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Abstract:We consider a semilinear elliptic problem, driven by the Laplacian with Robin boundary condition.
We consider a reaction termwhich is resonant at ±∞ and at 0. Using variational methods and critical groups,
we show that under resonance conditions at ±∞ and at zero the problem has at least two nontrivial smooth
solutions.

Keywords: Resonance, critical groups, Morse index, nullity, unique continuation property

MSC 2010: 35J20, 35J60, 58E05
||
Communicated by: Christopher D. Sogge

1 Introduction
Let Ω ⊆ ℝN be a bounded domain with a C2-boundary. In this paper, we study the following semilinear Robin
problem:

− ∆u(z) = f(z, u(z)) in Ω, ∂u
∂n

+ β(z)u = 0 on ∂Ω. (1.1)

In this problem, the reaction term f(z, x) is a measurable function from Ω × ℝ into ℝ, which is con-
tinuously differentiable in the x-variable. The boundary coefficient β( ⋅ ) belongs to W1,∞(∂Ω) and satisfies
β(z) ⩾ 0 for all z ∈ ∂Ω.When β ≡ 0, we recover the Neumann problem. It is well known that the existence and
multiplicity of nontrivial solutions depends on the interaction of the limits

lim
x→±∞

f(z, x)
x

and lim
x→0

f(z, x)
x

with the spectrum of the Robin Laplacian.
Themost difficult and therefore interesting case iswhen the above limits hit the spectrum. Such problems

are called “resonant”.
Resonant Dirichlet problems were studied by Landesman, Robinson and Rumbos [10], Liang and

Su [14], Li and Willem [13], de Paiva [6], and Su [21]. Neumann problems were investigated by Gasinski
and Papageorgiou [9], Li [11], Li and Li [12], Papageorgiou and Rădulescu [18], and Qian [20]. We mention
also the work of Barletta and Papageorgiou [2] on periodic ordinary differential equations.

In this paper, combining variational methods with Morse theory (critical groups), we show that under
conditions of resonance at both zero and infinity (double resonance), problem (1.1) can have at least two
nontrivial solutions.
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In the following section, for easy reference, we recall the main mathematical tools which we will use in
the sequel.

2 Mathematical background
Let X be a Banach space and X∗ its topological dual. By ⟨ ⋅ , ⋅ ⟩ we denote the duality brackets for the pair
(X∗, X). Given φ ∈ C1(X,ℝ), we say that φ( ⋅ ) satisfies the Cerami condition (the C-condition for short), if the
following property holds:
∙ Every sequence {un}n⩾1 ⊆ X such that {φ(un)}n⩾1 ⊆ ℝ is bounded and

(1 + ‖un‖)φ�(un) → 0 in X∗, as n → ∞,

admits a strongly convergent subsequence.
This compactness-type condition is central in the minimax theory of the critical values of φ.
On ∂Ω we employ the (N − 1)-dimensional Hausdorff (surface) measure σ( ⋅ ). From the general theory of

Sobolev spaces we know that there exists a unique continuous linear map γ0 : H1(Ω) → L2(∂Ω), known as
the trace map, such that

γ0(u) = u|∂Ω for all u ∈ H1(Ω) ∩ C(Ω).

We know that γ0 is compact from H1(Ω) into Lτ(∂Ω) with 1 ⩽ τ < 2(N−1)
N−2 if N > 2, and with 1 ⩽ τ < ∞ if

N = 1, 2. We have
im γ0 = H

1
2 ,2(∂Ω) and ker γ0 = H1

0(Ω).

In the sequel, for notational simplicity,wedrop theuse of themap γ0. All restrictions of Sobolev functions
on ∂Ω, are understood in the sense of traces.

Throughout this work, the standing hypothesis on β( ⋅ ) is the following:
(H(β)) β ∈ W1,∞(∂Ω), β(z) ⩾ 0 for all z ∈ ∂Ω.

In what follows, ϑ : H1(Ω) → ℝ is the C1-functional defined by

ϑ(u) = ‖Du‖22 + ∫
∂Ω

β(z)u2 dσ for all u ∈ H1(Ω).

Also by ‖ ⋅ ‖ we denote the norm of the Sobolev space H1(Ω), that is,

‖u‖ = [‖u‖22 + ‖Du‖22]
1/2 for all u ∈ H1(Ω).

Let η ∈ L∞(Ω), η(z) ⩾ 0 for almost all z ∈ Ω, η ̸= 0.We consider the following weighted linear eigenvalue
problem:

− ∆u(z) = λ̂η(z)u(z) in Ω, ∂u
∂n

+ β(z)u = 0 on ∂Ω. (2.1)

We say that λ̂ ∈ ℝ is an eigenvalue if problem (2.1) has a nontrivial solution û ∈ H1(Ω) which is known
as an eigenfunction corresponding to the eigenvalue λ̂. Using the spectral theorem for compact self-adjoint
operators, we can show that problem (2.1) has a sequence {λ̂k(η)}k⩾1 ⊆ [0, +∞) of eigenvalues such that

λ̂k(η) → +∞ as k → +∞.

If η ≡ 1, then we write λ̂k(1) = λ̂k for all k ∈ ℕ (see Papageorgiou and Rădulescu [17, 18]).
By E(λ̂k(η)) (for k ∈ ℕ) we denote the eigenspace corresponding to the eigenvalue λ̂k(η). The regularity

theory implies that
E(λ̂k(η)) ⊆ C1(Ω) for all k ∈ ℕ.

Moreover, each eigenspace E(λ̂k(η)) has the so-called “unique continuation property” (UCP for short),
which asserts that if u ∈ E(λ̂k(η)) vanishes on a set of positive measure, then u ≡ 0 (see Motreanu, Motreanu
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and Papageorgiou [15, p. 234] and Papageorgiou and Rădulescu [18]). We set

H̄k =
k

⨁
i=1

E(λ̂i(η)) and Ĥk = H̄⊥
k = ⨁

i⩾k+1
E(λ̂i(η)).

For every k ∈ ℕ, H̄k is finite-dimensional and we have the orthogonal direct sum decomposition

H1(Ω) = H̄k ⊕ Ĥk for all k ∈ ℕ.

We have the following variational characterizations of the eigenvalues:

λ̂1(η) = inf[ ϑ(u)
∫Ω ηu

2 dz
: u ∈ H1(Ω), u ̸= 0], (2.2)

and for k ⩾ 2 we have

λ̂k(η) = inf[ ϑ(u)
∫Ω ηu

2 dz
: u ∈ Ĥk−1, u ̸= 0]

= sup[ ϑ(u)
∫Ω ηu

2 dz
: u ∈ H̄k , u ̸= 0]. (2.3)

In both (2.2) and (2.3), the infimum and the supremum are realized on the corresponding eigenspace
E(λ̂k(η)), k ∈ ℕ. We know that λ̂1(η) is simple (that is, dim E(λ̂1(η)) = 1) and from (2.2) it is clear that the
elements of E(λ̂1(η)) do not change sign. If by û1 we denote the L2-normalized (that is, ‖û1‖2 = 1) positive
eigenfunction corresponding to λ̂1(η) ⩾ 0, then û1(z) > 0 for all z ∈ Ω.

The aforementioned properties of the eigenvalues and eigenspaces lead to the following easy but useful
results (see Gasinski and Papageorgiou [8, 9]).

Proposition 2.1. If η(z) ⩽ η�(z) for almost all z ∈ Ω and the inequality is strict on a set of positivemeasure, then
λ̂k(η�) < λ̂k(η) for all k ∈ ℕ.

Proposition 2.2. (i) If e ∈ L∞(Ω), e(z) ⩽ λ̂k for almost all z ∈ Ω and the inequality is strict on a set of positive
measure, then ϑ(u) − ∫Ω e(z)u

2 dz ⩾ ĉ‖u‖2 for some ĉ > 0 and all u ∈ Ĥk−1.
(ii) If e ∈ L∞(Ω), e(z) ⩾ λ̂k for almost all z ∈ Ω and the inequality is strict on a set of positive measure, then

ϑ(u) − ∫Ω e(z)u
2 dz ⩽ −ĉ1‖u‖2 for some ĉ1 > 0 and all u ∈ H̄k.

Finally, wemention that all nonprincipal eigenvalues λ̂k(η) (that is, k ⩾ 2) have nodal (that is, sign-changing)
eigenfunctions.

Nextwe recall somebasic definitions and facts for critical groups. So let X be aBanach space,φ ∈ C1(X,ℝ)
and c ∈ ℝ. We introduce the following sets:
∙ φc = {u ∈ X : φ(u) ⩽ c} (the sublevel set at c ∈ ℝ),
∙ Kφ = {u ∈ X : φ�(u) = 0} (the critical set of φ),
∙ Kcφ = {u ∈ Kφ : φ(u) = c} (the critical set of φ at the level c ∈ ℝ).

Let (Y1, Y2) be a topological pair such that Y2 ⊆ Y1 ⊆ X. For very k ∈ ℕ0, let Hk(Y1, Y2) denote the kth
relative singular homology group for the pair (Y1, Y2) with integer coefficients. Let u ∈ Kφ be isolated and
c = φ(u) (that is, u ∈ Kcφ). The critical groups of φ at u are defined by

Ck(φ, u) = Hk(φc ∩ U, φc ∩ U \ {u}) for all k ∈ ℕ0,

with U being a neighborhood of u such that Kφ ∩ φc ∩ U = {u}. From the excision property of singular homol-
ogy, we see that the above definition of critical groups is independent of the choice of the neighborhood U.

Now suppose thatφ ∈ C1(X,ℝ) satisfies the C-condition and inf φ(Kφ) > −∞. Let c < inf φ(Kφ). Then the
critical groups of φ at infinity are defined by

Ck(φ,∞) = Hk(X, φc) for all k ∈ ℕ0.
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The second deformation theorem (see, for example, Gasinski and Papageorgiou [8, p. 628]) implies that
the above definition is independent of the choice of the level c ∈ ℝ.

Assuming that Kφ is finite, we have

rank Ck(φ,∞) ⩽ ∑
u∈Kφ

rank Ck(φ, u) for all k ∈ ℕ (2.4)

(see, for example, Motreanu, Motreanu and Papageorgiou [15, p. 160]). From (2.4) we infer the following
result.

Proposition 2.3. If φ ∈ C1(X,ℝ) satisfies theC-condition, Kφ is finite and for some k ∈ℕ0wehave Ck(φ,∞) ̸= 0,
then there exists u ∈ Kφ such that Ck(φ, u) ̸= 0.

A related result is the following (see [15, p. 173]).

Proposition 2.4. If φ ∈ C1(X,ℝ) satisfies the C-condition, Kφ is finite and for some k ∈ ℕ0 wehave Ck(φ, 0) ̸= 0
and Ck(φ,∞) = 0, then we can find u ∈ Kφ such that either

φ(u) < 0 and Ck−1(φ, u) ̸= 0,

or
φ(u) > 0 and Ck+1(φ, u) ̸= 0.

Suppose X = H is a Hilbert space and φ ∈ C2(H,ℝ). Let u ∈ Kφ. The Morse index of u, denoted by m̂(u), is
defined to be the supremumof the dimensions of the vector subspace onwhichφ��(u) is negative definite. The
nullity of u, denotedby ν̂(u), is defined to be thedimensionof kerφ��(u).We say that u ∈ Kφ is nondegenerate,
if φ��(u) is invertible (that is, ν̂(u) = 0). For a nondegenerate u ∈ Kφ with Morse index m̂(u) = m̂, we have

Ck(φ, u) = δk,m̂ℤ for all k ∈ ℕ0.

Hereafter by δk,m̂ we denote the Kronecker symbol

δk,m̂ = {
1 if k = m̂,
0 if k ̸= m̂,

k ∈ ℕ0.

In dealing with degenerate critical points, the main tool is the so-called “shifting theorem” (see, for
example, Motreanu, Motreanu and Papageorgiou [15, p. 156]). A consequence of this theoremwhich we will
need in the sequel, is the following proposition.

Proposition 2.5. If H is a Hilbert space, φ ∈ C2(H,ℝ) and u ∈ Kφ has finite Morse index m̂ and nullity ν̂, then
one of the following statements holds:
(i) Ck(φ, u) = 0 for all k ⩽ m̂ and all k ⩾ m̂ + ν̂;
(ii) Ck(φ, u) = δk,m̂ℤ for all k ∈ ℕ0;
(iii) Ck(φ, u) = δk,m̂+ν̂ℤ for all k ∈ ℕ0.

Finally, we fix our notation. Given a measurable function h : Ω × ℝ → ℝ (for example, a Carathéodory func-
tion), we set

Nh(u)( ⋅ ) = h( ⋅ , u( ⋅ )) for all u ∈ H1(Ω)

(the Nemitski or superposition operator corresponding to the function h). By | ⋅ |N we denote the Lebesgue
measure onℝN and, aswe alreadymentioned earlier in this section, by ‖ ⋅ ‖wedenote the normof the Sobolev
space H1(Ω), that is,

‖u‖ = [‖u‖22 + ‖Du‖22]
1/2 for all u ∈ H1(Ω).

By H̃k(X) (for k ∈ ℕ0), we denote the reduced homology groups, that is, H̃k(X) = Hk(X, ∗) for all k ∈ ℕ0,
with ∗ ∈ X. By A ∈ L(H1(Ω), H1(Ω)∗) we denote the operator defined by

⟨A(u), h⟩ = ∫
Ω

(Du, Dh)ℝN dz for all u, h ∈ H1(Ω).
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3 Pairs of nontrivial solutions
In this section, we establish the existence of two nontrivial solutions for problem (1.1). The hypothesis on the
boundary term β( ⋅ ) is (H(β)) from the previous section. Note that the case β ≡ 0 corresponds to the Neumann
problem. So, our result here subsumes the works on resonant Neumann problems.

The hypotheses on the reaction term f(z, x) are the following:
(H) f : Ω × ℝ → ℝ is a measurable function such that for almost all z ∈ Ω we have f(z, 0) = 0, f(z, ⋅ ) ∈ C1(ℝ)

and the following hold:
(i) |f �x(z, x)| ⩽ a(z)(1 + |x|r−2) for almost all z ∈ Ω, all x ∈ ℝ with a ∈ L∞(Ω) and 2 ⩽ r < 2∗, where

2∗ =
{{
{{
{

2N
N − 2 if N ⩾ 3,

+∞ if N = 1, 2

(the critical Sobolev exponent);
(ii) there exist m ⩾ 3 and η ∈ L∞(Ω)+ such that

η(z) ⩽ λ̂m+1 for almost all z ∈ Ω, η ̸≡ λ̂m+1,

λ̂m ⩽ lim inf
x→±∞

f(z, x)
x

⩽ lim sup
x→±∞

f(z, x)
x

⩽ η(z) uniformly for almost all z ∈ Ω,

and if F(z, x) = ∫
x
0 f(z, s) ds, then

lim
x→±∞

[f(z, x)x − 2F(z, x)] = −∞ uniformly for almost all z ∈ Ω;

(iii) there exist l ∈ ℕ and δ > 0 such that

l ⩽ m − 2,

λ̂lx2 ⩽ f(z, x)x ⩽ λ̂l+1x2 for almost all z ∈ Ω and all |x| ⩽ δ;

(iv) f(z, x)x ⩽ f �x(z, x)x2 for almost all z ∈ Ω and all x ∈ ℝ, f �x(z, x) ⩽ λ̂m+1 for almost all z ∈ Ω and all
x ∈ ℝ, and for every ρ > 0, there exists Ωρ ⊆ Ω with |Ωρ|N > 0 such that

f �x(z, x) < λ̂m+1 for almost all z ∈ Ωρ and all |x| ⩽ ρ.

The following function satisfies hypotheses (H):

f(x) =

{{{{{{
{{{{{{
{

λ̂mx − (λ̂l − λ̂m)(
1
2 ln|x| + √|x|) if x < −1,

λ̂lx if − 1 ⩽ x ⩽ 1,

λ̂mx + (λ̂l − λ̂m)(
1
2 ln|x| + √|x|) if x > 1.

Remark 3.1. Hypotheses (H(ii)), (H(iii)) imply that we can have resonance at both ±∞ and zero (double res-
onance). Hypothesis (H(iv)) implies that for almost all z ∈ Ω,

x Ü→
f(z, x)
x

=
{
{
{

nondecreasing on (0, +∞),
nonincreasing on (−∞, 0).

To see this, note that

(
f(z, x)
x )

�
=
f �x(z, x)x − f(z, x)

x2
{
{
{

⩾ 0 if x > 0,
⩽ 0 if x < 0.

Let φ : H1(Ω) → ℝ be the energy functional for problem (1.1) defined by

φ(u) = 1
2 ϑ(u) − ∫

Ω

F(z, u(z)) dz for all u ∈ H1(Ω).

Evidently, φ ∈ C2(H1(Ω)).
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Proposition 3.2. If hypotheses (H(β)), (H) hold, then the functional φ satisfies the C-condition.

Proof. Let {un}n⩾1 ⊆ H1(Ω) be a sequence such that

|φ(un)| ⩽ M1 for some M1 > 0 and all n ∈ ℕ, (3.1)
(1 + ‖un‖)φ�(un) → 0 in H1(Ω)∗ as n → ∞. (3.2)

From (3.2) we have

|⟨φ�(un), h⟩| ⩽
ϵn‖h‖

1 + ‖un‖
for all h ∈ H1(Ω), with ϵn → 0+

â⇒
!!!!!!!
⟨A(un), h⟩ + ∫

∂Ω

β(z)unh dσ − ∫
Ω

f(z, un)h dz
!!!!!!!
⩽

ϵn‖h‖
1 + ‖un‖

for all n ∈ ℕ. (3.3)

In (3.3) we choose h = un ∈ H1(Ω). Then

− ϵn ⩽ −ϑ(un) + ∫
Ω

f(z, un)undz for all n ∈ ℕ. (3.4)

On the other hand, from (3.1) we have

− 2M1 ⩽ ϑ(un) − ∫
Ω

2F(z, un) dz for all n ∈ ℕ. (3.5)

Adding (3.4) and (3.5), we obtain

−M2 ⩽ ∫
Ω

[f(z, un)un − 2F(z, un)] dz for some M2 > 0 and all n ∈ ℕ. (3.6)

Suppose that {un}n⩾1 ⊆ H1(Ω) is unbounded. By passing to a subsequence if necessary, we may assume
that

‖un‖ → ∞.

Let yn = un
‖un‖ , n ∈ ℕ. Then ‖yn‖ = 1 for all n ∈ ℕ, and so we may assume that

yn
w
→ y in H1(Ω) and yn → y in L2(Ω) and in L2(∂Ω). (3.7)

From (3.3) we have for all n ∈ ℕ,

!!!!!!!
⟨A(yn), h⟩ + ∫

∂Ω

β(z)ynh dσ − ∫
Ω

Nf (un)
‖un‖

h dz
!!!!!!!
⩽

ϵn‖h‖
(1 + ‖un‖)‖un‖

. (3.8)

Hypotheses (H(i)), (H(ii)) imply that

|f(z, x)| ⩽ c1(1 + |x|) for almost all z ∈ Ω and all x ∈ ℝ, with c1 > 0

â⇒ {
Nf (un)
‖un‖

}
n⩾1

⊆ L2(Ω) is bounded.

We may assume that

Nf (un)
‖un‖

w
→ ξ in L2(Ω) as n → ∞. (3.9)

Moreover, hypothesis (H(ii)) implies that

ξ(z) = η̂(z)y(z) for almost all z ∈ Ω with λ̂m ⩽ η̂(z) ⩽ η(z) for almost all z ∈ Ω (3.10)

(see [1]).
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Therefore, if in (3.8) we pass to the limit as n → ∞ and use (3.7), (3.9) and (3.10), we obtain

⟨A(y), h⟩ + ∫
∂Ω

β(z)yh dσ = ∫
Ω

η̂(z)yh dz for all h ∈ H1(Ω)

â⇒ −∆y(z) = η̂(z)y(z) for almost all z ∈ Ω, ∂y
∂n

+ β(z)y = 0 on ∂Ω (3.11)

(see Papageorgiou and Rădulescu [17]).
If η̂ ̸≡ λ̂m (see (3.10)), then using Proposition 2.1, we have

λ̂m(η̂) < λ̂m(λ̂m) = 1 and 1 = λ̂m+1(λ̂m+1) < λ̂m+1(η̂)
â⇒ y = 0 (see (3.11)).

From (3.8) with h = yn ∈ H1(Ω), we see that

‖Dyn‖2 → 0
â⇒ yn → 0 in H1(Ω) (see (3.7)),

a contradiction to the fact that ‖yn‖ = 1 for all n ∈ ℕ.
If η̂(z) = λ̂m for almost all z ∈ Ω (see (3.10)), then from (3.11) we have

y ∈ E(λ̂m).

Also, if in (3.8) we choose h = yn − y ∈ H1(Ω), pass to the limit as n → ∞ and use (3.7) and (3.9), then

lim
n→∞

⟨A(yn), yn − y⟩ = 0

â⇒ ‖Dyn‖2 → ‖Dy‖2
â⇒ yn → y (by the Kadec–Klee property of Hilbert spaces; see [8, p. 911])

â⇒ ‖y‖ = 1 and so y ∈ E(λ̂m) \ {0}.

The UCP of the eigenspaces implies that

y(z) ̸= 0 for almost all z ∈ Ω
â⇒ |un(z)| → +∞ for almost all z ∈ Ω.

Then hypothesis (H(ii)) implies that

f(z, un(z))un(z) − 2F(z, un(z)) → −∞ for almost all z ∈ Ω. (3.12)

Using (3.12), hypothesis (H(ii)) and Fatou’s lemma, we have

∫
Ω

[f(z, un)un − 2F(z, un)] dz → −∞ as n → ∞. (3.13)

Comparing (3.6) and (3.13), we reach a contradiction.
So, we have proved that {un}n⩾1 ⊆ H1(Ω) is bounded. We may assume that

un
w
→ u in H1(Ω) and un → u in L2(Ω) and in L2(∂Ω). (3.14)

In (3.3) we choose h = un − u ∈ H1(Ω), pass to the limit as n → ∞ and use (3.14). Then

lim
n→∞

⟨A(un), un − u⟩ = 0

â⇒ ‖Dun‖2 → ‖Du‖2
â⇒ un → u in H1(Ω) (again by the Kadec–Klee property; see [8, p. 911])
â⇒ φ satisfies the C-condition,

as desired.
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Let

H̄l =
l

⨁
i=1

E(λ̂i) and Ĥl = H̄⊥
l = ⨁

i⩾l+1
E(λ̂1),

where l comes from hypothesis (H(iii)). We have the following orthogonal direct sum decomposition:

H1(Ω) = H̄l ⊕ Ĥl . (3.15)

So, every u ∈ H1(Ω) admits a unique decomposition

u = ū + û (3.16)

with ū ∈ H̄l and û ∈ Ĥl.

Proposition 3.3. If hypotheses (H(β)), (H) hold, then Ck(φ, 0) = δk,dlℤ for all k ∈ ℕ0 with dl = dim H̄l < +∞.

Proof. We assume that 0 ∈ Kφ is isolated. Otherwise, we already have a sequence of distinct nontrivial solu-
tions of (1.1) converging to zero, and so we are done.

Let η0 ∈ (λ̂l , λ̂l+1) and consider the functional ψ : H1(Ω) → ℝ defined by

ψ(u) = 1
2 ϑ(u) −

η0
2 ‖u‖22 for all u ∈ H1(Ω).

Evidently, ψ ∈ C2(H1(Ω)) and using (2.2) and (2.3), we see that

ψ|Ĥl ⩾ 0 and ψ|H̄l ⩽ 0.

From Motreanu, Motreanu and Papageorgiou [15, Proposition 6.84 (ii) and Theorem 6.87], we have

Cdl (ψ, 0) ̸= 0 with dl = dim H̄l < ∞.

Since ψ ∈ C2(H1(Ω)), from Proposition 2.5 we infer that

Ck(ψ, 0) = δk,dlℤ for all k ∈ ℕ0.

We consider the homotopy h(t, u) defined by

h(t, u) = (1 − t)φ(u) + tψ(u) for all t ∈ [0, 1] and all u ∈ H1(Ω).

For t ∈ (0, 1] and u ∈ C1(Ω) with ‖u‖C1(Ω) ⩽ δ (δ > 0 is as in hypothesis (H(iii))), we have

⟨h�u(t, u), v⟩ = (1 − t)⟨φ�(u), v⟩ + t⟨ψ�(u), v⟩ for all v ∈ H1(Ω). (3.17)

Let v = û − ū ∈ H1(Ω) (see (3.16)). Exploiting the orthogonality of the component subspaces in (3.15),
we have

⟨φ�(u), û − ū⟩ = ϑ(û) − ϑ(ū) − ∫
Ω

f(z, u)(û − ū) dz. (3.18)

Recall that u ∈ C1(Ω) with ‖u‖C1(Ω) ⩽ δ. So, using hypothesis (H(iii)), we have

f(z, u(z))(û − ū)(z) ⩽ λ̂l+1û(z)2 − λ̂l ū(z)2 for almost all z ∈ Ω. (3.19)

Using (3.19) in (3.18), we have

⟨φ�(u), û − ū⟩ ⩾ γ(û) − λ̂l+1‖û‖22 − [γ(ū) − λ̂l‖u‖22] ⩾ 0 (see (2.2), (2.3)). (3.20)

Also, we have

⟨ψ�(u), û − ū⟩ = γ(û) − η0‖û‖22 − [γ(ū) − η0‖ū‖22] ⩾ c2‖u‖
2 for some c2 > 0 (3.21)

(see Proposition 2.2 and recall that η0 ∈ (λ̂l , λ̂l+1)).

Authenticated | vicentiu.radulescu@math.cnrs.fr
Download Date | 1/3/18 7:50 AM



N. S. Papageorgiou and V. D. Rădulescu, Robin problems with multiple resonance | 245

So, for t ∈ (0, 1], from (3.20) and (3.21) we have

⟨h�u(t, u), û − ū⟩ ⩾ tc2‖u‖2.

On the other hand, h(0, ⋅ ) = φ( ⋅ ) and 0 ∈ Kφ is isolated. Therefore, the homotopy

h|[0,1]×C1(Ω)

preserves the isolation of the critical point u = 0. From Corvellec and Hantoute [4, Theorem 5.2] we have

Ck(φ|C1(Ω), 0) = Ck(ψ|C1(Ω), 0) for all k ∈ ℕ0

â⇒ Ck(φ, 0) = Ck(ψ, 0) for all k ∈ ℕ0 (since C1(Ω) is dense in H1(Ω); see Palais [16])
â⇒ Ck(φ, 0) = δk,dlℤ for all k ∈ ℕ0 (see (3.17)),

as desired.

Next we compute the critical groups of φ at infinity.
For the same integer m as in hypothesis (H(ii)), we consider the following orthogonal direct sum decom-

position:
H1(Ω) = H̄m ⊕ Ĥm , (3.22)

where
H̄m =

m
⨁
i=1

E(λ̂i) and Ĥm = H̄⊥
m = ⨁

i⩾m+1
E(λ̂i).

Proposition 3.4. If hypotheses (H(β)), (H) hold, then Cdm (φ,∞) ̸= 0 with dm = dim H̄m (see (3.22)).

Proof. Hypothesis (H(ii)) implies that given any ξ > 0, we can find M3 = M3(ξ) > 0 such that

f(z, x)x − 2F(z, x) ⩽ −ξ for almost all z ∈ Ω and all |x| ⩾ M3. (3.23)

For almost all z ∈ Ω and all s ̸= 0, we have

d
ds
F(z, s)
s2

=
f(z, s)s2 − 2F(z, s)s

s4

=
f(z, s)s − 2F(z, s)

|s|2s
.

Then we have

d
ds
F(z, s)
s2

=
f(z, s)s − 2F(z, s)

s3
⩽ −

ξ
s3

for almost all z ∈ Ω and all s ⩾ M3 (see (3.23))

â⇒
F(z, v)
v2

−
F(z, s)
x2

⩽
ξ
2[

1
v2

−
1
x2

] for almost all z ∈ Ω and all v ⩾ x ⩾ M3. (3.24)

Note that hypothesis (H(ii)) implies that

λ̂m ⩽ lim inf
u→±∞

2F(z, u)
u2

⩽ lim sup
u→±∞

2F(z, u)
u2

⩽ η(z) (3.25)

uniformly for almost all z ∈ Ω.
So, if in (3.24) we pass to the limit as v → +∞ and use (3.25), then

λ̂m
2 −

F(z, x)
x2

⩽ −
ξ
2
1
x2

for almost all z ∈ Ω and all x ⩾ M3

â⇒ λ̂mx2 − 2F(z, x) ⩽ −ξ for almost all z ∈ Ω and all x ⩾ M3

â⇒ λ̂mx2 − 2F(z, x) → −∞ as x → −∞, uniformly for almost all z ∈ Ω (3.26)

(recall that ξ > 0 is arbitrary).
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On the negative semiaxis, we have

d
ds
F(z, s)
|s|2

=
f(z, s)s − 2F(z, s)

|s|2s
⩾ −

ξ
|s|2s

for almost all z ∈ Ω and all s ⩽ −M3

(see (3.23) and recall that s < 0), which implies

F(z, v)
|v|2

−
F(z, x)
|x|2

⩾ −
ξ
2[

1
|x|2

−
1
|v|2

] for almost all z ∈ Ω and all x ⩽ v ⩽ −M3.

Letting x → −∞ and using (3.25), we obtain

F(z, v)
|v|2

−
λ̂m
2 ⩾

ξ
2

1
|v|2

for almost all z ∈ Ω and all v ⩽ −M3

â⇒ 2F(z, v) − λ̂m|v|2 ⩾ ξ for almost all z ∈ Ω and all v ⩽ −M3

â⇒ λ̂m|v|2 − 2F(z, v) → −∞ as v → −∞, uniformly for almost all z ∈ Ω (3.27)

(recall that ξ > 0 is arbitrary).
From (3.26) and (3.27) it follows that

λ̂m|x|2 − 2F(z, x) → −∞ as x → ±∞, uniformly for almost all z ∈ Ω. (3.28)

We introduce the two sets

Sr = {u ∈ H1(Ω) : ‖u‖ = r, ϑ(u) ⩽ λ̂m‖u‖22} (r > 0),

A = {u ∈ H1(Ω) : ϑ(u) ⩾ λ̂m+1‖u‖22}.

The set Sr is a C1-Hilbert manifold with boundary and from Degiovanni and Lancelotti [5, Theorem 3.2].
We have

ind Sr = ind(H1(Ω) \ A) = dm ,

where “ind” denotes the Fadell–Rabinowitz index (see [7]). FromCingolani andDegiovanni [3, Theorem3.6],
we know that the sets Sr and A homologically link in dimension dm.

Hypotheses (H(i)), (H(ii)) imply that given ϵ > 0, we can find c3 = c3(ϵ) > 0 such that

F(z, x) ⩽ 1
2 (η(z) + ϵ)x

2 + c3 for almost all z ∈ Ω and all x ∈ ℝ. (3.29)

Then for all u ∈ A, we have

φ(u) = 1
2 ϑ(u) − ∫

Ω

F(z, u) dz

⩾
1
2[ϑ(u) − ∫

Ω

η(z)u2 dz − ϵ‖u‖2] − c3|Ω|N (see (3.29))

⩾
ĉ − ϵ
2 ‖u‖2 − c3|Ω|N for some ĉ > 0 (see Proposition 2.2).

Choosing ϵ ∈ (0, ĉ), we see that

inf
A
φ > −∞.

Next we show that

φ(u) → −∞ as u ∈ Sr and r → +∞.

Arguing by contradiction, we suppose that one can find rn → +∞, un ∈ Srn and M4 > 0 such that

−M4 ⩽ φ(un) for all n ∈ ℕ and ‖un‖ → ∞. (3.30)
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Let yn = un
‖un‖ , n ∈ ℕ. Then ‖yn‖ = 1 for all n ∈ ℕ and so we may assume that

yn
w
→ y in H1(Ω) and yn → y in L2(Ω) and in L2(∂Ω). (3.31)

We have
ϑ(yn) ⩽ λ̂m‖yn‖22 for all n ∈ ℕ. (3.32)

If y = 0, from (3.31), (3.32) and hypothesis (H(β)) we have

Dyn → 0 in L2(Ω,ℝN)
â⇒ yn → 0 in H1(Ω) (see (3.31)),

a contradiction to the fact that ‖yn‖ = 1 for all n ∈ ℕ. Therefore y ̸= 0, and so

|un(z)| → +∞ for almost all z ∈ Ω0 = {y ̸= 0}, |Ω0|N > 0.

Then from (3.28) and Fatou’s lemma we have

∫
Ω

[λ̂mu2n − 2F(z, un)] dz → −∞ as n → ∞. (3.33)

On the other hand, from (3.30) and since un ∈ Srn , n ∈ ℕ, we have

− 2M4 ⩽ 2φ(un) ⩽ ∫
Ω

[λ̂mu2n − 2F(z, un)] dz for all n ∈ ℕ. (3.34)

Comparing (3.33) and (3.34), we reach a contradiction. Therefore, we have

φ(u) → −∞ as u ∈ Sr and r → +∞.

It follows that for r > 0 big, we have
sup
Sr
φ < inf

A
φ.

As before, we assume that Kφ is finite (otherwise, we already have awhole sequence of distinct solutions,
and so we are done). Hence we can have

sup
Sr
φ ⩽ a < inf

Kφ
φ.

We consider the triple of sets
Sr ⊆ φa ⊆ H1(Ω) \ A.

We have the commutative diagram

H̃dm−1(Sr) //

i∗

''

H̃dm−1(φa)

��

H̃dm−1(H1(Ω) \ A).

Since i∗ ̸= 0 (recall that we established earlier that Sr and A homologically link in dimension dm; see
Motreanu, Motreanu and Papageorgiou [15, Definition 6.77]), we have

H̃dm−1(φa) ̸= 0.

But from Motreanu, Motreanu and Papageorgiou [15, Proposition 6.64] we have

Cdm (φ,∞) = Hdm (H1(Ω), φa) = H̃dm−1(φa) ̸= 0.

For the multiplicity theorem we need to strengthen hypothesis (H(ii)) a little. So, the new conditions on the
reaction term f(z, x) are the following.
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(H’) f(z, x) = λ̂mx + f0(z, x) with f0 : Ω × ℝ → ℝ is a measurable function such that for almost all z ∈ Ω we
have f0(z, 0) = 0, f0(z, ⋅ ) ∈ C1(ℝ) and the following holds:
(i) |(f0)�x(z, x)| ⩽ a0(z)(1 + |x|r−2) for almost all z ∈ Ω and all x ∈ ℝ, with a0 ∈ L∞(Ω)+, 2 ⩽ r < 2∗;
(ii) there exists a function η̂ ∈ L∞(Ω)+ such that

0 ⩽ η̂(z) ⩽ λ̂m+1 − λ̂m for almost all z ∈ Ω,

η̂ ̸≡ λ̂m+1 − λ̂m ,

η̂(z) = lim
x→±∞

f0(z, x)
x

uniformly for almost all z ∈ Ω,

and if F0(z, x) = ∫
x
0 f0(z, s) ds, then

lim
x→±∞

[f0(z, x)x − 2F0(z, x)] = −∞ uniformly for almost all z ∈ Ω;

(iii) there exist l ∈ ℕ and δ > 0 such that

l ⩽ m − 2,

(λ̂l − λ̂m)x2 ⩽ f0(z, x) ⩽ (λ̂l+1 − λ̂m)x2 for almost all z ∈ Ω and all |x| ⩽ δ;

(iv) f0(z, x)x ⩽ (f0)�x(z, x)x2 for almost all z ∈ Ω and all x ∈ ℝ, (f0)�x(z, x) ⩽ λ̂m+1 − λ̂m for almost all
z ∈ Ω and all x ∈ ℝ, and for every ρ > 0 there exists Ωρ ⊆ Ω with |Ωρ|N > 0 such that

( ̂f0)�x(z, x) < λ̂m+1 for almost all z ∈ Ωρ and all |x| ⩽ ρ.

Theorem 3.5. If hypotheses (H(β)), (H’) hold, then problem (1.1) admits at least two nontrivial solutions

u0, û ∈ C1(Ω).

Proof. From Proposition 3.4 we know that Cdm (φ,∞) ̸= 0. So, according to Proposition 2.3 we can find
u0 ∈ Kφ such that

Cdm (φ, u0) ̸= 0. (3.35)

On the other hand, from Proposition 3.3 we have

Ck(φ, 0) = δk,dlℤ for all k ∈ ℕ0. (3.36)

Since l ⩽ m − 2 (see hypothesis (H’(iii)), we have dl ̸= dm. Then from (3.35) and (3.36) we infer that
u0 ̸= 0.

Note that hypotheses (H’(i))–(H’(iii)) imply that

|f(z, x)| ⩽ c4|x| for almost all z ∈ Ω and all x ∈ ℝ, with c4 > 0. (3.37)

We set

g(z) =
{{
{{
{

f(z, u0(z))
u0(z)

if u0(z) ̸= 0,

f �x(z, u0(z)) if u0(z) = 0.

From (3.37) and hypothesis (H’(iv)) we see that g ∈ L∞(Ω), and we have

{{
{{
{

−∆u0(z) = g(z)u0(z) for almost all z ∈ Ω,
∂u0
∂n

+ β(z)u0 = 0 on ∂Ω
(3.38)

(see Papageorgiou and Rădulescu [17]).
From Wang [22, Lemma 5.1] we have u0 ∈ L∞(Ω), and from (3.38) it follows that ∆u0 ∈ L∞(Ω). Using

the Calderon–Zygmund estimates (see Wang [22, Lemma 5.2]), we have u0 ∈ W2,s(Ω) with s > N. Then the
Sobolev embedding theorem says that

W2,s(Ω) í→ C1+α(Ω) with α = 1 − N
s > 0

â⇒ u0 ∈ C1(Ω).
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If η̂ ̸≡ 0 (nonresonant problem at ±∞), then from Papageorgiou and Rădulescu [19, Proposition 26] we
have

Ck(φ,∞) = δk,dmℤ for all k ∈ ℕ.

If η̂(z) = 0 for almost all z ∈ Ω (resonant problem at ±∞), then byMotreanu,Motreanu and Papageorgiou
[15, Theorem 6.7.1] we have

Ck(φ,∞) = 0 for all k ∉ [dm , dm+1] (3.39)

(here dm+1 = dim⨁m+1
i=1 E(λ̂i)). Since dl < dm (see hypothesis (H’(iii))), we have

Cdl (φ, 0) ̸= 0 and Cdl (φ,∞) = 0 (see (3.36) and (3.39)). (3.40)

Then from (3.40) and Proposition 2.4 we know that we can find û ∈ Kφ such that

Cdl−1(φ, û) ̸= 0 or Cdl+1(φ, û) ̸= 0. (3.41)

From (3.36) and (3.41) we infer that û is a nontrivial solution of (1.1) and the regularity theory implies
that û ∈ C1(Ω).

We need to show that û ̸= u0. According to (3.35), it suffices to show that

Cdm (φ, û) = 0. (3.42)

Let

ĝ(z) =
{{
{{
{

f(z, û(z))
û(z)

if û(z) ̸= 0,

f �x(z, û(z)) if û(z) = 0.
(3.43)

As before we have ĝ ∈ L∞(Ω). We consider the following linear eigenvalue problem:

{{
{{
{

−∆v(z) = λ̂ĝ(z)v(z) in Ω,
∂v
∂n

+ β(z)v = 0 on ∂Ω.
(3.44)

Since û ∈ C1(Ω) is a solution for problem (1.1), from (3.42) it follows that λ̂ = 1 is an eigenvalue of prob-
lem (3.44) with û ∈ C1(Ω) as a corresponding eigenfunction.

Recall that λ̂l ⩽ ĝ(z) for almost all z ∈ Ω (see hypothesis (H’(iii)) and Remark 3.1). Suppose that λ̂l = ĝ(z)
for almost all z ∈ Ω. Then from (3.44) it follows that û ∈ C1(Ω) is an eigenfunction corresponding to λ̂l. The
UCP implies that û(z) ̸= 0 for almost all z ∈ Ω. Then from (3.43) and Proposition 2.5 it follows that (3.42)
holds (recall l ⩽ m − 2).

So, we may assume that the inequality λ̂l ⩽ ĝ(z) for almost all z ∈ Ω is strict on a set of positive measure.
Invoking Proposition 2.1, we have

λ̂i(ĝ) < λ̂i(λ̂l) ⩽ 1 for all i ∈ {1, . . . , l}.

Since λ̂ = 1 is an eigenvalue of (3.44), we have

λ̂l+1(ĝ) ⩽ 1. (3.45)

By hypothesis (H’(iv)) we have

σ̂(z) = f �x(z, û(z)) ⩾ ĝ(z) for almost all z ∈ Ω.

If this last inequality is strict on a set of positive measure, then Proposition 2.1 implies that

λ̂l+1(σ̂) < λ̂l+1(ĝ)

â⇒ λ̂l+1(σ̂) < 1 (see (3.45)). (3.46)

Recall that
⟨φ��(û)y, y⟩ = ϑ(y) − ∫

Ω

f �x(z, û(z))y2 dz for all y ∈ H1(Ω).
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Then from (3.46) it follows that
m̂(û) > dl .

From (3.41) and Proposition 2.5 we see that we must have

Ck(φ, û) = δk,dl+1ℤ for all k ∈ ℕ0. (3.47)

But l ⩽ m − 2 (see hypothesis (H’(iii))). Therefore, (3.47) implies that (3.42) holds.
Now suppose that σ̂(z) = f �x(z, û(z)) = ĝ(z) for almost all z ∈ Ω. Hypothesis (H’(iv)) implies that

σ̂(z) ⩽ λ̂m+1 for almost all z ∈ Ω,

with strict inequality on a set of positive measure. Hence

1 < λ̂m+1(σ̂) (see Proposition 2.1)
â⇒ m̂(û) + ν̂(û) ⩽ dm . (3.48)

Recall that dl + 1 < dm (see hypothesis (H’(iii))). Then from (3.41), (3.48) and Proposition 2.5, we infer
that (3.42) holds again. From (3.42) and (3.35) it follows that

û ̸= u0
â⇒ û ∈ C1(Ω) is the second nontrivial smooth solution of problem (1.1).
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