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Abstract. We consider a nonlinear noncoercive elliptic equation driven
by the p-Laplacian. We show that if the L°°-perturbation has small
norm, then the problem admits a positive solution. Moreover, if the L*°-
perturbation is nonzero and nonnegative, then we find two positive solu-
tions. Also, we consider a class of semilinear equations with an indefinite
and unbounded potential. Using critical groups, we show that there is
a nontrivial solution and under a global sign condition, we show that
this solutions is nodal. Our results extend and improve a recent work of
Rédulescu (Discr. Cont. Dyn. Syst. Ser. S , 5:845-856, [14]).
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1. Introduction

Let Q C RY be a bounded domain with a C%-boundary 9. In this paper first
(see Sect. 3), we study the following nonlinear Dirichlet problem

—Apu(z) = B(2)u(2)"! + f(z,u(2)) +g(2) inQ, )
ulon =0, u>0, 1 <p<oo, ge L>(Q). g
Here A, denotes the p-Laplacian differential operator defined by
Apu = div (|DulP~2Du) for all u € W, (Q).

Also 3 € L*(2) and B(z) < M (p) for a.a. z € Q with strict inequality
on a set of positive measure. Here 5\1(p) > 0 denotes the principal eigenvalue
of (=A,, Wy (€)). The perturbation f(z,z) is a Carathéodory function (that
is, for all z € R, 2 — f(z,2) is measurable and for a.a. z € Q, z +—
f(z,x) is continuous), which exhibits (p — 1)-superlinear growth near +oo, but
without satisfying the usual Ambrosetti-Rabinowitz condition (AR-condition
for short). We show that for ||g||o sufficiently small, problem (1), admits
at least one positive solution. Moreover, we show that if g is nonzero and
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nonnegative, then a second positive solution can be found. Problem (1), was
investigated recently by Radulescu [14], when p = 2 (semilinear equation) and
with a perturbation function f(z,x) = f(x) which is in C*(R) and satisfies the
AR-condition. Under these conditions, the author shows that the problem has
a positive solution for ||g||e small (see Theorem 2.1 of [14]). Our work here
generalizes the result of Radulescu [14] and provides additional information
for problem (1),.
In Sect. 4, we deal with the following semilinear problem:
{ —Au(z) + B(2)u(z) = Mu(z) + f(z,u(z)) in Q, } (2)s

ulpa = 0.

In this problem, 8 € L7(Q) with 7 > % and is general indefinite. Also
A € R is a parameter and f(z,z) is a measurable function on © x R which
is C! in the z € R variable and @ —— f(z,z) exhibits (p — 1)-superlinear
growth near +oo again without satisfying the AR-condition. We show for all
A > A (2,3), problem (2)y admits a nontrivial solution (by A1 (2, 3) we denote
the principal eigenvalue of (—A + 8I, H(€))). In fact, under a global sign
condition on f(z,-), we show that any nontrivial solution of (2), is necessarily
nodal (sign changing), that is, the problem has no nontrivial constant sign so-
lutions. Problem (2), was also studied by Riddulescu [14] under the hypotheses
that 3 =0, f(z,2) = f(z) and f € C'(R) satisfies the AR-condition and it
is strictly increasing and onto. In fact in [14] it was left as an open problem
whether the strict monotonicity and surjectivity conditions on f(-) can be re-
laxed. Here we show that the answer to this open problem is affirmative and
in fact we go even further establishing the existence of solutions for a broader
class of equations with more general perturbations f(z,x).

Our approach is variational based on the critical point theory, coupled
with suitable truncation and comparison techniques. In Sect. 4 we also use
critical groups. In the next section for the convenience of the reader, we review
the main mathematical tools that we will use in this paper.

2. Mathematical background

Let X be a Banach space and X* its topological dual. By (-,-) we denote the
duality brackets for the pair (X*, X). Given ¢ € C'(X), we say that it satisfies
the Cerami condition (the C-condition for short), if the following holds:

“Every sequence {uy, }n>1 C X such that {¢(u,)}n>1 C R is bounded
and
(14 [Junl])¢’(un) — 0in X* as n — oo,

admits a strongly convergent subsequence”.

This is a compactness-type condition on the functional ¢ which is more
general than the more common Palais-Smale condition. The C-condition leads
to a deformation theorem, from which we can derive the minimax theory for
the critical values of ¢. One of the main results in this theory is the so-called
“mountain pass theorem” due to Ambrosetti and Rabinowitz [4]. Here we state
this in a slightly more general form (see Gasinski and Papageorgiou [8]).
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Theorem 1. Assume that X is a Banach space, ¢ € C1(X) satisfies the C-
condition, ug,u; € X with ||lug —wgl| >p >0

max{ep(uo), p(u1)} <inf[p(w) : |[u—uol| = p] =1,
and c = inf max ¢(y(t)) with T' = {y € C([0, 1}, X) : ¥(0) = o, 7(1) = u}.

Then ¢ = n, and c is a critical value of ¢.

In the analysis of problems (1), and (2),, we will use the Sobolev spaces
WP () and HL(Q) and the Banach space C}(©) = {u € C1(Q) : ulpq = 0}.
The latter is an ordered Banach space with positive cone

C.={uecCiQ):u(z)=0forall z € Q}.

< o} |
a9
where n(-) denotes the outward unit normal on 9€2.
We consider the following nonlinear eigenvalue problem:

This cone has a nonempty interior

ou

intC’+={uEC'+:u(z)>0forallz€§2, 3

— Apu(z) = Au(2)[P~2u(z) in Q, ulsg = 0. (3)

We say that A € R is an eigenvalue of (—A,, Wy**(2)), if problem (3)
admits a nontrivial solution 4 € WO1 P(Q) known as an eigenfunction corre-
sponding to A. The nonlinear regularity theory (see, for example, Gasinski
and Papageorgiou [8, pp. 737-738]), implies that @ € C§(2). We know that
(—=A,, Wy (Q)) has a smallest eigenvalue A1(p) such that:

(p) > 0 and it is isolated (that is, there exists e > 0 such that
D), 5\1(;0) + e) does not contain any other eigenvalue of (—A,, Wol’p

)
(ii) A1(p) is simple (that is, if 4,9 € C3(Q) are eigenfunctions corresponding
to A1 (p), then & = &0 with & # 0)

|| Dul[p

Hw%;uemﬁwm,u¢o. (4)

x@yﬁﬁ{

The infimum in (4) is realized on the one-dimensional eigenspace corre-
sponding to 5\1(]3) > 0. It is clear from (4) that the elements of this eigenspace
do not change sign. Let @3 (p) be the LP-normalized (that is, ||41(p)|], = 1),
positive eigenfunction corresponding to ;\1(1)). The nonlinear maximum prin-
ciple (see, for example, Gasinski and Papageorgiou [8, p. 738]), implies that
1 (p) € int C4. We mention that A;(p) is the only eigenvalue with eigenfunc-
tions of constant sign. Every eigenvalue A #* 5\1(]3) has nodal eigenfunctions.

As a consequence of the above properties of A (p) > 0and 44 (p) € int Cy,
we have the following lemma (see Papageorgiou and Kyritsi [10, p. 356]).
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Lemma 2. If 3 € L(Q) and 3(z) < Ai(p) a.e. in Q with strict inequality on
a set of positive measure, then there exists & > 0 such that

||Du||§ - / B(2)|ulPdz > fo||Du||§ for allu € Wol’p(Q).
Q

To deal with problem (2),, we will use the spectrum of (—=A+8I, H}(Q)).
So, we consider the following linear eigenvalue problem

— Au(z) + B(z)u(z) = Mu(z) in Q, ulsq = 0. (5)

Recall that 8 € L7(2) with 7 > & and in general is indefinite (that is,
sign-changing). Problem (5) has a strictly increasing sequence { \x (2, B) =1 C
R of eigenvalues such that A\(2,3) — +oo as k — 400. By E(\(2,0))
we denote the eigenspace corresponding to the eigenvalue e (2,8). We have
E(\(2,3)) C CL(Q) and the eigenspace has the so-called unique continuation
property (UCP for short), that is, if 4 € E(j\k(Q,ﬁ)) and @ vanishes on a set
of positive measure, then @ = 0. We have the following variational characteri-
zations of these eigenvalues:

u?
(2, ) = inf {'Du”ﬁfﬂ e HY®), u#()} (6)

[Jull3

and for k > 2, we have

. Dul|5 + de
e 9) —onp L2 Jo S,
||U||2
i L2+ e
[lull3
In (6) and (7), the infimum and the supremum are realized on the corre-
sponding eigenspace E(Ag(2,3)) (see Kyritsi and Papageorgiou [9]).
We have the following orthogonal direct sum decomposition

& EGu(2.0),u £0]

‘u € iinE(jx,;(Z,ﬁ)),u o+ 0} . (7

Hy(Q) = Hy, @ Hy

with Hy = ®F_, E(\i(2,8)) and Hy, = @iz E(Ni(2, 8)).
Next let X be a Banach space and ¢ € C1(X), ¢ € R. We introduce the
following sets

e={ueX:pu) <c}, K,={ueX:¢'(u)=0},
Kg ={ue K, :p(u)=c}

Let (Y1,Y3) be a topological pair such that Y C Y7 C X. For every
integer k > 0, by Hi(Y7,Y2) we denote the kth relative singular homology
group for the pair (Y7, Y3) with integer coefficients. Recall that Hy(Y7,Y2) =0
for all k < 0. The critical groups of ¢ at an isolated critical point u € K¢ are
defined by

Cr(p,u) = Hp(e°NU, ¢ NU\{u}) for every k >0
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where U is a neighborhood of u such that ¢° N K, NU = {u}. The excision
property of singular homology theory, implies that the above definition of
critical groups is independent of the choice of the neighborhood U.

Suppose that ¢ € C(X) satisfies the C-condition and inf p(K,) > —oo.
Let ¢ < inf ¢(K). The critical groups of ¢ at infinity are defined by

C’k(go, ) Hk( ) for all k 0.

The second deformation theorem (see, for example, Gasinski and Papa-
georgiou [8; p. 628]), implies that this definition is independent of the choice
of level ¢ < inf ¢(K). If for some k > 0, Cr(p,0) # 0, Cr(p,00) = 0, then ¢
admits a nontrivial critical point.

We conclude this section by fixing our notation. By || - || we denote the
norm of the Sobolev space I/VO1 P(Q). By virtue of the Poincaré inequality, we
have

|u]| = || Dul], for all u € W, ().
For every = € R, we set 2% = max{+2,0}. Then given u € Wol’p(Q), we
define u*(-) = u(-)*. We have
ut e WyP(Q), u=ut —u”, Jul =ut +u.
By |-|n we denote the Lebesgue measure on RY. Finally, if h : QxR — R

is a measurable function (for example, a Carathéodory function), then we
define

Ni(u)(-) = h(-,u(-)) for all u € W, ()

(the Nemytskii operator corresponding to function h(-,-)). Note that z —
Ny(u)(z) is measurable.

3. Solutions for problem (1),

In this section, we show that for ||g||~ small, problem (1), has at least one pos-
itive solution and for nonzero and nonnegative g, it has two positive solutions.
The hypotheses on the perturbation f(z,x), are the following:

Hy: f: QxR — Ris a Carathéodory function such that f(z,0) =0 for
a.a. z € 2 and

() |f(z,2)] < a(z)(1 +2771) for a.a z € Q, all z > 0, with a € L®(Q) 4,

Np 1fp<N
<r<p* N—p :
p=r=p 4+oo  if p <

(i) if F(z,2) = [y f(z,s)ds, then

F(z,x)

lim

T—+00 xP

= 400 uniformly for a.a z € ;

(iii) there exists o > 0 and 7 € (max{l, (r— p)%},p*) such that

—pF
0 < 1o < liminf f(z,2)x — pF(z, x)

r— 400 xT

uniformly for a.a. z € ;
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o fz)

(IV) wli%l‘*' pp—1L

(v) for every p > 0, there exists £, > 0 such that for a.a. z € €2, the applica-
tion z — f(z,x) + £,2P~ ! is nondecreasing on [0, p].

= 0 uniformly for a.a. z € {;

Remark 1. Since we are interested on positive solutions and the above hy-
potheses concern the positive semiaxis Ry = [0,400), without any loss of
generality, we may assume that for a.a. z € Q f(z,2) = 0 for all z < 0. Hy-
potheses Hi (i), (¢4¢) imply that f(z,-) is (p — 1)-superlinear near +oo, more
precisely we have

lim f(z.2)

1 o1 = T uniformly for a.a. z € Q.
rT—+00 I

Note that we do not employ the usual in such cases AR-condition (see [4]).
Instead we use a weaker condition (see hypothesis Hj(447)) which incorporates
in our framework (p — 1)-superlinear perturbations with “slower” growth near
+o00. For example, the function

1
f(z) =aP™? [lnm + } forall z > 0
p

(for the sake of simplicity we have dropped the z-dependence), satisfies hy-
potheses Hy but fails to satisfy the AR-condition. So, Theorem 1 of [14]
does not apply to this function. If f(z,-) € CY(R) and f.(z,-) is bounded
on bounded sets, then hypothesis H;(v) is satisfied.

First we show that we cannot have a positive solution for problem (1),
for every g € L°(£2). To this end, let u € W,"”(€2) be a positive solution for
problem (1),. The nonlinear regularity theory and the nonlinear maximum
principle (see, for example, Gasinski and Papageorgiou [8, pp. 737-738]), im-
ply that v € int C. Recall that 44(p) € int Cy. So, invoking Lemma 3.3 of
Filippakis, Kristaly and Papageorgiou [6], we can find ¢;, c2 > 0 such that

cu <t (p) <cou

i1 (p)

Let R(ii1 (p), u) (=) = | Dia () (2) P~ Du(2)P~ (Du(=), D (%8 ) () .

From the nonlinear Picone identity of Allegretto and Huang [3], we have
0< [ R (), uyiz
_ P _ ul (p)
= D (p)Ily — ( Apu dz

(using the nonlinear Green S 1den‘51ty7 see Gasinski and Papageorgiou[[8], p. 211]

= x1(1’)||f‘1(1’)||5—/9[ (2)uP =t + f(z,u) + g(2)] ul(p) dz
= [ ) - ) mtoyras - [ s 0 iz _/ RRLIC

=1 <

< cg in Q. (8)
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We know that
9o = /Q [5\1(])) - 5(2)} a1 (p)Pdz > 0. (10)

As we already observed, hypotheses Hj (i), (i74) imply that

r— 400 ;[;P*l

= 400 uniformly for a.a z € Q. (11)

From (11) and hypothesis H; (i), we see that given £ > ¥ we can find
cs = c3(§) > 0 such that

f(z,x) = &P~ — ¢z for aa. 2 € Q, all x > 0. (12)

Returning to (9) and using (10) and (12), we have
P

L)~ (f“(p)) anp)dz <o — Ellin )L < 0
Q

u

(recall that & > ¥ and ||41(p)||, = 1). Since ﬁlT(m € L>®(Q), (see (8)), if
g(z) > c3 for almost all z € Q, we have a contradiction. This suggests that in
order to guarantee a positive solution of (1), we need to restrict ||g||oo-

Let g € L™(Q) and let e, : @ x R — R be the Carathéodory function
defined by

_ J9(z) if =<0
eg(”){ﬁ<z>mp—1+f<z,x>+g<z> >0 "

We set E4( fo 4(2,8)ds and consider the C'-functional ¢, :
W, P(Q) - R deﬁned by

1
@g(u) = =||Dul|h — / Ey(z,u)dz  for all u € W, (Q).
p Q

From Papageorgiou and Smyrlis [13], we have:

Proposition 3. If hypotheses Hy hold then for every g € L () the functional
g satisfies the C'-condition.

The next result is an immediate consequence of hypothesis, H;(i7) and
(13).

Proposition 4. If hypotheses Hy hold, u € intCy and g € L*°(Q)), then
g(tu) — —o0 as t — +oo.

The next proposition shows that the mountain pass geometry (see The-
orem 1) is satisfied by the functional ¢, for ||g||sc small.

Proposition 5. If hypotheses Hy hold, then there exist 6o > 0 and po = po(dg) >
0 such that

19]lce < d0 = @g(u) =mo >0 forall u€ Wy P(Q) with ||u|| = po.
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Proof. Hypotheses H; (i) and (iv) imply that given € > 0, we can find ¢; =
¢5(€) > 0 such that

F(z,2) < CaP 4+ csx” for a.a. z € Q, all 2 > 0. (14)
p

Then for every u € W, (), we have

1
oolu) = S1IDully ~ [ Eyfeu)d:
p Q

1 1
> Jipally -~ - [ p@ulPdz ~ [ Flewdz -~ colgllllu]
p P Ja Q

for some cg > 0 (see (13))

€
> [&o - 1 [|ull” = ezllull" = col|glloc||ul| for some ¢7 >0

A1(p)

SRR

(see Lemma 2 and (4))

Choosing € € (0, A(p)&), we obtain

5\1(10)50 L
pA1(p)

= [es — (erllul"™" + csllglloo Jul ' 7P) ][]l IP. (15)

Let v(t) = c7t" P + cg|g||oot! P for all t > 0. Evidently v € C1(0,00)
and since 1 < p < r, we have

pg(u) = csl|ull” — erlul]” = co|lgllool[ul] with cs =

Y(t) — +oo ast — 0 and t — +oo.
So, we can find ¢y € (0, +00) such that

v(to) = infy

= ’7’(t0) =0
= (r—plerty "7 = (p— Deellgllooto”
1
—1 r—1
ot = [ Bsll]
(r—per

Then v(tg) — 0" as ||g||oc — 0T. So, we can find dy > 0 such that

[|9]lc < 00 = Y(to) < cs
= @g(u) =mg > 0= py(0) for all [ju]| =ty = po.
This completes the proof. 0

These propositions lead to the following existence theorem for problem
(1)g when [|g||sc is small.

Theorem 6. If hypotheses Hy hold, then there exists 61 € (0,d¢] such that if
[|9]loc < 61, then problem (1), has at least one positive solution uy € intC.y.
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Proof. Propositions 3, 4 and 5 imply that when ||g||s < do, then the functional
(g satisfies the mountain pass geometry and the C-condition. So, we can apply
Theorem 1 (the mountain pass theorem) and find uy € Wy*(€) such that
@y (ug) = 0 and ¢g(0) =0 < mg < ¢g(uo)
= ug # 0.

In particular, let ¢ = 0 and let uy be the critical point of g obtained
above. We have

A(tg) = Ne, (). (16)
On (16) we act with —a; € W,"*(2). Then
[[Dug|[h = 0 (see (13) with g = 0)
= up = 0, g 75 0.

So, @g is a positive solution of problem (1)p (with ¢ = 0). Nonlinear
regularity theory, implies that 4y € C\{0}. Let p = ||to|| and let £, > 0 be
as postulated by hypothesis Hy(v). We have

—Aytio(2) + Eptio(2)7
= B(2)uo(2)P~ ! + f(z,u0(2)) + &tio(2)P~! = 0 ae. in Q
= Ayiig(2) < Eytip(2)P ™t ace. in Q
= 1p € int Cy (by the nonlinear maximum principle, see [8, p. 738]).

So, every positive solution of (1)¢ (with g = 0), belongs to int C;.

Now, let {gn}n>1 € L(Q) with ||gn|lec < do for all n > 1 and assume
that g, — 0 in L=(Q). Let {upn}n>1 € WyP(Q) be the corresponding critical
points of ¢, obtained in the beginning of the proof via the mountain pass
theorem (see Theorem 1). We have

—Apun(2) = e, (2,un(2)) ae. in Q, uplogg =0, n > L.
From Gasinski and Papageorgiou [8, p. 737], we can find ¢g > 0 such that
[|tn|loo < cg for all m > 1.
So, there exist o € (0,1) and ¢3¢ > 0 such that
un € Cy™(Q) and [[up || .o gy < c1o for all n > 1

(see Gasinski and Papageorgiou [8, p. 738]). Exploiting the compact embedding
of Cy*(92) into C'(Q), we may assume that
U, — @ in C§(Q), with @ solution of (1)o. (17)
Recall that for all n > 1 we have

Pg, (un) 2 mo >0 =g, (0)
(note that, by Proposition 5, since ||gn||co < d0 for allm €N, mg does not depend onn)
= @o() = mo > 0= ¢o(0) (see (17) and (13))
= 4 # 0, hence @ € int Cy as established earlier.
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From (17) it follows that
u, € int Cy for all n > ny.

Therefore, we can find d; € (0, do] such that for ||g|| < d1 problem (1),
has at least one positive solution ug € int C,.. O

We can improve the conclusion of the above theorem and produce a
second positive solution, provided g is nonzero and nonnegative and as before
has small L>°(€)-norm.

Theorem 7. If hypotheses Hy hold then there exists 61 € (0,d0] such that if
0 < ||g|loc < 91 and g = 0, then problem (1), has at least two positive solutions

ug,u € mtCy, ug < U, ug # .

Proof. From Theorem 6 we know that there exists 6; € (0,do] such that if
[lg]|cc < 61, then problem (1), has at least one positive solution u € int Cy.

Now we assume that 0 < ||g|lcc < 01 and g > 0. Let € (0,1 — ||9|]o0)
and let g* = g +n. Evidently ||¢g*||oc < 61 and so problem (1)4+ has a positive
solution u* € int C'.

*

Claim 1. We can find a positive solution ug € intCy. of (1)4 such that ug < u*.

We have
Aw’) = B(2)(u )P+ Np(w) + 9" = B(2) (WP~ + Ny(u") +g  (18)
in W (Q :W1’pQ*<1 1:1).
in (€) = Wy "(Q) P
We consider the following Carathéodory function
g(2) it <0
Vo(z,2) = B(2)zP ™ + f(2,2) + g(2) if 0<z<u(z) (19)
B)u* ()P~ + fz,u(2)) +g(2) i wi(2) <w.

We set Ty(z,2) = [ 74(z,5)ds and consider the C'-functional 7, :
WP (€2) — R defined by

1
Tg(u) = 5||Du||£ - /Q Ty (2, u)dz for all u € W, (Q).

It is clear from (19) that 7, is coercive. Also, it is sequentially weakly
lower semicontinuous. So, we can find ug € Wy* () such that

7o(ug) = inflr,(u) : u € Wy P(Q)]
= 7,(ug) =0
= A(ug) = N, (uo). (20)

In (20) first we act with —ug € Wy?(€). Then
[[Dug |5 = / 9(2)(—ug )dz < 0 (see (19) and recall g > 0)
Q

= ug = 0.
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Also, on (20) we act with (ug —u*)* € Wy"*(€2). Then
<A(u0), (ug — u*)+> = / vy (2, u0) (uo — u*) T dz
Q
_ / [B() (")~ + f(z,u") + g] (up — u*) " dz (see (19))
Q
< (A(u"), (ug —u*)T) (see (18)),
= (|Duo|P~2Dug — |Du*[P~?Du*, Dug — Du*)gydz <0
{uo>u*}
= {uo > u"}|y =0, hence uy < u”.
So, we have proved that
up € [0,u*] = {u € WyP(Q) : 0 < u(z) < u*(z) ae. in Q.

Then from (19) and (20) it follows that ug is a solution of (1), and since
g # 0, ug # 0. The nonlinear regularity theory and the nonlinear maximum
principle imply that ug € int C'y.

Using ug € int C'y. we introduce the following truncation of the reaction
of problem (1),:

B+ () 1 o) I w < uglz
ko) = { GOy Il it w()<a Y

We set K¢(z,x) = [ kq(2, s)ds and consider the C*-functional ¢, : Wy
(©2) — R defined by

Pg(u) = %HDUH;; - /Q Ky (z,u)dz for all u € WyP(Q).
If [ug) = {u € WyP() : ug(2) < u(z) for almost all z € Q}, then from
(13)) we see that
Vgltug) = Pliue) + & for some £* € R. (22)
From (22) and Proposition 3 it follows that
14 satisfies the C-condition. (23)
Moreover, Proposition 4 implies that for any u € int C'y, we have
Pg(tu) — —o0 as t — +o00. (24)
Claim 2. We have Ky, C [ug) = {u € WoP(Q) s up(z) < u(z) ae. in Q)
Indeed, let u € Ky, . Then

A(u) = N, (u). (25)
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On (25) we act with (ug —u)* € Wy"*(€2). We have
<A(u), (uo — u)+> - /ng(z,u)(uo —u)tdz
_ /Q [B)ah ™ + £(2,u0) + 9(2)] (w0 — )z
- <A(u0), (uo — u)+> (since wo is a solution of (1))

= (|Duo|p_2Duo — |Du|" "2 Du, Dug — Du) dz=0
{uo>u} Y
= [{uo > u}|5y =0, hence ug < u.

This proves Claim 2.
By virtue of Claim 2 every element of K, is a positive solution of (1),.
Arguing by contradiction, suppose Ky, = {ug} (see (21)).

Claim 3. ug € intCy is a local minimizer of the functional 1.

Recall that 0 < up < u* and consider the following truncation of k4 (z, -):

. ~ f ky(z, 1) if z < u*(z)
() = {00 e oo 26)

This is a Caratheodory function. We set K,(z,z) fo 4(2,5)ds and
consider the C*-functional z/Jg : WiP(Q) — R defined by

g(u) = %HDUH; - /Q Ky (2, u)dz for all u € W, *().

Note that zZA)g is coercive (see (26)) and sequentially weakly lower semi-
continuous. So, we can find @ € W, () such that

By@) = inf [dy(u) s u € Wy (Q)]
= (@) =
= A(@I) = N, (7). (27)
On (27), first we can act with (ug — @) € W, *(2) and as before using

(21) and (26), we obtain uy < @. Then on (27) we act with (a—u*)T € W, (Q)
and using (18), (21), (26), we show that a < u*. Therefore

i € [uo,u*] = {u € WyP(Q) : up(z) < u(z) < u(z) ae. in Q}
= U = ug (see (21), (26) and recall Ky, = {uo}).

Let p = [|uo||oo and let £, > 0 be as postulated by hypothesis Hi(v).
Then

—Apup(z) + fpuo(z)p_l
= B(2)uo ()P~ + f(z,u0(2)) + 9(2) + Epuo(2)P~
< B ()P + [z, 0" (2) + g7 (2) + Gu” ()77
(see Hy(v) and recall that ug < u*, g < g%)
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= —Ayu*(z) + &ut(2)P 7 ae. in O
= u" —up € int C; (see Arcoya and Ruiz [5, Proposition 2.6]).

Also, recall that ug € int C'y. Since 9|+ = ¢g|[o,u*} (see (21) and
(26)) it follows that ug € int C is a local C&(€2)-minimizer of ¢,. Then from
Garcia Azorero, Manfredi and Peral Alonso [7, Theorem 1.1], it follows that
up € int C4 is a local Wol’p(Q)—minimizer of 14. This proves Claim 3.

By virtue of Claim 3, we can find p € (0, 1) small such that

Pg(uo) <inf [1hy(u) : [fu — ol = p] = np (28)
(see Aizicovici, Papageorgiou and Staicu [1] (proof of Proposition 29)). From
(23), (24) and (28), we see that we can apply Theorem 1 (the mountain pass
theorem). So, there exists @& € W, **(2) such that

i€ Ky, and 1, < (). (29)
From Claim 2, (28) and (29) it follows that
uo < 4, @ # up and 4 € int C solves problem ((1)4) (see (21)).

This completes the proof. O

Remark 2. The results of this section can be extended to problems driven by
a nonhomogeneous differential operator diva(Du) with a : RY — RY as in
Papageorgiou and Radulescu [12] (see also Papageorgiou and Radulescu [11]).
For the sake of simplicity in the presentation, we have chosen to work with the
p-Laplacian.

4. Solutions for problem (2),

In this section we deal with problem (2).
The hypotheses on the data of problem (2), are the following:
H(3): B eL™(Q) with 7 > &,
Hs : f: QxR — Ris a measurable function such that for a.a. z €
f(z,0) =0, f(z,-) € CY(R) and
() |fi(z,2)] < a(2)(1 + |z|"72) for a.a. z € Q, all z € R, with a € L>®(Q)4,
2 <r <2y
(i) if F(z,2) = [y f(z,s)ds, then

F
lim (2,2)
r—+oo xz

= 400 uniformly for a.a. z €

(iii) there exist 79 > 0 and ¥ € (max {1, (r — 2)5'},2*) such that

uniformly for a.a. z € {;

; — — i L&) s .
(iv) 0= f1(z,0) = $11L% +2= uniformly for a.a. z € Q;
(v) there exists § > 0 such that f(z,2)x > 0 for a.a. z € Q, all x| <0
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Theorem 8. If hypotheses Hy hold and \ > 5\1(2), then problem (2)x admits
at least one nontrivial solution ug € C3(Q).

Proof. Let k > 1 such that \ € [;\k(Q),;\kH(Q)). We set

_ k. N _ —_—
H,= ®E(\(2) and H, = H = @ E(\(2)).
i=1 i>k+1
We have the following orthogonal direct sum decomposition
By virtue of hypotheses Ha(iv), (v), given € > 0, we can find d; € (0, 0]
such that
0< F(z,z) < g:vz for a.a. z € Q, all |z| < d;. (30)
Since Hj, is finite dimensional, all norms are equivalent and so we can
find pp > 0 such that
l[u]| < po = ||ullee < 81 for all u € Hy,. (31)
Let ) : H(2) — R be the energy functional for problem (2), defined
by
1 Ay e 1
oa(u) = iT(u) - §||u\|2 — | F(z,u)dz for all u € Hy()
Q
with 7(u) = | Dul|3+ [, B(z)u?dz for all u € H} (Q). Evidently o) € C?(H{(Q2)).
For u € Hy, with ||u|| < po, we have

1 A
pau) < 57(u) — §||u||§ (see (31))

< 0 (see (7) and recall that A < Ak(2)).
From (30) and hypothesis H(7), we have

F(z,z) < %:132 + c11|x|” for a.a. z € Q, all x € R, some c¢11 = ¢11(€) > 0.

(32)
For u € I;Tk, we have
1 Ate
pa(w) 2 5r(u) = == Ilullz — enllull;  (see (32)).

Choose € > 0 small such that A€ < Ap11(2) (recall e P\k(Q), 5\k+1(2))).

Then we have
ox(u) = cial|ul|? — ci3]|ul|” for some 12, c13 > 0 (see (7)). (33)

Since r > 2, from (33) it follows that we can find p € (0, pg] small such
that

wx(u) =0 for all u € Hj, with [lul| < p.
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So, we have proved that ¢, has a local linking at the origin with respect
to the orthogonal direct sum decomposition H0 Q) = H, o Hk Since ¢y €
C?(HL(9)), from Su [16, Proposition 2.3], we have

C’k(go)\, 0) = 51@,de with dk = dlmﬁk (34)
On the other hand, from Aizicovici, Papageorgiou and Staicu [2], we have
Cr(ox,00) =0 for all k& > 0. (35)

From (34) and (35) it follows that we can find ug € K, \{0}. Then ug
solves problem (2), and from the regularity theory (see Struwe [15, p. 218]),
we have that ug € Hg (). O

If we strengthen hypothesis Ha(v), we can improve the conclusion of
Theorem 8 and provide more information about the solution uy.

The new hypotheses on the perturbation f(z,z) are the following:

H;: f: QxR — R is a measurable function such that for a.a. z € ,
f(2,0) =0, f(z,-) € CL(R), hypotheses H3(i) — (iv) are the same as the
corresponding hypotheses Hs (i) — (iv) and
(v) f(z,z)x > 0 for a.a. z € Q, all x € R and the inequality is strict for all
(z,z) € Qo x R with [Q|ny > 0 and z # 0.

Theorem 9. If hypotheses Hs hold and X > A\1(2), then problem (2), admits a
nodal solution ug € C3(Q).

Proof. From Theorem 8 we know that problem (2), has a nontrivial solution
ug € H(Q). Suppose that ug has constant sign and to fix things assume that
ug = 0. We have

A(u) + B(z)u = A+ Ny(u). (36)
On (36) we act with 44(2, ) € int C. Then

(A(u) + Bu,u1(2,8)) = /\/Quﬂl(Q,ﬁ)dqu/ f(z,u)uq(2, 8)dz
:>(5\1(2,ﬁ)—)\)/9uu1( dzf/f z,u)i1(2, B)dz

Note that (A (2, A) Joutin(2,8)dz <0, while [, f(z,u)i1(2, 5)dz >
0 (see Hs(v) and recall that we have assumed that v > 0). So, we have a
contradiction and this proves that ug is nodal. O

Remark 3. Our results here answer the question posed in Rédulescu [14] and
show that hypothesis (8) in [14] is not necessary. Finally we stress that our
approach here differs from that of [8].

Acknowledgements

The authors wish to thank two knowledgeable referees for their comments
and remarks that helped to improve the paper. V. Radulescu has been par-
tially supported by a grant of the Romanian National Authority for Scientific
Research, CNCS-UEFISCDI, project number PN-II-ID-PCE-2011-3-0195.



42 Page 16 of 17 N. S. Papageorgiou and V. D. Radulescu NoDEA

References

[1] Aizicovici, S.; Papageoregiou, N.S.; Staicu, V.: Degree Theory for Operators of
Monotone Type and Nonlinear Ellliptic Equations with Inequality Constraints.
Memoirs Am. Math. Soc. 196, 915, (2008)

[2] Aizicovici, S., Papageorgiou, N.S., Staicu, V.: On a p-superlinear Neumann p-
Laplacian equation. Topol. Methods Nonlinear Anal. 34, 111-139 (2009)

[3] Allegretto, W., Huang, Y.X.: A Picone’s identity for the p-Laplacian and appli-
cations. Nonlinear Anal. 32, 819-830 (1998)

[4] Ambrosetti, A., Rabinowitz, P.: Dual variational methods in critical point theory
and applications. J. Funct. Anal. 14, 349-381 (1973)

[5] Arcoya, D., Ruiz, D.: The Ambrosetti-Prodi problem for the p-Laplacian oper-
ator. Commun. Partial Differ. Equ. 31, 849-865 (2006)

[6] Filippakis, M., Kristaly, A., Papageorgiou, N.S.: Existence of live nonzero solu-
tions with exact sign for a p-Laplacian equation. Discr. Cont. Dyn. Syst. 24, 405—
440 (2009)

[7] Garcia Azorero, J., Manfredi, J., Peral Alonso, I.: Sobolev versus Holder local
minimizers and global multiplicity for some quasilinear elliptic equations. Comm.
Contemp. Math. 2, 385-404 (2000)

[8] Gasinki, L., Papageorgiou, N.S.: Nonlinear Analysis. Chapman & Hall, Boca
Raton (2006)

[9] Kyritsi, S., Papageorgiou, N.S.: Multiple solutions for superlinear Dirichlet prob-
lems with an indefinite potential. Ann. Mat. Pura Appl. 192, 297-315 (2013)

[10] Papageorgiou, N.S., Kyritsi, S.: Handbook of Applied Analysis. Springer, New
York (2009)

[11] Papageorgiou, N.S., Radulescu, V.: Qualitative phenomena for some classes
of quasilinear elliptic equations with multiple resonance. Appl. Math. Op-
tim. 69, 393-430 (2014)

[12] Papageorgiou, N.S., R&dulescu, V.: Solutions with sign information for nonlinear
nonhomogeneous elliptic equations. Topol. Methods Nonlinear Anal. 45, 575~
600 (2015)

[13] Papageorgiou, N.S., Smyrlis, G.: Positive solutions for nonlinear Neumann prob-
lems with concave and convex terms. Positivity 16, 271-296 (2012)

[14] Radulescu, V.: Noncoercive elliptic equations with subcritical growth. Discr.
Cont. Dyn. Syst. Ser. S 5, 845-856 (2012)

[15] Struwe, M.: Variational Methods. Springer, Berlin (1990)

[16] Su, J.: Semilinear elliptic boundary value problems with double resonance be-
tween two consecutive eigenvalues. Nonlinear Anal. 48, 881-895 (2002)



NoDEA On noncoercive elliptic problems Page 17 of 17 42

Nikolaos S. Papageorgiou
Department of Mathematics
National Technical University
Zografou Campus

15780 Athens

Greece

e-mail: npapg@math.ntua.gr

Vicentiu D. Radulescu

Department of Mathematics, Faculty of Sciences
King Abdulaziz University

P.O. Box 80203

Jidda 21589

Saudi Arabia

Vicentiu D. Radulescu

Institute of Mathematics “Simion Stoilow” of the Romanian Academy
014700 Bucharest

Romania

e-mail: vicentiu.radulescu@imar.ro

Received: 11 June 2015.
Accepted: 8 June 2016.



	On noncoercive elliptic problems
	Abstract
	1. Introduction
	2. Mathematical background
	3. Solutions for problem (1)g
	4. Solutions for problem (2)λ
	Acknowledgements
	References




