
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright


Author's personal copy

Nonlinear Analysis 74 (2011) 4785–4795

Contents lists available at ScienceDirect

Nonlinear Analysis

journal homepage: www.elsevier.com/locate/na

Existence of three solutions for a non-homogeneous Neumann problem
through Orlicz–Sobolev spaces
Gabriele Bonanno a,∗, Giovanni Molica Bisci b, Vicenţiu Rădulescu c,d

a Department of Science for Engineering and Architecture (Mathematics Section), Engineering Faculty, University of Messina, 98166 - Messina, Italy
b Dipartimento P.A.U., Università degli Studi Mediterranea di Reggio Calabria, Salita Melissari - Feo di Vito, 89100 Reggio Calabria, Italy
c Institute of Mathematics ‘‘Simion Stoilow’’ of the Romanian Academy, 014700 Bucharest, Romania
d Department of Mathematics, University of Craiova, 200585 Craiova, Romania

a r t i c l e i n f o

Article history:
Received 14 October 2010
Accepted 22 April 2011
Communicated by Ravi Agarwal

MSC:
primary 58E05
secondary 35D05
35J60
35J70
46N20
58J05

Keywords:
Critical point
Weak solutions
Non-homogeneous Neumann problem

a b s t r a c t

The aim of this paper is to establish a multiplicity result for an eigenvalue non-
homogeneous Neumann problem which involves a nonlinearity fulfilling a nonstandard
growth condition. Precisely, a recent critical points result for differentiable functionals
is exploited in order to prove the existence of a determined open interval of positive
eigenvalues for which the problem admits at least three weak solutions in an appropriate
Orlicz–Sobolev space.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper, we study the following non-homogeneous Neumann problem
−div(α(|∇u|)∇u) + α(|u|)u = λf (x, u) in Ω,

∂u
∂ν

= 0 on ∂Ω,
(N f

α,λ)

where Ω is a bounded domain in RN (N ≥ 3) with smooth boundary ∂Ω, ν is the outer unit normal to ∂Ω , while
f : Ω × R → R is a Carathéodory function, λ is a positive parameter and α : (0, ∞) → R is such that the mapping
ϕ : R → R defined by

ϕ(t) =


α(|t|)t, for t ≠ 0
0, for t = 0,

is an odd, strictly increasing homeomorphism from R onto R.

∗ Corresponding author.
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The interest in analyzing these kinds of problems is motivated by some recent advances in the study of eigenvalue
problems involving non-homogeneous operators in the divergence form. The study of such problems has been stimulated
by recent advances in elasticity (see [1]), fluid dynamics (see [2–4]), calculus of variations and differential equations
with nonstandard growth (see [5–8]). Another relevant application which uses operators of this type can be found in the
framework of image processing. In that context we refer to the paper by Chen et al. [9]. In [9], the authors study a functional
with variable exponent, which provides a model for image restoration. The diffusion resulting from the proposed model is a
combination of Gaussian smoothing and regularization based on total variation. More exactly, the following adaptivemodel
was proposed

min
I=u+v,u∈BV∩L2(Ω)

∫
Ω

ϕ(x, ∇u) dx + λ · ‖u‖2
L2(Ω)

, (1)

where Ω ⊂ R2 is an open domain,

ϕ(x, r) =


1

p(x)
|r|p(x), for |r| ≤ β

|r| −
β · p(x) − βp(x)

p(x)
, for |r| > β,

where β > 0 is fixed and 1 < α ≤ p(x) ≤ 2. The function p(x) involved here depends on the location x in the model. For
instance it can be used

p(x) = 1 +
1

1 + k|∇Gσ ∗ I|2
,

where Gσ (x) =
1
σ
exp(−|x|2/(4σ 2)) is the Gaussian filter and k > 0 and σ > 0 are fixed parameters (according to the

notation in [9]). For problem (1) Chen, Levine and Rao establish the existence and uniqueness of the solution and the long-
time behavior of the associated flow of the proposedmodel. The effectiveness of themodel in image restoration is illustrated
by some experimental results included in the paper.

Our approach in this paper relies on adequate variational methods in Orlicz–Sobolev spaces. Such spaces originated with
Nakano [10] and were developed by Musielak and Orlicz [11]. Many properties of Sobolev spaces have been extended to
Orlicz–Sobolev spaces, mainly by Dankert [12], Donaldson and Trudinger [13], and O’Neill [14] (see also [15] for an excellent
account of those works). Orlicz–Sobolev spaces have been used in the last decades to model various phenomena. This kind
of spaces play a significant role in many fields of mathematics, such as approximation theory, partial differential equations,
calculus of variations, nonlinear potential theory, the theory of quasiconformal mappings, differential geometry, geometric
function theory, and probability theory. These spaces consists of functions that have weak derivatives and satisfy certain
integrability conditions. The first general existence result using the theory of monotone operators in Orlicz–Sobolev spaces
were in [16–18]. Recentworks that put the problem into this framework are contained in [19,20,6,21–25,7,8]. Concerning the
boundary value problems with Neumann boundary condition we point out the existence and multiplicity results obtained
in [26] and, very recently, in [27].

The aim of this paper is to establish a precise interval, of values of the parameter λ, for which the eigenvalue non-
homogeneous Neumann problem (N f

α,λ) admits at least three weak solutions. The precise notion of weak solutions for the
problem (N f

α,λ) will be given in Section 2.
As an example we present a special case of our results; see Example 2.1 and Corollary 3.1.

Theorem 1.1. Let p > N + 1 and g : R → R be a non-negative (not identically zero) continuous function. Assume that

lim
t→0+

g(t)
tp−1

= 0 and lim
|t|→∞

g(t)
|t|s

= 0, (h∞

0 )

for some positive constant s < p − 2. Further, let h : Ω → R be a bounded measurable and positive function.
Then, for each

λ >
meas(Ω)

‖h‖L1(Ω)

inf
δ∈S

Φ(δ) δ

0 g(t) dt
,

where

Φ(δ) :=

∫ δ

0

t|t|p−2

log(1 + |t|)
dt and S :=


δ > 0 :

∫ δ

0
g(t) dt > 0


,



Author's personal copy

G. Bonanno et al. / Nonlinear Analysis 74 (2011) 4785–4795 4787

the following non-homogeneous Neumann problem
−div


|∇u|p−2

log(1 + |∇u|)
∇u


+

|u|p−2

log(1 + |u|)
u = λh(x)g(u) in Ω,

∂u
∂ν

= 0 on ∂Ω,

(Phg
λ )

admits at least two non-trivial weak solutions in W 1LΦ(Ω).

For the p-Laplacian operator (homogeneous case) there is a wide literature based on the abstract framework of the
seminal papers [28–30] that deal with multiplicity results for such a problem in the case p > N . We refer, for instance,
to [31–36] and references therein for details. We point out that our result is also new in this setting; see Remark 3.4 and
Theorem 3.3.

The main tool is a critical point theorem that we recall here in a convenient form. This result has been obtained in [37]
and it is a more precise version of Theorem 3.2 of [38].

Theorem 1.2. Let X be a reflexive real Banach space, J : X → R be a coercive, continuously Gâteaux differentiable and
sequentially weakly lower semicontinuous functional whose Gâteaux derivative admits a continuous inverse on X∗, I : X → R
be a continuously Gâteaux differentiable functional whose Gâteaux derivative is compact such that

J(0) = I(0) = 0.

Assume that there exist r > 0 and x̄ ∈ X, with r < J(x̄), such that:

(a1)
supJ(x)≤r I(x)

r < I(x̄)
J(x̄) ;

(a2) for each λ ∈ Λr :=


J(x̄)
I(x̄) ,

r
supJ(x)≤r I(x)


the functional gλ := J − λI is coercive.

Then, for each λ ∈ Λr , the functional gλ has at least three distinct critical points in X.

When we say that the derivative of J admits a continuous inverse on X∗ wemean that there exists a continuous operator
T : X∗

→ X such that T (J ′(x)) = x for all x ∈ X .
The plan of the paper is as follows. In the next section we introduce our abstract framework. The last section is devoted

to our multiplicity result.

2. Abstract framework

Let ϕ : R → R as in Introduction and consider the functions

Φ(t) =

∫ t

0
ϕ(s) ds, Φ⋆(t) =

∫ t

0
ϕ−1(s) ds for all t ∈ R.

We observe that Φ is a Young function, that is, Φ(0) = 0, Φ is convex, and

lim
t→∞

Φ(t) = +∞.

Furthermore, since Φ(t) = 0 if and only if t = 0,

lim
t→0

Φ(t)
t

= 0 and lim
t→∞

Φ(t)
t

= +∞,

then Φ is called an N-function. The function Φ⋆ is called the complementary function of Φ and it satisfies

Φ⋆(t) = sup{st − Φ(s); s ≥ 0}, for all t ≥ 0.

We observe that Φ⋆ is also an N-function and the following Young’s inequality holds true:

st ≤ Φ(s) + Φ⋆(t), for all s, t ≥ 0.

Assume that Φ satisfying the following structural hypotheses

1 < lim inf
t→∞

tϕ(t)
Φ(t)

≤ p0 := sup
t>0

tϕ(t)
Φ(t)

< ∞; (Φ0)

N < p0 := inf
t>0

tϕ(t)
Φ(t)

< lim inf
t→∞

log(Φ(t))
log(t)

. (Φ1)

Further, we also assume that the function

[0, ∞) ∋ t → Φ(
√
t) (Φ2)

is convex.
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Example 2.1. Let p > N + 1. Define

ϕ(t) =
|t|p−2

log(1 + |t|)
t for t ≠ 0, and ϕ(0) = 0,

and

Φ(t) =

∫ t

0
ϕ(s) ds.

By [20, Example 3, p. 243] one has

p0 = p − 1 < p0 = p = lim inf
t→∞

log(Φ(t))
log(t)

.

Thus, conditions (Φ0) and (Φ1) are verified. Further, by direct computations, the function [0, ∞) ∋ t → Φ(
√
t) is convex.

Hence, also condition (Φ2) is fulfilled.

The Orlicz space LΦ(Ω) defined by the N-function Φ (see for instance [15,19]) is the space of measurable functions
u : Ω → R such that

‖u‖LΦ := sup
∫

Ω

u(x)v(x) dx;
∫

Ω

Φ⋆(|v(x)|) dx ≤ 1


< ∞.

Then (LΦ(Ω), ‖ · ‖LΦ ) is a Banach space whose norm is equivalent to the Luxemburg norm

‖u‖Φ := inf

k > 0;

∫
Ω

Φ


u(x)
k


dx ≤ 1


.

We denote byW 1LΦ(Ω) the corresponding Orlicz–Sobolev space for problem (N f
α,λ), defined by

W 1LΦ(Ω) =


u ∈ LΦ(Ω);

∂u
∂xi

∈ LΦ(Ω), i = 1, . . . ,N


.

This is a Banach space with respect to the norm
‖u‖1,Φ = ‖ |∇u| ‖Φ + ‖u‖Φ,

see [15,19,17]. Further, one has

Lemma 2.1. On W 1LΦ(Ω) the norms

‖u‖1,Φ = ‖ |∇u| ‖Φ + ‖u‖Φ,

‖u‖2,Φ = max{‖ |∇u| ‖Φ , ‖u‖Φ},

‖u‖ = inf

µ > 0;

∫
Ω

[
Φ


|u(x)|

µ


+ Φ


|∇u(x)|

µ

]
dx ≤ 1


,

are equivalent. More precisely, for every u ∈ W 1LΦ(Ω) we have

‖u‖ ≤ 2‖u‖2,Φ ≤ 2‖u‖1,Φ ≤ 4‖u‖.

Moreover the following relations hold true

Lemma 2.2. Let u ∈ W 1LΦ(Ω). Then∫
Ω

[Φ(|u(x)|) + Φ(|∇u(x)|)] dx ≥ ‖u‖p0 , if ‖u‖ > 1;∫
Ω

[Φ(|u(x)|) + Φ(|∇u(x)|)] dx ≥ ‖u‖p0 , if ‖u‖ < 1.

For a proof of the previous two results see, respectively, Lemmas 2.2 and 2.3 of the paper [27].
These spaces generalize the usual spaces Lp(Ω) and W 1,p(Ω), in which the role played by the convex mapping t → |t|p/p
is assumed by a more general convex function Φ(t).
Moreover, we say that u ∈ W 1LΦ(Ω) is a weak solution for problem (N f

α,λ) if∫
Ω

α(|∇u(x)|)∇u(x) · ∇v(x) dx +

∫
Ω

α(|u(x)|)u(x)v(x) dx − λ

∫
Ω

f (x, u(x))v(x) dx = 0,

for every v ∈ W 1LΦ(Ω).
Finally, the following lemma will be useful in what follows.
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Lemma 2.3. Let u ∈ W 1LΦ(Ω) and assume that∫
Ω

[Φ(|u(x)|) + Φ(|∇u(x)|)] dx ≤ r, (2)

for some 0 < r < 1. Then, one has, ‖u‖ < 1.

Proof. By definition,

‖u‖ = inf

µ > 0;

∫
Ω

[
Φ


|u|
µ


+ Φ


|∇u|
µ

]
dx ≤ 1


,

for every u ∈ W 1LΦ(Ω). Then, if (2) holds, it follows that ‖u‖ ≤ 1.
Hence, the result is attained proving that if u ∈ W 1LΦ(Ω) such that (2) holds, then ‖u‖ ≠ 1. We first observe that

Φ(t) ≥ τ p0Φ(t/τ), ∀t > 0 and τ ∈]0, 1[. (3)

Arguing by contradiction, assume that there existsu ∈ W 1LΦ(Ω)with‖u‖ = 1 and such that (2) holds. Let us take ξ ∈ (0, 1).
Using relation (3) we have∫

Ω

[Φ(|u(x)|) + Φ(|∇u(x)|)] dx ≥ ξ p0
∫

Ω

[Φ(|v(x)|) + Φ(|∇v(x)|)] dx


, (4)

where v(x) := u(x)/ξ , for all x ∈ Ω . We have ‖v‖ = 1/ξ > 1. By the first inequality in Lemma 2.2 we deduce that∫
Ω

[Φ(|v(x)|) + Φ(|∇v(x)|)] dx ≥ ‖v‖
p0 > 1. (5)

Relations (4) and (5) show that∫
Ω

[Φ(|u(x)|) + Φ(|∇u(x)|)] dx ≥ ξ p0 .

Letting ξ ↗ 1 in the above inequality we obtain∫
Ω

[Φ(|u(x)|) + Φ(|∇u(x)|)] dx ≥ 1, (6)

that contradicts condition (2). The proof is complete. �

3. Main result

Here and in what follows ‘‘meas(Ω)’’ denotes the Lebesgue measure of the set Ω . From hypothesis (Φ1), by Lemma D.2
in [19] it follows that W 1LΦ(Ω) is continuously embedded in W 1,p0(Ω). On the other hand, since we assume p0 > N we
deduce thatW 1,p0(Ω) is compactly embedded in C0(Ω). Thus, one has thatW 1LΦ(Ω) is compactly embedded in C0(Ω) and
there exists a constant c > 0 such that

‖u‖∞ ≤ c‖u‖1,Φ, ∀u ∈ W 1LΦ(Ω), (7)

where ‖u‖∞ := supx∈Ω |u(x)|. A direct estimation of the constant c remains an open question.
Now, assuming that the growth of f (x, ·) is (p0 − 1)-sublinear at infinity the main result reads as follows

Theorem 3.1. Let Φ be a Young function satisfying the structural hypotheses (Φ0)–(Φ2) and let f : Ω × R → R be a
Carathéodory function such that

(h1) There exist two positive constants γ and δ, with γ < 2c such that

Φ(δ) > κΦ
Ωγ p0 ,

and 
Ω
max
|ξ |≤γ

F(x, ξ) dx

γ p0
< κΦ

Ω


Ω
F(x, δ) dx
Φ(δ)

,

where κΦ
Ω :=

1
(2c)p0meas(Ω)

and c is defined in (7);

(h2) There exist c0 > 0 and 0 < s < p0 − 1 such that |f (x, t)| ≤ c0(1 + |t|s) for every (x, t) ∈ Ω × R.
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Then, for each parameter λ belonging to

Λ(γ ,δ) :=

Φ(δ)meas(Ω)
Ω
F(x, δ) dx

,
γ p0

(2c)p0


Ω
max
|ξ |≤γ

F(x, ξ) dx

 ,

the problem (N f
α,λ) possesses at least three distinct weak solutions in W 1LΦ(Ω).

Proof. Let us putX := W 1LΦ(Ω). Hypothesis (Φ0) is equivalentwith the fact thatΦ andΦ⋆ both satisfy the∆2-condition (at
infinity), see [15, p. 232] and [19]. In particular, both (Φ, Ω) and (Φ⋆, Ω) are ∆-regular, see [15, p. 232]. Consequently, the
spaces LΦ(Ω) andW 1LΦ(Ω) are separable, reflexive Banach spaces, see [15, p. 241 and p. 247]. Now, define the functionals
J, I : X → R by

J(u) =

∫
Ω

(Φ(|∇u(x)|) + Φ(|u(x)|)) dx and I(u) =

∫
Ω

F(x, u(x)) dx,

where F(x, ξ) :=
 ξ

0 f (x, t) dt for every (x, ξ) ∈ Ω × R and put

gλ(u) := J(u) − λI(u), u ∈ X .

The functionals J and I satisfy the regularity assumptions of Theorem 1.2. Indeed, similar arguments as those used in
[21, Lemma 3.4] and [19, Lemma 2.1] imply that J, I ∈ C1(X, R) with the derivatives given by

⟨J ′(u), v⟩ =

∫
Ω

α(|∇u(x)|)∇u(x) · ∇v(x) dx +

∫
Ω

α(|u(x)|)u(x)v(x) dx,

⟨I ′(u), v⟩ =

∫
Ω

f (x, u(x))v(x) dx,

for any u, v ∈ X .
Moreover, owing that Φ is convex, it follows that J is a convex functional, hence one has that J is sequentially weakly lower
semicontinuous. On the other hand the fact that X is compactly embedded into C0(Ω) implies that the operator I ′ : X → X⋆

is compact.
Let us observe that u ∈ X is a weak solution of problem (N f

α,λ) if u is a critical point of the functional gλ. Hence, we can seek
for weak solutions of problem (N f

α,λ) by applying Theorem 1.2.
Now, we observe that the technical assumption (Φ2) ensures a Clarkson type inequality for the function Φ , i.e.

1
2

[∫
Ω

Φ(|∇u|)dx +

∫
Ω

Φ(|∇v|)dx
]

≥

∫
Ω

Φ

∇u + ∇v

2

 dx +

∫
Ω

Φ

∇u − ∇v

2

 dx,

for any u, v ∈ W 1LΦ(Ω). From this, it follows that the functional J ′ : W 1LΦ(Ω) → (W 1LΦ(Ω))∗ has a continuous inverse
operator on (W 1LΦ(Ω))∗, where (W 1LΦ(Ω))∗ denotes the dual space of (W 1LΦ(Ω)). See, for instance, Lemma 3.2 of [27].
Now, it is clear that I(0) = J(0) = 0 and J(u) ≥ 0 for every u ∈ X . At this point one may choose w := δ ∈ X and
r := γ p0/(2c)p

0
. From (h1), we have

J(w) =

∫
Ω

(Φ(|∇w(x)|) + Φ(|w(x)|)) dx =

∫
Ω

Φ(δ) dx = Φ(δ)meas(Ω) >
γ p0

(2c)p0
.

By Lemmas 2.3 and 2.2, one has

{u ∈ W 1LΦ(Ω) : J(u) ≤ r} ⊆


u ∈ W 1LΦ(Ω) : ‖u‖ ≤

γ

2c


.

Moreover, for every u ∈ W 1LΦ(Ω), due to (7) and Lemma 2.1, we have

|u(x)| ≤ ‖u‖∞ ≤ c‖u‖1,Φ ≤ 2c‖u‖ ≤ γ , ∀x ∈ Ω.

Hence
u ∈ W 1LΦ(Ω) : ‖u‖ ≤

γ

2c


⊆

u ∈ W 1LΦ(Ω) : ‖u‖∞ ≤ γ


,

and one has

sup
u∈J−1(]−∞,r])

I(u)

r
≤ (2c)p

0


Ω
max
|ξ |≤γ

F(x, ξ) dx

γ p0
.
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Moreover, owing that

I(w)

J(w)
=


Ω
F(x, δ) dx

meas(Ω)Φ(δ)
,

from (h1) it follows that

sup
J(u)≤r

I(u)

r
<

I(w)

J(w)
,

i.e. condition (a1) is verified.
Finally, we prove that for every λ > 0, the functional gλ is coercive. Indeed, by Lemma 2.2 we deduce that for any u ∈ X
with ‖u‖ > 1 we have J(u) ≥ ‖u‖p0 . Hence J is coercive. On the other hand, by (h2), one has that there exists a positive
constant c1 such that∫

Ω

F(x, u(x)) dx ≤ c1(‖u‖∞ + ‖u‖s+1
∞

), ∀u ∈ X .

Since X is compactly embedded into C0(Ω) and, due to Lemma 2.1, it follows that there exists c2 > 0 such that

gλ(u) = J(u) − λI(u) ≥ ‖u‖p0 − λc2(‖u‖ + ‖u‖s+1),

for every u ∈ X and ‖u‖ > 1.
Since 1 < s + 1 < p0 it follows that

lim
‖u‖→+∞

gλ(u) = +∞, ∀λ > 0.

Hence gλ is a coercive functional for every positive parameter, in particular, for every λ ∈ Λ(γ ,δ) ⊆


J(w)

I(w)
, r

supJ(u)≤r I(u)


. Then,

also condition (a2) holds. Since all the assumptions of Theorem 1.2 are satisfied. Then, for each λ ∈ Λ(γ ,δ), the functional gλ

has at least three distinct critical points that are weak solutions of the problem (N f
α,λ). The proof is complete. �

Remark 3.1. In our setting, as pointed out in [27], the presence of the eigenvalue λ > 0 in (N f
α,λ) is indispensable. Moreover,

we point out that in the cited paper, the existence of a localized interval of parameters for which the problem (N f
α,λ) admits

at least two non-trivial solutions is established under the more restrictive assumption that the nonlinearity f is such that
f (x, t) t ≤ 0, for every x ∈ Ω and t ∈ [−δ, δ], for some positive constant δ. From this, clearly, f (x, 0) = 0 for every x ∈ Ω .
Thus, under this hypothesis, u = 0 can always considered a solution of problem (N f

α,λ).

A particular case of Theorem 3.1 is the following one.

Theorem 3.2. Let Φ be a Young function satisfying the structural hypotheses (Φ0)–(Φ2) and let h : Ω → R be a bounded
measurable and positive function. Further, let g : R → R be a continuous and non-negative function. Set G(ξ) :=

 ξ

0 g(t) dt
and assume that the following conditions hold
(h1) There exist two positive constants γ and δ, with γ < 2c such that

Φ(δ) > κΦ
Ωγ p0 ,

and
G(γ )

γ p0
< κΦ

Ω

G(δ)

Φ(δ)
,

where κΦ
Ω :=

1
(2c)p0meas(Ω)

and c is defined in (7);
(h2) There exist c0 > 0 and 0 < s < p0 − 1 such that g(t) ≤ c0(1 + |t|s) for every t ∈ R.

Then, for each parameter λ belonging to

Λ(γ ,δ) :=


Φ(δ)meas(Ω)

‖h‖L1(Ω)G(δ)
,

γ p0

(2c)p0‖h‖L1(Ω)G(γ )


,

the following problem
−div(α(|∇u|)∇u) + α(|u|)u = λh(x)g(u) in Ω,

∂u
∂ν

= 0 on ∂Ω,
(Nhg

α,λ)

possesses at least three distinct weak solutions in W 1LΦ(Ω).
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Remark 3.2. The same conclusion of Theorem 3.2 holds under the assumption that h : Ω → R is a bounded measurable
function with ess infx∈Ωh(x) ≥ 0 and


Ω
h(x) dx > 0.

A direct consequence of the previous result reads as follows.

Corollary 3.1. Let h : Ω → R be a bounded measurable and positive function. Moreover, let g : R → R be a non-negative (not
identically zero) and continuous function such that

lim
t→0+

g(t)

tp0−1
= 0. (ℓ0)

Further, assume that condition (h2) holds.
Then, for each

λ >
meas(Ω)

‖h‖L1(Ω)

inf
δ∈S

Φ(δ)

G(δ)
,

where

S := {δ > 0 : G(δ) > 0} ,

the problem (Nhg
α,λ) possesses at least three distinct weak solutions in W 1LΦ(Ω).

Proof. Fix λ > meas(Ω)

‖h‖L1(Ω)

infδ∈S
Φ(δ)

G(δ)
. Then, there exists δ such that G(δ) > 0 and λ > meas(Ω)Φ(δ)

‖h‖L1(Ω)
G(δ)

. By using condition (ℓ0) one

has

lim
ξ→0+

G(ξ)

ξ p0
= 0.

Therefore, we can find a positive constant γ such that

γ < min

2c,


Φ(δ)

κΦ
Ω

1/p0
 ,

and

G(γ )

γ p0
< min


κΦ

Ω

G(δ)

Φ(δ)
,

1

(2c)p0‖h‖L1(Ω)λ


.

Hence

λ ∈ Λ(γ ,δ) :=


meas(Ω)Φ(δ)

‖h‖L1(Ω)G(δ)
,

γ p0

(2c)p0‖h‖L1(Ω)G(γ )


.

All the hypotheses of Theorem 3.2 are satisfied and the problem (Nhg
α,λ) admits at least three distinct weak solutions. The

proof is complete. �

Remark 3.3. We point out that Theorem 1.1 in Introduction is a particular case of Corollary 3.1, taking into account
Example 2.1.

Here, we give a concrete example of application of Corollary 3.1.

Example 3.1. LetΩ be a non-empty bounded open subset of the Euclidean SpaceRN (N ≥ 3)with smooth boundary ∂Ω, Φ

be a Young function that satisfy hypotheses (Φ0)–(Φ2). Define g : R → R as follows

g(t) :=


0 if t < 0
tp

0
if 0 ≤ t ≤ 1

ts if t > 1,

where s ∈]0, p0 − 1[. Further, let h : Ω → R be a bounded measurable and positive function. From Corollary 3.1, for each
parameter

λ >
meas(Ω)

‖h‖L1(Ω)

inf
δ>0

Φ(δ)

G(δ)
,

the following non-homogeneous Neumann problem
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−div(α(|∇u|)∇u) + α(|u|)u = λh(x)g(u) in Ω,

∂u
∂ν

= 0 on ∂Ω,
(Nhg

α,λ)

possesses at least two non-trivial weak solutions inW 1LΦ(Ω).
In particular, let Ω ⊂ R3 with meas(Ω) = 1. Consider g : R → R defined as follows

g(t) :=


0 if t < 0
t5 if 0 ≤ t ≤ 1
t2 if t > 1,

andlet h : Ω → R be a bounded measurable and positive function with ‖h‖L1(Ω) = 1.

Set Φ(δ) :=
 δ

0
t|t|3

log(1+|t|) dt . One has, for every δ > 0, that

Φ(δ)

G(δ)
:=


6

 δ

0
t|t|3

log(1+|t|) dt

δ6
if 0 ≤ δ ≤ 1,

6

 δ

0
t|t|3

log(1+|t|) dt

2δ3 − 1
if δ > 1.

Moreover, by direct computations, owing to the function Φ(δ)

G(δ)
attains its minimum in δ0 ≈ 1.189089126, it follows that

inf
δ>0

Φ(δ)

G(δ)
≈ 1.804670144.

Then, for instance, the following non-homogeneous Neumann problem
−div


|∇u|3

log(1 + |∇u|)
∇u


+

|u|3

log(1 + |u|)
u = 2h(x)g(u) in Ω,

∂u
∂ν

= 0 on ∂Ω,

(Phg
2 )

admits at least two non-trivial weak solutions inW 1LΦ(Ω).

Remark 3.4. If ϕ(t) := |t|p−2t , with p > 1, one has p0 = p0 = p, and the Orlicz–Sobolev space W 1LΦ(Ω) coincides with
W 1,p(Ω). It is clear if p > N,W 1,p(Ω) is compactly embedded in C0(Ω). Let κ > 0 such that

‖u‖∞ ≤ κ‖u‖W1,p(Ω),

for every u ∈ W 1,p(Ω), where

‖u‖W1,p(Ω) :=

∫
Ω

|∇u(x)|p dx +

∫
Ω

|u(x)|p dx

1/p

.

In this setting the existence of three weak solutions in W 1,p(Ω) of problem (N f
λ) can be obtained assuming that f is a

Carathéodory function, (p − 1)-sublinear at infinity, and such that

(h′

1) There exist two positive constants γ and δ, such that

δ >


1

κmeas(Ω)1/p


γ ,

and 
Ω
max
|ξ |≤γ

F(x, ξ)dx

γ p
<

1
κpmeas(Ω)


Ω
F(x, δ)dx

δp
.

Moreover, the interval of parameters assume the following form

Λ(γ ,δ) :=

 δpmeas(Ω)

p


Ω
F(x, δ) dx

,
γ p

pκp


Ω
max
|ξ |≤γ

F(x, ξ) dx

 .



Author's personal copy

4794 G. Bonanno et al. / Nonlinear Analysis 74 (2011) 4785–4795

Therefore, arguing in a similar way of the proof of Theorem 3.1, we can obtain the following result that guarantees the
existence of a precise interval, of values of the parameter λ, for which a homogeneous Neumann problem involving the
p-Laplacian, ∆pu := div(|∇u|p−2

∇u), admits at least three non-trivial weak solutions.

Theorem 3.3. Let h : Ω → R be a bounded measurable and positive function. Further, let g : R → R be a non-negative
continuous function with g(0) ≠ 0 and such that the following conditions hold

(h′

1) There exists two positive constants γ and δ such that δ >
 1

κmeas(Ω)1/p


γ , and

G(γ )

γ p
<

1
κpmeas(Ω)

G(δ)

δp
;

(h′

2) Assume that

lim
|t|→∞

g(t)
|t|β

= 0,

for some 0 ≤ β < (p − 1).

Then, for each parameter λ belonging to

Λ(δ,γ ) :=

]
δpmeas(Ω)

p‖h‖L1(Ω)G(δ)
,

γ p

pκp‖h‖L1(Ω)G(γ )

[
,

the problem
−∆pu + |u|p−2u = λh(x)g(u) in Ω,
∂u/∂ν = 0 on ∂Ω,

(Nhg
λ )

possesses at least three non-trivial weak solutions in W 1,p(Ω).

Remark 3.5. Respect to result contained in [31], Theorem 3.3 gives a more precise interval of parameters for which an
homogeneous Neumann problem admits at least three weak solutions. Moreover observe that, in the case treated in
Theorem 3.3, when Ω is convex, an explicit upper bound for the constant κ is ensured as pointed out in [34, Remark 1].
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