Exy, |yl < p} < ©a(yo). By the Lagrange multiplier rule, there
exists ¥ < 0 such that (1 — 9)(A(u,),h) = A [o(uf)? hdz — [, f(z,u,)hdz for all h € Ex,, with
u, =up +y, € Ex, . It follows that Au,(z) = ﬁ[)\uj(z)q’l — f(z,u,(2))] in £2, hence

— Auy(2) + Epgup(2) = Dt ()70 + (2, u0(2)] + Epgp(2) in 2, (20)

1-9
with épo > 0 as before resulting from hypothesis H(f)(iv) (recall that py = ||ug||eo)- Also,
= Auo(2) + pguo(2) = Muo(2)"~" = F(z,u0(2)) + Epyuo(2) in 2. (21)
From (20) and (21) we obtain
= Ayp(2) + €nup(2) = g5(2) in 2 (22)

with ¢§(z) = 25t (2)771 = f(2,u,(2))] — Aug(2)7" + f(z,u0(2)) + €,09p(2). By (22) and Colorado &
Peral [9], there exist ¢5 > 0 and « € (0,1/2) such that

€ C%*() and ||yp||co,a(5) < ¢ for all p € (0,1]. (23)

Exploiting the compact embedding of C%%(£2) into C(£2), we have y, — 0 in C(£2) as p — 0. Thus, by
the definition of ¢f, there exists 7, > 0 such that

[95]lec <7 forall p € (0,1] and 7, — 0% as p — 07, (24)

Let , = J5yp. Then by (24) —A(g, — v1)(2) + €u (5, — 01)(2) =

1D(g, — u1)+\|2 + & [1(8, — v1)* |13 < 0, hence y, < 7rv1.
Also, we have —A(—g, — v1)(2) + &5y (=8 — v1)(2) = =295 (2) — 1 < 0 in £ and so as above we obtain
P

Lg{(z) —1 < 0. We deduce that

b*’_‘

that —7 vy < y,. Therefore we have proved that —7;v1 < y, < 7,v1. These relations show that y, € ol
and ’ Yo

©a(uo + ) < pa(uo), which contradicts the fact that ug is a local C;-minimizer of ©a. This proves the

H < 7, for all p € (0,1], hence y, — 0 in Cy as p — 0T, Therefore for small p € (0,1] we have

claim.
Since f > 0, for all u € Ex, we have ¢y (u) > %||Du||§ - %||u+||g > %HD’LLHS — ¢g||Dul|3 for some cg > 0.
Since g > 2, we deduce that v = 0 is a local minimizer of ¢,. We assume that the set of critical points of )
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is finite (otherwise we already have an infinity of positive solutions for (P)) for A > A, and so we are done)
and that ¢ (0) < pa(ug) (the reasoning is similar if the opposite inequality holds). The claim implies that we
can find small enough p € (0, ||ugl]) such that 0 = ¢ (0) < pa(u) < inf{pr(u) : [|[u —uo| = p} = m¥. Thus,
we can apply the mountain pass theorem. So, there exists & € Ex, such that ) (@) = 0 and m{ < ¢ (),
hence @ & {0,up}, @ € Sy C Ex, NC%*(N2), and & > 0in 2. O

Proposition 4. If hypotheses H(f) hold, then A\« € L, that is, L = [N\*,+0c0).

Proof. Let {A,}n>1 C (A, +00) be such that A, | A.. We find u,, € S(\,,) such that
Auy) = Mgt — Ny(uy,) in EY, forall n € N. (25)
Hypotheses H(f)(i), (ii) imply that given any £ > 0, we find ¢; = ¢7(§) > 0 such that
f(z,2) = €27 — ¢ for almost all z € 2 and all 2 > 0. (26)

We act on (25) with u, € Ex; and then use (26). We obtain ||Du||§ < (A — f)||un||g + ¢7|£2] . Choosing
&> XM =2 A\, for all n € N, we have ||Dun||§ < ¢7|2|y for all n € N, hence {u,}n>1 € Ex, is bounded. By
passing to a subsequence if necessary, we may assume that

Uy~ uy in By, and u, — uin L7(2) as n — oo. (27)

In (25) we pass to the limit as n — oo and use (27). Then A(u,) = A\ud™" — Ny(u,). Thus, u, € Ex, and
u, > 0 is a solution of (Py,). We also notice that lim,,_,co (A(uy), un — us) = 0, hence || Duy|l2 = || Duy||2-
Using the Kadec-Klee property we deduce that u, — u, in Ex,.

Claim. u, # 0.
Arguing by contradiction, suppose that u, = 0. Then ||u,| — 0. Let y, = ”ZZ”, n € N. Then
llynll = 1, yn = 0 for all n € N. From (25) we have
Ayn) = Mud %y, — Alfﬂfuﬁ) for all n € N. (28)
From hypotheses H(f)(i), (iii), we see that we can find n > 7 and cg > 0 such that
f(z,2) <z +cga" ! foraa. z € 2, all 2 > 0= {Ny(un)}tnz1 C L?(2) is bounded. (29)

By [9], there exist a € (0,1/2) and ¢y > 0 such that u,, € C%*(02), [tnllco.a (g < co for all n € N. Since
C%%(£2) is compactly embedded compactly in C'(2), we deduce that

u, — 0 in C(£2). (30)
Recall that |ly,|| =1, yn = 0 for all n € N. So, we may assume that

Yn = yin Ex, and y,, — y in L*(2),y > 0. (31)

[lun |l -

we have at least for a subsequence (see [11]),

N n) w : : h
|fu(u ) % noy in L2(£2) with 0 < no(z) < 7 for almost all z € £2. (32)

It follows from (29), (30) and (31) that {Nf(u")} ) C L2(02) is bounded. Thus, by hypothesis H (f)(iii),
nz
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We act on (28) with y, —y € Ex, and pass to the limit as n — oo. Using (30), (31) and (32) we obtain
lim, 00 (A(yn), yn — y) = 0. By the Kadec—Klee property we have y, — g, hence |ly|| = 1, y > 0. In
(28) we pass to the limit as n — oo and use (30), (32). Then A(y) = —noy. Thus, by (32) we have
||Dy||§ = — [pnoy*dz < 0, hence y = 0, a contradiction. This shows that the claim is true. Hence

U

eS(A) CEg N C(2)andso N\, € £. O

Summarizing, we can state the following bifurcation-type theorem.

Theorem 5. If hypotheses H(f) hold, then there exists A\, > 0 such that

(a) for all A > A, problem (Py) has at least two positive solutions ug, @ € Ex, NC(2);
(b) for A = A, problem (Py) has at least one positive solution u, € Ex, N C(2);
(c) for X € (0,A), problem (Py) has no positive solutions.
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