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DOUBLE-PHASE PROBLEMS AND A DISCONTINUITY

PROPERTY OF THE SPECTRUM

NIKOLAOS S. PAPAGEORGIOU, VICENŢIU D. RĂDULESCU, AND DUŠAN D. REPOVŠ

(Communicated by Catherine Sulem)

Abstract. We consider a nonlinear eigenvalue problem driven by the sum of
p and q-Laplacians. We show that the problem has a continuous spectrum.
Our result reveals a discontinuity property for the spectrum of a parametric
(p, q)-differential operator as the parameter β goes to 1−.

1. Introduction

This paper was motivated by several recent contributions to the qualitative anal-
ysis of nonlinear problems with unbalanced growth. First, we refer to the pioneering
contributions of Marcellini [17, 18], who studied lower semicontinuity and regular-
ity properties of minimizers of certain quasiconvex integrals. Problems of this type
arise in nonlinear elasticity and they are connected with deformations of an elastic
body; cf. Ball [1].

In order to recall the roots of the double-phase problems, let us assume that Ω
is a bounded domain in R

N (N � 2) with smooth boundary. If u : Ω → R
N is the

displacement and Du is the N × N matrix of the deformation gradient, then the
total energy can be represented by an integral of the type

(1) I(u) =

∫
Ω

F (z,Du(z))dz,

where the energy function F = F (z, ξ) : Ω×R
N×N → R is quasiconvex with respect

to ξ. One of the simplest examples considered by Ball is given by functions F of
the type

F (ξ) = g(ξ) + h(det ξ),

where det ξ is the determinant of the N × N matrix ξ, and g, h are nonnegative
convex functions which satisfy the growth conditions

g(ξ) � c1 |ξ|p; lim
t→+∞

h(t) = +∞,

where c1 is a positive constant and 1< p<N . The condition p � N is necessary
to study the existence of equilibrium solutions with cavities, that is, minima of the
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integral (1) that are discontinuous at one point where a cavity appears; in fact,
every u with finite energy belongs to the Sobolev space W 1,p(Ω,RN ), and thus u is
a continuous function if p > N .

In accordance with these problems arising in nonlinear elasticity, Marcellini [17,
18] considered continuous functions F = F (z, u) with unbalanced growth that satisfy

c1 |u|p � |F (z, u)| � c2 (1 + |u|q) for all (z, u) ∈ Ω× R,

where c1, c2 are positive constants and 1 < p < q. Regularity and existence of
solutions of elliptic equations with (p, q)-growth conditions were studied in [18].

The study of nonautonomous functionals characterized by the fact that the en-
ergy density changes its ellipticity and growth properties according to the point
was continued in a series of remarkable papers by Mingione et al. [2, 3, 6, 8]. These
contributions are related to the work of Zhikov [28], and they describe the behavior
of phenomena arising in nonlinear elasticity. In fact, Zhikov intended to provide
models for strongly anisotropic materials in the context of homogenization. We
also point out that Zhikov’s functionals turned out to be important in the study of
duality theory and in the context of the Lavrentiev phenomenon [29]. One of the
problems considered by Zhikov was the double-phase functional

Pp,q(u) :=

∫
Ω

(|Du|p + a(z)|Du|q)dz, 0 � a(z) � L, 1 < p < q,

where the modulating coefficient a(z) � 0 dictates the geometry of the composite
made by two different materials. More precisely, considering two different materials
with power hardening exponents p and q, respectively, the variable coefficient a(z)
dictates the geometry of a composite of the materials. In the region where a is
positive, the q-material is present; otherwise the p-material is the only one making
the composite.

Another significant model example of functional with unbalanced growth studied
by Mingione et al. [2, 3, 6] is given by

E(u) :=
∫
Ω

|Du|p log(1 + |Du|)dz, p � 1.

General models with (p, q)-growth in the context of geometrically constrained prob-
lems have been recently studied by De Filippis [7]. A key role is played by the
method developed by Esposito, Leonetti, and Mingione [8] in order to prove the
equivalence between the absence of Lavrentiev phenomenon and the extra-regularity
of the minimizers for unconstrained, nonautonomous variational problems.

Motivated by these results, we study in this paper a problem with the (p, q)-
growth. More precisely, we consider the following nonlinear, nonhomogeneous para-
metric Dirichlet problem:

(Pλ)

{
−αΔpu(z)− βΔqu(z) = λ|u(z)|q−2u(z) in Ω,
u|∂Ω = 0, α > 0, β > 0, λ > 0, 1 < p, q < ∞, p �= q

}
,

where Ω ⊆ R
N is a bounded domain with a C2-boundary ∂Ω.

For every r ∈ (1,+∞) we denote by Δr the r-Laplace differential operator
defined by

Δru = div (|Du|r−2Du) for all u ∈ W 1,r
0 (Ω).

Equations driven by the sum of a p-Laplacian and a q-Laplacian, known as (p, q)-
equations, arise in many problems of mathematical physics such as particle physics;
see e.g. Benci, D’Avenia, Fortunato and Pisani [4], and for nonlinear elasticity, see
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Zhikov [28]. For instance, Zhikov [28] introduced models for strongly anisotropic
materials in the context of homogenization.

Such problems with unbalanced growth were studied by Chorfi and Rădulescu [5],
Gasinski and Papageorgiou [10, 12], Marano, Mosconi, and Papageorgiou [15, 16],
Papageorgiou and Rădulescu [19,20], Papageorgiou, Rădulescu, and Repovš [21–24],
Rădulescu [25], Rădulescu and Repovš [26], and Yin and Yang [27], under different
conditions on the data of the problem.

In the present paper, we show that problem (Pλ) has a continuous spectrum:

it is the half-line (βλ̂1(q),+∞), with λ̂1(q) > 0 being the principal eigenvalue of

(−Δq,W
1,q
0 (Ω)). So, for every λ ∈ (βλ̂1(q),+∞), problem (Pλ) admits a nontrivial

solution. Our result reveals an interesting fact, which is better illustrated in the
special case corresponding to

1 < p < ∞, q = 2, p �= q, α = 1− β, β ∈ (0, 1).

Let Lβ = −(1 − β)Δpu − βΔu and let σ̂(β) denote the spectrum of Lβ. We have
that

σ̂(β) = (βλ̂1(q),+∞) for β ∈ (0, 1).

The set function β �→ σ̂(β) is h-continuous (Hausdorff continuous) on (0, 1], whereas
it exhibits a discontinuity at β = 0, since L0 = Δ which has a discrete spectrum.

Our approach is based on the use of the Nehari manifold. So, we perform a
minimization under constraint.

2. Mathematical background

Let r ∈ (1,+∞). We recall some basic facts about the spectrum of (−Δr,

W 1,r
0 (Ω)). So, we consider the following nonlinear eigenvalue problem:

(2) −Δru(z) = λ̂|u(z)|r−2u(z) in Ω, u|∂Ω = 0.

We say that λ̂ is an eigenvalue of (−Δr,W
1,r
0 (Ω)) if problem (2) admits a nontriv-

ial solution û ∈ W 1,r
0 (Ω), known as an eigenfunction corresponding to the eigenvalue

λ̂. From the nonlinear regularity theory (see, for example, Gasinski and Papageor-
giou [9, pp. 737-738]), we know that û ∈ C1

0 (Ω) =
{
u ∈ C1(Ω) : u|∂Ω = 0

}
. There

is a smallest eigenvalue λ̂1(r) which has the following properties:

• λ̂1(r) is isolated (that is, there exists ε > 0 such that the interval (λ̂1(r),

λ̂1(r) + ε) contains no eigenvalues of (−Δr,W
1,r
0 (Ω)));

• λ̂1(r) is simple (that is, if û, v̂ are eigenfunctions corresponding to λ̂1(r),
then û = μv̂ with μ ∈ R\{0});

• λ̂1(r) > 0 and admits the following variational characterization:

(3) λ̂1(r) = inf

{
||Du||rr
||u||rr

: u ∈ W 1,r
0 (Ω), u �= 0

}
.

The infimum in (3) is realized on the corresponding one-dimensional eigenspace.
The above properties imply that the elements of this eigenspace lie in C1

0 (Ω) and
do not change sign. By û1(r) we denote the positive, Lr-normalized (that is,

||û1(r)||r = 1) eigenfunction corresponding to λ̂1(r) > 0. We have

û1(r) ∈ C+ = {u ∈ C1
0 (Ω) : u(z) � 0 for all z ∈ Ω}.
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In fact, the nonlinear maximum principle (see, for example, Gasinski and Papa-
georgiou [12, p. 738]) implies that

û1(r) ∈ intC+ =

{
u ∈ C+ : u(z) > 0 for all z ∈ Ω,

∂u

∂n

∣∣∣∣
∂Ω

< 0

}
,

with ∂u
∂n = (Du, n)RN being the outward normal derivative of u. Note that if û is

an eigenfunction corresponding to an eigenvalue λ̂ �= λ̂1(r), then û is nodal (that is,
sign-changing). The Ljusternik-Schnirelmann minimax scheme gives, in addition,

to λ̂1(r) a whole strictly increasing sequence {λ̂k(r)}k∈N of distinct eigenvalues such

that λ̂k(r) → +∞. These eigenvalues are called “variational eigenvalues”, and we

do not know if they exhaust the entire spectrum of (−Δr,W
1,r
0 (Ω)). However, if

r = 2 (linear eigenvalue problem), then the spectrum is the sequence {λ̂k(2)}k∈N

of variational eigenvalues.
Let r = max{p, q} and let λ > 0. The energy (Euler) functional for problem

(Pλ) is defined by

ϕλ(u) =
α

p
||Du||pp +

β

q
||Du||qq −

λ

q
||u||qq for all u ∈ W 1,r

0 (Ω).

Evidently, ϕλ ∈ C1(W 1,r
0 (Ω),R).

The Nehari manifold for the functional ϕλ is the set

Nλ = {u ∈ W 1,r
0 (Ω) : 〈ϕ′

λ(u), u〉 = 0, u �= 0}.

In what follows, we denote by σ̂(α, β) the spectrum of the differential operator

u �→ −αΔpu− βΔqu for all u ∈ W 1,r
0 (Ω).

So, λ ∈ σ̂(α, β) if and only if problem (Pλ) admits a nontrivial solution û ∈ C1
0 (Ω).

This solution is an eigenvector for the eigenvalue λ.
In what follows, for every τ ∈ (1,+∞) we denote by || · ||1,τ the norm of W 1,τ

0 (Ω).
On account of the Poincaré inequality, we have

||u||1,τ = ||Du||τ for all u ∈ W 1,τ
0 (Ω).

Also, we denote by Aτ : W 1,τ
0 (Ω) → W−1,τ ′

0 (Ω) = W 1,τ
0 (Ω)∗

(
1
τ + 1

τ ′ = 1
)
the

nonlinear operator defined by

〈Aτ (u), h〉 =
∫
Ω

|Du|τ−2(Du,Dh)RNdt for all u, h ∈ W 1,τ
0 (Ω).

This operator is bounded (that is, it maps bounded sets to bounded sets) and
continuous, strictly monotone (hence maximal monotone, too).

3. The spectrum of (Pλ)

We first deal with the easier case when 1 < q < p. As we will see in what follows,
ϕλ(·) is coercive in this case and so we can use the direct method of the calculus of
variations.

Proposition 1. If 1 < q < p, then σ̂(α, β) = (βλ̂1(q),+∞) and the eigenvectors
belong to C1

0 (Ω).
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Proof. We have r = max{p, q} = p. Evidently, if λ � βλ̂1(q), then λ /∈ σ̂(α, β) or
otherwise we violate (3).

Let λ > βλ̂1(q) and u ∈ W 1,p
0 (Ω). We have

ϕλ(u) � α

p
||Du||pp −

λ

λ̂1(q)q
||Du||qq (see (3))

� α

p
||Du||pp − c1||Du||qq for some c1 > 0 (since q < p),

⇒ ϕλ(u) � c2||u||p − c3||u||q for some c2, c3 > 0,

⇒ ϕλ(·) is coercive (since q < p).

Also, by the Sobolev embedding theorem, ϕλ(·) is sequentially weakly lower

semicontinuous. So, by the Weierstrass-Tonelli theorem, we can find ûλ ∈ W 1,p
0 (Ω)

such that

(4) ϕλ(ûλ) = inf{ϕ̂λ(u) : u ∈ W 1,p
0 (Ω)}.

For t > 0 we have

ϕλ(tû1(q)) =
tpα

p
||Dû1(q)||pp +

tq

q

[
βλ̂1(q)− λ

]
(recall that ||û1(q)||q = 1)

= c4t
p − c5t

q for some c4, c5 > 0 (recall that λ > βλ̂1(q)).

Since q < p, choosing small t ∈ (0, 1) we have

ϕλ(tû1(q)) < 0,

⇒ ϕλ(ûλ) < 0 = ϕλ(0) (see (4)),

⇒ ûλ �= 0.

From (4) we have

ϕ′
λ(ûλ) = 0,

⇒ 〈αAp(ûλ), h〉+ 〈βAq(ûλ), h〉 = λ

∫
Ω

|ûλ|q−2ûλhdz for all h∈W 1,p
0 (Ω),

⇒ −αΔpûλ(z)−βΔqûλ(z)=λ|ûλ(z)|q−2ûλ(z) for almost all z∈Ω, ûλ|∂Ω=0,

⇒ ûλ ∈ C1
0 (Ω) (by the nonlinear regularity theory; see Lieberman [14]).

The proof is now complete. �

When 1 < p < q, the energy functional is no longer coercive. So, the direct
method of the calculus of the variations fails, and we have to use a different ap-
proach. Instead, we will minimize ϕλ on the Nehari manifold Nλ.

First, we show that Nλ �= ∅.

Proposition 2. λ > βλ̂1(q) if and only if Nλ �= ∅.

Proof. As before (see the proof of Proposition 1), using (3) we see that

Nλ �= ∅ ⇒ λ > βλ̂1(q).

Now, suppose that λ > βλ̂1(q). Then on account of (3), we can find u ∈ W 1,q
0 (Ω) \

{0} such that

(5) ||Du||qq <
λ

β
||u||qq.
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Consider the function ξλ : (0,+∞) → R defined by

ξλ(t) = 〈ϕ′
λ(tu), tu〉

= αtp||Du||pp + βtq||Du||qq − λtq||u||qq
= tpα||Du||pp + tq(β||Du||qq − α||u||qq)
= c6t

p − c7t
q for some c6, c7 > 0 (see (5)).(6)

Since q > p, we see from (6) that

ξλ(t) → −∞ as t → +∞.

On the other hand, for small t ∈ (0, 1) we have

ξλ(t) > 0 (see (6)).

Therefore, by Bolzano’s theorem, we can find t0 > 0 such that

ξλ(t0) = 0,

⇒ 〈ϕ′
λ(t0u), t0u〉 = 0 with t0u �= 0,

⇒ t0u ∈ Nλ and so Nλ �= ∅.

This completes the proof. �

We define

(7) mλ = inf{ϕλ(u) : u ∈ Nλ}.

For u ∈ Nλ, we have

(8) α||Du||pp + β||Du||qq = λ||u||qq.

Therefore

ϕλ(u) =
α

p
||Du||pp +

β

q
||Du||qq −

1

q

(
α||Du||pp + β||Du||qq

)
(see (8))

= α

(
1

p
− 1

q

)
||Du||pp,(9)

⇒ mλ � 0 (see (7)).

From (9) we infer that ϕλ|Nλ
is coercive on W 1,p

0 (Ω).

Proposition 3. If λ > βλ̂1(q), then every minimizing sequence of (7) is bounded

in W 1,q
0 (Ω).

Proof. We argue by contradiction. So, suppose that {un}n�1 ⊆ W 1,q
0 (Ω) is a mini-

mizing sequence of (7) such that

||un||1,q → +∞.

We have

α||Dun||pp + β||Dun||qq = λ||un||qq for all n ∈ N,(10)

⇒ β||Dun||qq = β||un||q1,q � λ||un||qq for all n ∈ N,(11)

⇒ ||un||q → +∞ as n → ∞.
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We set yn = un

||un||q for all n ∈ N; hence ||yn||q = 1. Also, from (11) we have

||Dyn||qq � λ

β
||yn||qq =

λ

β
for all n ∈ N,

⇒ {yn}n�1 ⊆ W 1,q
0 (Ω) is bounded.

So, we may assume that

(12) yn
w→ y in W 1,q

0 (Ω) and yn → y in Lq(Ω).

We multiply (10) with 1
||un||qq . We obtain

(13) α||Dyn||pp =
λ||un||qq − β||Dun||qq

||un||pq
, n ∈ N.

Recall that {un}n�1 ⊆ Nλ is a minimizing sequence for (7). So, we have

(14)

(
1

p
− 1

q

)(
λ||un||qq − β||Dun||qq

)
→ mλ as n → ∞ (see (8), (9)).

Using (14) in (13), we can infer that

yn → 0 in W 1,p
0 (Ω),

⇒ yn → 0 in Lq(Ω) (see (12)),

a contradiction, since ||yn||q = 1 for all n ∈ N.
Therefore we can conclude that every minimizing sequence of (7) is bounded in

W 1,q
0 (Ω). �

We have already seen that mλ � 0. We can now say more.

Proposition 4. If λ > βλ̂1(q), then mλ > 0.

Proof. Arguing by contradiction, suppose that mλ = 0. Then we can find {un}n�1

⊆ Nλ such that ϕλ−(un) → 0+. From (9) we have

α

(
1

p
− 1

q

)
||Dun||pp → 0,

⇒ un → 0 in W 1,p
0 (Ω).(15)

Then by (15) and Proposition 3, we infer that

(16) un
w→ 0 in W 1,q

0 (Ω) and un → 0 in Lq(Ω).

It follows from (15), (16), and (8) that

||Dun||q → 0,

⇒ un → 0 in W 1,q
0 (Ω).(17)

Let vn = un

||un||q for all n ∈ N; hence ||vn||q = 1. We have

λ||vn||qq − β||Dv||qq =
α

||un||q−p
q

||Dvn||pp > 0 for all n ∈ N,(18)

⇒ ||Dvn||qq � λ

β
for all n ∈ N,

⇒ {vn}n�1 ⊆ W 1,q
0 (Ω) is bounded.(19)
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Then it follows from (18) and (19) that
α

||un||q−p
q

||Dvn||pp � c8 for some c8 > 0, all n ∈ N,

⇒ ||Dvn||p → 0 (see (17) and recall that p < q),

⇒ vn → 0 in W 1,p
0 (Ω).(20)

From (19) and (20), we can infer that

vn → 0 in Lq(Ω),

a contradiction, since ||vn||q = 1 for all n ∈ N. From this we can conclude that
mλ > 0. �
Proposition 5. If λ > βλ̂1(q), then there exists ûλ ∈ Nλ such that mλ = ϕλ(ûλ).

Proof. Let {un}n�1 ⊆ Nλ be such that ϕλ(un) → mλ. According to Proposition 3,

{un}n�1 ⊆ W 1,q
0 (Ω) is bounded. So, we may assume that

(21) un
w→ ûλ in W 1,q

0 (Ω) and un → ûλ in Lq(Ω).

Since un ∈ Nλ for all n ∈ N, we have

(22) α||Dun||pp + β||Dun||qq = λ||un||qq for all n ∈ N.

Passing to the limit as n → ∞ and using (21) and the weak lower semicontinuity
of the norm functional in a Banach space, we obtain

(23) α||Dûλ||pp � λ||ûλ||qq − β||Dûλ||qq.
Note that λ||ûλ||qq − β||Dûλ||qq �= 0, or otherwise from (19), we have

||Dun||p → 0,

⇒ un → 0 in W 1,p
0 (Ω).

Recall that

ϕλ(un) = α

(
1

p
− 1

q

)
||Dun||pp for all n ∈ N (see (9)).

So, it follows that

ϕλ(un) → 0 as n → ∞,

⇒ mλ = 0,

which contradicts Proposition 4. Therefore

λ||ûλ||qq − β||Dûλ||qq �= 0,

⇒ ûλ �= 0.

Also, exploiting the sequential weak lower semicontinuity of ϕλ(·), we have

ϕλ(ûλ) � lim
n→∞

ϕλ(un) = mλ (see (21)).

If we show that ûλ ∈ Nλ, then ϕλ(ûλ) = mλ, and this will conclude the proof.
To this end, let

ξ̂λ(t) = 〈ϕ′
λ(tûλ, tûλ)〉 for all t ∈ [0, 1].

Evidently, ξ̂λ(·) is a continuous function. Arguing by contradiction, suppose that
ûλ /∈ Nλ. Then since un ∈ Nλ for all n ∈ N, we can infer from (21) that

(24) ξ̂λ(1) < 0.
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On the other hand, note that since λ > βλ̂1(q), we have

ξ̂λ(t) � c9t
p − c10t

q for some c9, c10 > 0,

⇒ ξ̂λ(t) > 0 for all t ∈ (0, ε) with small ε ∈ (0, 1) (recall that p < q).(25)

By (24), (25), and Bolzano’s theorem, we see that there exists t∗ ∈ (0, 1) such
that

ξ̂λ(t
∗ûλ) = 0,

⇒ t∗ûλ ∈ Nλ.

Then using (9), we have

mλ � ϕλ(t
∗ûλ) = α

(
1

p
− 1

q

)
(t∗)p||Dûλ||pp

< α

(
1

p
− 1

q

)
||Dûλ||pp (since t∗ ∈ (0, 1))

� α

(
1

p
− 1

q

)
lim inf
n→∞

||Dun||pp (see (21))

= mλ,

a contradiction. Therefore ûλ ∈ Nλ, and this finishes the proof. �

So, we can state the following theorem concerning problem (Pλ). This property
establishes the existence of a continuous spectrum that concentrates at infinity.

Theorem 6. If λ > βλ̂1(q), then λ is an eigenvalue of problem (Pλ) with eigen-
function ûλ ∈ C1

0 (Ω).

Proof. For 1 < q < p, this follows from Proposition 1.
For 1 < q < p, let h ∈ W 1,q

0 (Ω). Choose ε > 0 such that ûλ + sh �≡ 0 for
s ∈ (−ε, ε). We set

t(s) =

(
λ||ûλ + sh||qq − β||D(ûλ + sh)||qq

α||D(ûλ + sh)||pp

) 1
p−q

, s ∈ (−ε, ε).

Then s �→ t(s) is a curve in Nλ and it is differentiable. Let ξ̂λ : (−ε, ε) → R be
defined by

ξ̂λ(s) = ϕλ(t(s)(ûλ + sh)), s ∈ (−ε, ε).

Evidently, s = 0 is a minimizer of ξ̂λ(·) and so

0 = ξ̂λ(0)

= 〈ϕ′
λ(ûλ), t

′(0)ûλ + h〉 (by the chain rule)

= t′(0) 〈ϕ′
λ(ûλ), ûλ〉+ 〈ϕ′

λ(ûλ), h〉
= 〈ϕ′

λ(ûλ), h〉 (since ûλ ∈ Nλ),

⇒ α 〈Ap(ûλ), h〉+ β 〈Aq(ûλ), h〉 = λ

∫
Ω

|ûλ|q−2ûλhzd,

⇒ −αΔpûλ(z)−βΔqûλ(z)=λ|ûλ(z)|q−2ûλ(z) for almost all z∈Ω, ûλ|∂Ω=0,

⇒ ûλ �= 0 is an eigenfunction with eigenvalue λ > βλ̂1(q).

Now, the nonlinear regularity theory of Lieberman [14, p. 320] implies that ûλ ∈
C1

0 (Ω). �
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Remark 1. In the terminology of the critical point theory, the above proof shows
that the Nehari manifold is a natural constraint for the functional ϕλ (see Gasinski
and Papageorgiou [9, p. 812]).

Now suppose that α = (1− β), β ∈ (0, 1). Let Lβ = −(1− β)Δp − βΔq and let
σ̂(β) be the spectrum of Lβ . From Theorem 6, we know that

σ̂(β) = (βλ̂1(q),+∞).

Evidently, σ̂(·) is Hausdorff and Vietoris continuous on (0, 1) (see Hu and Papa-
georgiou [11]), but it exhibits a discontinuity at β = 1, since

σ̂(1) = the spectrum of (−Δq,W
1,q
0 (Ω)),

and we know from Section 2 that λ̂1(q) > 0 is isolated and so σ̂(1) �= (λ̂1(q),+∞).
This is more emphatically illustrated when q = 2. Then

σ̂(β) = (βλ̂1(2),+∞) for all β ∈ (0, 1),

but at β = 1 we have

σ̂(1) = {λ̂k(2)}k�1 (the discrete spectrum).
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[9] Leszek Gasiński and Nikolaos S. Papageorgiou, Nonlinear analysis, Series in Mathematical
Analysis and Applications, vol. 9, Chapman & Hall/CRC, Boca Raton, FL, 2006. MR2168068
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value problems, Comm. Pure Appl. Anal. 18 (2019), 1403–1431.
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