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Rodrigues-type formulae for Hermite and
Laguerre polynomials

Vicenţiu RĂDULESCU

Abstract

In this paper we give new proofs of some elementary properties of the
Hermite and Laguerre orthogonal polynomials. We establish Rodrigues-
type formulae and other properties of these special functions, using suit-
able operators defined on the Lie algebra of endomorphisms to the vector
space of infinitely many differentiable functions.

1 Introduction and preliminary results

Special orthogonal polynomials began appearing in mathematics before the
significance of such a concept became clear. For instance, Laplace used Her-
mite polynomials in his studies in probability while Legendre and Laplace
utilized Legendre polynomials in celestial mechanics. We devote this paper to
the study of some elementary properties of Hermite and Laguerre polynomials
because these are the most extensively studied and have the longest history.
We also point out that the properties we establish in the present paper can
be extended to other special functions. We refer to [1, 2, 3, 4] for related
properties.

The classical orthogonal polynomials of Hermite and Laguerre satisfy linear
differential equations of the form

a(x)y′′ + b(x)y′ + c(x)y = 0 . (1)

In both cases, the factor c(x) is actually independent of x (resp, c(x) = 2n for
Hermite’s polynomials, and c(x) = n for Laguerre’s polynomials) and depends
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only on the integer parameter n, which turns out to be also the exact degree
of the polynomial solution of (1).

In the study of special functions, solutions to differential equations in the
form of Rodrigues’ formulae are of considerable interest. More precisely, for
each of the classical families of orthogonal polynomials (Hermite, Laguerre,
and Jacobi) there is a generalized Rodrigues formula through which the nth
member of the family is given (except for a normalization factor) by the rela-
tion

Pn(x) =
1
w

(w(x)fn(x))(n) .

A particular family of polynomials is characterized by the choice of functions
w and f , For the Hermite polynomials we have w(x) = e−x2

and f(x) = 1,
for the Laguerre polynomials w(x) = e−x and f(x) = x; and, for the Jacobi
polynomials, w(x) = (1 − x)α(1 + x)β and f(x) = 1 − x2. The method we
develop in this paper relies on the study of suitable linear operators defined on
the Lie algebra of endomorphisms of a vector space. We start with a simple
spectral property of these operators.

Let EndV be the Lie algebra of endomorphisms of the vector space V ,
endowed with the Lie bracket [ , ] defined by

[A, B] = AB − BA, for every A, B ∈ EndV.

We denote by I the identity operator of V .

Theorem 1 Let A, B ∈ EndV be such that [A, B] = I. We define the se-
quence (yn)n ⊂ V as follows: Ay0 = 0 and yn = Byn−1, for every n ≥ 1.
Then yn is an eigenvector of eigenvalue n for BA, for every n ≥ 1.

Proof. We first show that

Ayn = nyn−1, for every n ≥ 1.

For n = 1 this equality is evident, because (AB − BA)y0 = y0, Ay0 = 0 and
y1 = By0.

We suppose that Ayn = nyn−1. We may write, equivalently:

[A, B]yn = yn

AByn − BAyn = yn

Ayn+1 − nByn−1 = yn

Ayn+1 = (n + 1)yn

It follows that BAyn = nByn−1, that is, BAyn = nyn, which completes
our proof. �
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2 Hermite polynomials

Throughout this paper we assume that V = C∞(R).
We define the operators A, B ∈ EndV by

(Af)x = (1/2)f ′(x), (Bf)x = −f ′(x) + 2xf(x), for every x ∈ R.

We prove that these operators satisfy the commutation relation [A, B] = I.
Indeed,

A(Bf)x−B((Af)x) = −(1/2)f ′′(x)+xf ′(x)+f(x)+(1/2)f ′′(x)−xf ′(x) = f(x).

Next, we prove that (Bnf)x = (−1)nex2
(f(x)e−x2

)(n). From the definition
of B, the above equality holds for n = 1. Inductively, taking into account
Bn+1f = B(Bnf), it follows that

(Bn+1f)x = −(−1)n(ex2
(f(x)e−x2

)(n))′ + 2x(−1)nex2
(f(x)e−x2

)(n)

= (−1)n+1ex2
(f(x)e−x2

)(n+1),

which ends our proof.
The Hermite equation y′′ − 2xy′ + 2ny = 0, where n is a positive integer,

may be written
−y′′ + 2xy′ = 2ny,

or
By′ = 2ny, that is, BAy = ny.

By Theorem 1, it follows that yn is a solution of the Hermite equation.
Setting y0 = 1, we obtain yn = Bn(1). Therefore, defining Hn(x) = yn, we
deduce the Rodrigues-type formula

Hn(x) = (−1)nex2
(e−x2

)(n),

for every n positive integer.
The Hermite polynomials Hn are orthogonal with respect to the weight

function w(x) = e−x2
, in the sense that

∫ +∞

−∞
e−x2

Hm(x)Hn(x)dx =
{

0 if m �= n√
π 2nn! if m = n.

A straightforward computation shows that

Hn(x) =
[n/2]∑
j=0

(−1)j(2x)n−2j n!
j!(n − 2j)!

.
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We also point out that it follows that the functions of the parabolic cylinder
are closely related (see [5]) with the Hermite polynomials by the relation un =
e−x2

Hn.
We deduce in what follows additional properties of the Hermite polynomi-

als.

Proposition 1 The Hermite functions satisfy the following recurrence rela-
tions:

i)H ′
n(x) = 2nHn−1(x), n ∈ N.

ii)Hn+1(x) − 2xHn(x) + 2nHn−1(x) = 0, n ∈ N.

Proof. i) Since Hn(x) = yn = Bn(1), we can use the equality Ayn =
nyn−1, which was proved in Theorem 1. From the definition of the operator
A, it follows that

(1/2y′
n) = nyn−1, that is, H ′

n(x) = 2nHn−1(x).

ii) By the definition of B, one has

Byn + y′
n − 2xyn = 0.

But y′
n = 2nyn−1. Thus,

Byn − 2xyn + 2nyn−1 = 0,

or
yn+1 − 2xyn + 2nyn−1 = 0,

that is,
Hn+1(x) − 2xHn(x) + 2nHn−1(x) = 0.

�

Theorem 2 Let A, B ∈ EndV be such that [A, B] = I. Define S = (A−I)BA,
Tn = (A − I)nBn, for every n ≥ 1. Then:

i) [(A − I)n, B] = n(A − I)n−1.

ii) Tn+1 = (T1 + nI)Tn.

iii) S(T1 + nI) = (T1 + nI)S + (S + nI) − (T1 + nI).
iv) If y0 ∈ V is an eigenvector of S with eigenvalue 0, then yn is an

eigenvector of eigenvalue −n for S, where yn = Tny0, for every n ≥ 1.
v) If yn ∈ V is an eigenvector of eigenvalue −n for S, then wn = (T1 +

nI)yn is an eigenvector for S, with eigenvalue −(n + 1).
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Proof. i) For n = 1, the equality follows from the commutation relation
[A, B] = I. Inductively, let’s suppose that [(A − I)nB] = n(A − I)n−1. It
follows that

B(A − I)n+1 = A(−I)nB(A − I) − n(A − I)n

= (A − I)n(BA − B − nI) = (A − I)n(AB − I − B − nI)
= (A − I)n+1B − (n + 1)(A − I)n,

that is,
[(A − I)n+1B0 = (n + 1)(A − I)n.

ii) From the equality proved at i), it follows that

(A − I)((A − I)nB − B(A − I)n)Bn = n(A − I)nBn

(A − I)n+1Bn+1 = (A − I)B(A − I)nBn + n(A − I)nBn

Tn+1 = (T1 + nI)Tn.

iii) The equality we have to prove is equivalent to [S, T1] = S − T1. But

[S, T1] = (A − I)BA(A − I)B − (A − I)B(A − I)BA

= (A − I)B(A2B − AB − ABA + BA)
= (A − I)B(A[A, B] − [A, B])
= (A − I)B(A − I)
= (A − I)BA − (A − I)B
= S − T1.

iv) We’ll prove our assertion by recurrence. For n = 0, it is obvious. We
suppose that Syn = −nyn, that is, STny0 = −nTny0. From ii) and iii), it
follows that

STn+1y0 = (T1 + nI)STny0 − (S + nI)Tny0 − (T1 + nI)Tny0

= (T1 + nI)(n − Tny0) − Tn+1y0

= −nTn+1y0 − Tn+1y0

= −(n + 1)Tn+1y0.

v) From iii), it follows that

Swn = (T1 + nI)Syn + (S + nI)yn − wn.

But (S + nI)yn = 0. Therefore,

Swn = −n(T1 + nI)yn − wn = −(n + 1)wn.

�
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3 Laguerre polynomials

Define the operators A, B ∈ EndV by

(Af)x = f ′(x)

and
(Bf)x = x · f(x), for every x ∈ R and f ∈ C∞(R),

A and B satisfy [A, B] = I. Indeed,

([A, B]f)x = A((Bf)x) − B((Af)x) = (x · f(x))′ − x′f ′(x) = f(x).

We consider now the Laguerre equation

xy′′ + (1 − x)y′ + ny = 0, n ∈ N.

But (A− I)BAy = xy′′ + (1− x)y′. Thus, the Laguerre equation becomes

Sy = −ny.

By Theorem 2, we conclude that if y0 ∈ C∞(R) and Sy0 = 0, then yn =
Tny0 is a solution of the Laguerre equation. We choose y0 = 1. It is clear that
Sy0 = 0.

We prove in what follows that

((A − I)nf)x = ex(f(x)e−x)(n), for every n ∈ N. (2)

For n = 1, this equality becomes f ′(x)− f(x) = ex(f(x)e−x)′, which is trivial.
Inductively, we suppose that relation (2) is true. Therefore, ((A−I)n+1f)x =

((A − I)(A − I)nf)x = ex(((A − I)nf)xe−x)′ = ex(ex(f(x)e−x)(n)e−x)′ =
ex(f(x)e−x)(n+1) which proves the validity of relation (2).

Since Bn(1) = xn, it follows that

yn = Tny0 = (A − I)nBn(1) = ex(xne−x)(n).

Thus the Laguerre polynomial

Ln(x) = ex(xne−x)(n)

is a solution of the Laguerre equation.
The Laguerre polynomials Ln are orthogonal with respect to the weight

function w(x) = e−x, in the sense that
∫ +∞

0

e−xLm(x)Ln(x)dx =
{

0 if m �= n
1 if m = n.
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Proposition 2 The Laguerre functions satisfy the following recurrence rela-
tions:

i)L′
n+1(x) − (n + 1)L′

n(x) + (n + 1)Ln(x) = 0
ii)Ln+1(x) + (x − 2n − 1)Ln(x) + n2Ln−1(x) = 0, for every n ∈ N.

Proof. i) Using the definition of A and Ln(x) = Tn(1), our relation
becomes

ATn+1(1) − (n + 1)ATn(1) + (n + 1)Tn(1) = 0.

From ii) of the Theorem 2, the above equality becomes

AT1Tn(1) − ATn(1) + (n + 1)Tn(1) = 0,

or
(AT1 − A + I)yn = −nyn,

because Tn(1) = yn, by Theorem 2 iv).
Thus, by the same theorem, it suffices to prove that

AT1 − A + I = S.

Indeed,

AT1 − A + I − S = A(A − I)B − A + I − (A − I)BA

= A2B − AB − A + I − (A − I)BA

= A2B − A − ABA

= A[A, B] − A

= 0.

ii) By the definition of B, we have to prove that

Tn+1(1) + BTn(1) − (2n + 1)Tn(1) + n2Tn+1(1) = 0

or equivalently,

(T1 + nI)Tn(1) + BTn(1) − (2n + 1)Tn(1) + n2Tn−1(1) = 0.

(T1 + B − (n + 1)I)Tn(1) + n2Tn−1(1) = 0. (3)

But T1 + B − (n + 1)I = BA − nI. Relation (3) becomes

(BA − nI)(T1 + (n − 1)I)yn−1 = −n2yn−1

(BAT1 − nT1 + (n − 1)BA + nI)yn−1 = 0
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B(AT1 − A + I)yn−1 = −(n − 1)Byn−1

BSyn−1 = −(n − 1)Byn−1,

which is true because yn−1 is an eigenvector for S of eigenvalue −(n − 1). �
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