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Abstract Under an appropriate oscillating behavior of the nonlinear term, the exis-
tence of a determined open interval of positive parameters for which an eigenvalue non-
homogeneous Neumann problem admits infinitely many weak solutions that strongly
converges to zero, in an appropriate Orlicz–Sobolev space, is proved. Our approach
is based on variational methods. The abstract result of this paper is illustrated by a
concrete case.
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306 G. Bonanno et al.

1 Introduction

Multiplicity results for quasilinear elliptic partial differential equations involving the
p-Laplacian have been broadly investigated in recent years. In this paper we con-
sider more general problems, which involve non-homogeneous differential operators.
Problems of this type have been intensively studied in the last few years, due to numer-
ous and relevant applications in many fields of mathematics, such as approximation
theory, mathematical physics (electrorheological fluids), calculus of variations, non-
linear potential theory, the theory of quasi-conformal mappings, differential geometry,
geometric function theory, and probability theory. Another recent application which
uses non-homogeneous differential operators can be found in the framework of image
processing. In that context we refer to the paper by Chen, Levine and Rao [6], where
it is studied an energy functional with variable exponent that provides a model for
image restoration. The diffusion resulting from the proposed model is a combina-
tion of Gaussian smoothing and regularization based on total variation. More exactly,
if λ ≥ 0, the version of this problem is to recover an image u, from an observed noisy
image I , for which the following adaptive model was proposed

min
u∈BV∩L2(�)

∫

�

[
ϕ(x,∇u) + λ

2
(u − I )2

]
dx, (1)

where � ⊂ R
2 is an open domain,

ϕ(x, r) =

⎧⎪⎪⎨
⎪⎪⎩

1

p(x)
|r |p(x), for |r | ≤ β

|r | − β · p(x) − β p(x)

p(x)
, for |r | > β ,

where β > 0 is fixed and α ≤ p(x) ≤ 2 for every x ∈ �, for some α > 1. The
function p(x) involved here depends on the location x in the model. For instance it
can be used

p(x) = 1 + 1

1 + k|∇Gσ ∗ I |2 ,

where Gσ (x) = 1

σ
exp(−|x |2/(4σ 2)) is the Gaussian filter and k > 0 and σ > 0 are

fixed parameters (according to the notation in [6]). For problem (1) Chen, Levine and
Rao establish the existence and uniqueness of the solution and the long-time behavior
of the associated flow of the proposed model. The effectiveness of the model in image
restoration is illustrated by some experimental results included in their work.

Our main purpose in this paper is to study the non-homogeneous Neumann problem

{−div(α(|∇u|)∇u) + α(|u|)u = λ f (x, u) in �,
∂u

∂ν
= 0 on ∂�.

(N f
α,λ)
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Arbitrarily small weak solutions... 307

Here, � is a bounded domain in R
N (N ≥ 3) with smooth boundary ∂�, ν is the outer

unit normal to ∂�, while f : � × R → R is a continuous function, λ is a positive
parameter and α : (0,∞) → R is such that the mapping ϕ : R → R defined by

ϕ(t) =
{

α(|t |)t, for t �= 0
0, for t = 0 ,

is an odd, strictly increasing homeomorphism from R onto R.
We point out that a related Neumann problem has been recently studied in [17],

where it is established the existence of at least one nontrivial solution. The main goal of
this paper is to establish the existence of a precise interval of positive parameters λ such
that, under natural assumptions, problem (N f

α,λ) admits a sequence of pairwise distinct
solutions that strongly converges to zero in the Orlicz–Sobolev space W 1L
(�).

The interest in analyzing this kind of problems is motivated by some recent advances
in the study of eigenvalue problems involving non-homogeneous operators in the diver-
gence form; see, for instance, the papers [7–12,19] and [13–16].

Moreover, an overview on Orlicz–Sobolev spaces is given in, for instance, the
monograph of Rao and Ren [19] and the references given therein.

The main tool in order to prove our multiplicity result is the following critical
points theorem obtained in [4] that we recall here in a convenient form. This result is
a refinement of the Variational Principle of Ricceri, contained in [20].

Theorem 1.1 ([4, Theorem 2.1]) Let X be a reflexive real Banach space, let J, I :
X → R be two Gâteaux differentiable functionals such that J is strongly continuous,
sequentially weakly lower semicontinuous and coercive and I is sequentially weakly
upper semicontinuous. For every r > inf X J , put

ϕ(r) := inf
u∈J−1(]−∞,r [)

(
supv∈J−1(]−∞,r [) I (v)

) − J (u)

r − J (u)
,

and δ := lim inf
r→(inf X J )+

ϕ(r).

Then, if δ < +∞, for each λ ∈ ]
0, 1

δ

[
, the following alternative holds:

either

(c1) there is a global minimum of J which is a local minimum of gλ := J − λI ,
or
(c2) there is a sequence {un} of pairwise distinct critical points (local minima) of gλ

which weakly converges to a global minimum of J , with limn→+∞ J (un) = inf X J .

The above theorem assures the existence of a sequence of pairwise distinct crit-
ical points for Gâteaux differentiable functionals under assumptions that, when we
consider the energy functional associated to (N f

α,λ), are satisfied just assuming an
appropriate oscillating behavior on the potential of the nonlinearity at zero. The main
question in applying Theorem 1.1 is to find sufficient conditions in order that the
positive constant δ is finite. For this reason, in our approach, we will require that the
space W 1L
(�) is embedded in C0(�).
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308 G. Bonanno et al.

Finally we point out that, by using a similar approach, for the p-Laplacian operator,
the existence of a well determined open interval of positive parameters for which the
problem (N f

α,λ) admits infinitely many weak solutions in W 1,p(�), was proved in the
recent paper [2].

The plan of the paper is as follows. In Sect. 2 we introduce our notation and the
abstract Orlicz–Sobolev spaces setting. Sect. 3 is devoted to main theorem and finally,
in Sect. 4, as an application, of the obtained results, we prove that, for every λ > 0,
there exists a sequence of pairwise distinct solutions that strongly converges to zero
in W 1L
(�), for a class of elliptic problems whose prototype is

⎧⎪⎨
⎪⎩

−div

( |∇u|p−2

log(1 + |∇u|)∇u

)
+ |u|p−2

log(1 + |u|)u = λ f (x, u) in �,

∂u

∂ν
= 0 on ∂�,

(N f
λ )

where p > N + 1.

2 Orlicz–Sobolev spaces setting

This section summarizes those aspects of the theory of Orlicz–Sobolev spaces, which
will be needed here. This types of space provides an appropriate venue for the analy-
sis of quasilinear elliptic partial differential equations with rapidly or slowly growing
principal parts. Set


(t) =
t∫

0

ϕ(s) ds, 
�(t) =
t∫

0

ϕ−1(s) ds, for all t ∈ R.

We observe that 
 is a Young function, that is, 
(0) = 0,
 is convex, and

lim
t→∞ 
(t) = +∞.

Furthermore, since 
(t) = 0 if and only if t = 0,

lim
t→0


(t)

t
= 0 and lim

t→∞

(t)

t
= +∞,

then 
 is called an N–function. The function 
� is called the complementary function
of 
 and it satisfies


�(t) = sup{st − 
(s); s ≥ 0}, for all t ≥ 0.
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Arbitrarily small weak solutions... 309

We observe that 
� is also an N–function and the following Young’s inequality holds
true:

st ≤ 
(s) + 
�(t), for all s, t ≥ 0.

Assume that 
 satisfying the following structural hypotheses

1 < lim inf
t→∞

tϕ(t)


(t)
≤ p0 := sup

t>0

tϕ(t)


(t)
< ∞; (
0)

N < p0 := inf
t>0

tϕ(t)


(t)
< lim inf

t→∞
log(
(t))

log(t)
. (
1)

The Orlicz space L
(�) defined by the N–function 
 (see for instance [1] and [7])
is the space of measurable functions u : � → R such that

‖u‖L
 := sup

⎧⎨
⎩

∫

�

u(x)v(x) dx;
∫

�


�(|v(x)|) dx ≤ 1

⎫⎬
⎭ < ∞.

Then (L
(�), ‖ · ‖L
) is a Banach space whose norm is equivalent to the Luxemburg
norm

‖u‖
 := inf

⎧⎨
⎩k > 0;

∫

�




(
u(x)

k

)
dx ≤ 1

⎫⎬
⎭ .

We denote by W 1L
(�) the corresponding Orlicz–Sobolev space for problem (N f
α,λ),

defined by

W 1L
(�) =
{

u ∈ L
(�); ∂u

∂xi
∈ L
(�), i = 1, . . . , N

}
.

This is a Banach space with respect to the norm

‖u‖1,
 = ‖|∇u|‖
 + ‖u‖
,

see [1] and [7].
These spaces generalize the usual spaces L p(�) and W 1,p(�), in which the role

played by the convex mapping t 
→ |t |p/p is assumed by a more general convex
function 
(t).
Further, one has
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310 G. Bonanno et al.

Lemma 2.1 On W 1L
(�) the norms

‖u‖1,
 = ‖|∇u|‖
 + ‖u‖
,

‖u‖2,
 = max{‖|∇u|‖
, ‖u‖
},

‖u‖ = inf

⎧⎨
⎩μ > 0;

∫

�

[



( |u(x)|
μ

)
+ 


( |∇u(x)|
μ

)]
dx ≤ 1

⎫⎬
⎭ ,

are equivalent. More precisely, for every u ∈ W 1L
(�) we have

‖u‖ ≤ 2‖u‖2,
 ≤ 2‖u‖1,
 ≤ 4‖u‖.

Moreover the following relations hold true

Lemma 2.2 Let u ∈ W 1L
(�). Then

∫

�

[
(|u(x)|) + 
(|∇u(x)|)] dx ≥ ‖u‖p0 , if ‖u‖ > 1;
∫

�

[
(|u(x)|) + 
(|∇u(x)|)] dx ≥ ‖u‖p0
, if ‖u‖ < 1.

For a proof of the previous two results see, respectively, Lemma 2.1 and 2.2 of the
paper [13].

Moreover, we say that u ∈ W 1L
(�) is a weak solution for problem (N f
α,λ) if

∫

�

α(|∇u(x)|)∇u(x) · ∇v(x) dx +
∫

�

α(|u(x)|)u(x)v(x) dx

−λ

∫
�

f (x, u(x))v(x) dx = 0,

for every v ∈ W 1L
(�).
Finally, the following Lemma will be useful in the sequel.

Lemma 2.3 Let u ∈ W 1L
(�) and assume that

∫

�

[
(|u(x)|) + 
(|∇u(x)|)] dx ≤ r, (2)

for some 0 < r < 1. Then, one has ‖u‖ < 1.

For the proof see, for instance, [5].
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Arbitrarily small weak solutions... 311

3 Main result

Here and in the sequel “ meas(�)” denotes the Lebesgue measure of the set �. From
hypothesis (
1), by Lemma D.2 in [7] it follows that W 1L
(�) is continuously
embedded in W 1,p0(�). On the other hand, since we assume p0 > N we deduce
that W 1,p0(�) is compactly embedded in C0(�). Thus, one has that W 1L
(�) is
compactly embedded in C0(�) and there exists a constant c > 0 such that

‖u‖∞ ≤ c ‖u‖1,
, ∀ u ∈ W 1L
(�), (3)

where ‖u‖∞ := supx∈� |u(x)|. A concrete estimation of a concrete upper bound for
the constant c remains an open question.

Let

A := lim inf
ξ→0+

∫

�

max|t |≤ξ
F(x, t) dx

ξ p0 , B := lim sup
ξ→0+

∫

�

F(x, ξ) dx

ξ p0
.

Our main result is the following.

Theorem 3.1 Let f : � × R → R be a continuous function, 
 be a Young function
satisfying the structural hypotheses (
0)–(
1) and let � be a positive constant such
that

lim
t→0+


(t)

t p0
< �. (
�)

Further, assume that

lim inf
ξ→0+

∫

�

max|t |≤ξ
F(x, t) dx

ξ p0 <
1

(2c)p0
� meas(�)

lim sup
ξ→0+

∫

�

F(x, ξ) dx

ξ p0
. (h0)

Then, for every λ belonging to

]
� meas(�)

B
,

1

(2c)p0 A

[
,

the problem (N f
α,λ) admits a sequence of pairwise distinct weak solutions which

strongly converges to zero in W 1L
(�).

Proof Let us put X := W 1L
(�). Hypothesis (
0) is equivalent with the fact that 


and 
� both satisfy the �2-condition (at infinity), see [1, p. 232] and [7]. In particu-
lar, both (
,�) and (
�,�) are �-regular, see [1, p. 232]. Consequently, the spaces
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312 G. Bonanno et al.

L
(�) and W 1L
(�) are separable, reflexive Banach spaces, see Adams [1, p. 241
and p. 247]. Now, define the functionals J, I : X → R by

J (u) =
∫

�

(
(|∇u(x)|) + 
(|u(x)|)) dx and I (u) =
∫

�

F(x, u(x)) dx,

where F(x, ξ) :=
ξ∫
0

f (x, t)dt for every (x, ξ) ∈ � × R and put

gλ(u) := J (u) − λI (u), u ∈ X.

The functionals J and I satisfy the regularity assumptions of Theorem 1.1. Indeed,
similar arguments as those used in [10, Lemma 3.4] and [7, Lemma 2.1] imply that
J, I ∈ C1(X, R) with the derivatives given by

〈J ′(u), v〉 =
∫

�

α(|∇u(x)|)∇u(x) · ∇v(x) dx +
∫

�

α(|u(x)|)u(x)v(x) dx,

〈I ′(u), v〉 =
∫

�

f (x, u(x))v(x) dx,

for any u, v ∈ X .
Moreover, owing that 
 is convex, it follows that J is a convex functional, hence one
has that J is sequentially weakly lower semicontinuous. Finally we observe that J
is a coercive functional. Indeed, by Lemma 2.2, we deduce that for any u ∈ X with
‖u‖ > 1 we have J (u) ≥ ‖u‖p0 . On the other hand the fact that X is compactly
embedded into C0(�) implies that the operator I ′ : X → X� is compact. Conse-
quently, the functional I : X → R is sequentially weakly (upper) continuous, see
Zeidler [21, Corollary 41.9]. Let us observe that u ∈ X is a weak solution of problem
(N f

α,λ) if u is a critical point of the functional gλ. Hence, we can seek for weak solu-

tions of problem (N f
α,λ) by applying Theorem 1.1. Now, let {cn} be a real sequence

such that limn→∞ cn = 0 and

lim
n→∞

∫
�

max|t |≤cn
F(x, t) dx

cp0

n

= A.

Put rn =
( cn

2c

)p0

for all n ∈ IN. Then, by Lemmas 2.3 and 2.2, we have

{v ∈ W 1L
(�) : J (v) < rn} ⊆
{
v ∈ W 1L
(�) : ‖v‖ <

cn

2c

}
.
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Arbitrarily small weak solutions... 313

Due to (3) and Lemma 2.1, we have

|v(x)| ≤ ‖v‖∞ ≤ c‖v‖1,
 ≤ 2c‖v‖ ≤ cn, ∀x ∈ �.

Hence
{
v ∈ W 1L
(�) : ‖v‖ <

cn

2c

}
⊆

{
v ∈ W 1L
(�) : |v| ≤ cn

}
.

Taking into account that J (u0) = 0 and
∫
�

F(x, u0(x)) dx = 0, where u0(x) = 0
for all x ∈ �, for all n ∈ IN one has

ϕ(rn) = inf
J (u)<rn

sup
J (v)<rn

∫
�

F(x, v(x)) dx −
∫

�

F(x, u(x)) dx

rn − J (u)
≤

sup
J (v)<rn

∫
�

F(x, v(x)) dx

rn

≤

∫
�

max|t |≤cn
F(x, t) dx

rn
= (2c)p0

∫
�

max|t |≤cn
F(x, t) dx

cp0

n

.

Therefore, since from the assumption (h0) one has A < +∞, we obtain

δ ≤ lim inf
n→∞ ϕ(rn) ≤ (2c)p0

A < +∞.

Now, take

λ ∈
]

� meas(�)

B
,

1

(2c)p0 A

[
.

At this point we will show that 0, that is the unique global minimum of J , is not a
local minimum of gλ. For this goal, let {ζn} be a real sequence of positive numbers
such that limn→∞ ζn = 0 and

lim
n→∞

∫
�

F(x, ζn) dx

ζ
p0

n
= B. (4)

For each n ∈ N, put wn(x) := ζn , for all x ∈ �. Clearly wn ∈ W 1L
(�), for each
n ∈ N and wn strongly converges to zero. Hence

J (wn) =
∫

�

(
(|∇wn(x)|) + 
(|wn(x)|)) dx =
∫

�


(ζn) dx = 
(ζn) meas(�),

for every n ∈ N.
Moreover, from hypothesis (
�), taking into account that limn→∞ wn = 0, one

has that there exists δ > 0 and ν0 ∈ N such that wn ∈]0, δ[ and


(wn) < �w
p0
n ,
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314 G. Bonanno et al.

for every n ≥ ν0.

If B < +∞, let ε ∈
]

� meas(�)

λB
, 1

[
. By (4) there exists νε such that

∫

�

F(x, ζn) dx > εBζ
p0

n , ∀n > νε.

Hence,

gλ(wn) = J (wn) − λI (wn) ≤ �w
p0
n meas(�) − λεBw

p0
n

= w
p0
n (� meas(�) − λεB) < 0,

for every n ≥ max{ν0, νε}.
On the other hand, if B = +∞ let us consider M >

� meas(�)

λ
. By (4) there exists

νM such that

∫

�

F(x, ζn) dx > Mζ
p0

n , ∀n > νM .

Moreover,

gλ(wn) = J (wn) − λI (wn) ≤ �w
p0
n meas(�) − λMw

p0
n

= w
p0
n (� meas(�) − λM) < 0,

for every n ≥ max{ν0, νM }.
Hence gλ(wn) < 0 for every n sufficiently large. Since gλ(0) = J (0)−λI (0) = 0,

this means that 0 is not a local minimum of gλ. Then, owing to J has 0 as unique global
minimum, Theorem 1.1 ensures the existence of a sequence {vn} of pairwise distinct
critical points of the functional gλ, such that limn→∞ J (vn) = 0. By Lemma 2.2 we
have ‖vn‖p0 ≤ J (vn) for every n sufficiently large. Then limn→∞ ‖vn‖ = 0 and this
completes the proof. ��
Remark 3.1 We point out that, by using inequality (3), Theorem 3.1 guarantees the
existence of a sequence of weak solutions of problem (N f

α,λ) that strongly converges

to zero in C0(�).

Remark 3.2 Let f (x, t) := h(x)g(t), where h : � → R and g : R → R are two
continuous functions, with min� h(x) > 0 and minR g(t) ≥ 0.
Condition (h0) reads as follows

lim inf
ξ→0+

G(ξ)

ξ p0 <
1

(2c)p0
� meas(�)

lim sup
ξ→0+

G(ξ)

ξ p0
, (h′

0)

where G(ξ) := ∫ ξ

0 g(t) dt .
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Arbitrarily small weak solutions... 315

Hence, putting

A∗ := lim inf
ξ→0+

G(ξ)

ξ p0 and B∗ := lim sup
ξ→0+

G(ξ)

ξ p0
,

for every

λ ∈
]

� meas(�)

‖h‖L1(�)B∗ ,
1

(2c)p0‖h‖L1(�) A∗

[
,

Theorem 3.1 assures that the problem (N f
α,λ) admits a sequence of pairwise distinct

weak solutions which strongly converges to zero in W 1L
(�).

4 Application

Define

ϕ(t) = |t |p−2

log(1 + |t |) t for t �= 0, and ϕ(0) = 0.

Let 
(t) := ∫ t
0 ϕ(s) ds and consider the space W 1L
(�). By [8, Example 3, p. 243]

one has

p0 = p − 1 < p0 = p = lim inf
t→∞

log(
(t))

log(t)
.

Thus, conditions (
0) and (
1) are verified.
Moreover also condition (
�) holds owing to

lim
t→0+

1

t p−1

t∫

0

s|s|p−2

log(1 + |s|) ds = 1

p − 1
.

From the previous observations, by using Theorem 3.1 and taking into account Remark
3.2, it follows that

Theorem 4.1 Let p > N + 1 and g : R → R be a continuous non-negative function
with potential G(ξ) := ∫ ξ

0 g(t) dt. Moreover, let h : � → R be a continuous and
positive function.

Assume that

lim inf
ξ→0+

G(ξ)

ξ p
= 0 and lim sup

ξ→0+

G(ξ)

ξ p−1 = +∞. (h′′
0)
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Then, for each λ > 0, the Neumann problem

⎧⎪⎨
⎪⎩

−div

( |∇u|p−2

log(1 + |∇u|)∇u

)
+ |u|p−2

log(1 + |u|)u = λh(x)g(u) in �,

∂u

∂ν
= 0 on ∂�,

(N hg
λ )

admits a sequence of pairwise distinct weak solutions which strongly converges to
zero in W 1L
(�).

Following Omari and Zanolin in [18] we construct a concrete example of positive con-
tinuous function g : R → R such that its potential G satisfies the growth condition
(h′′

0) near to zero. Precisely, let {sn}, {tn} and {δn} be sequences defined by

sn := 2− n!
2 , tn := 2−2n!, δn := 2−(n!)2

.

Observe that, definitively, one has

sn+1 < tn < sn − δn .

Let g : R → R be a continuous nondecreasing function such that g(t) = 0, for every
t ≤ 0, g(t) > 0 for every t > 0 and

g(t) := 2−4n!, ∀t ∈ [sn+1, sn − δn],

for n large.
Then

G(sn)

s5
n

≤ g(sn+1)sn + g(sn)δn

s5
n

,

and

G(tn)

t4
n

≥ g(sn+1)(tn − sn+1)

t4
n

.

Owing to

lim
n→∞

g(sn+1)sn + g(sn)δn

s5
n

= lim
n→∞

2− 9
2 n! + 2−4(n−1)!−(n!)2

2− 5
2 n! = 0,

and

lim
n→∞

g(sn+1)(tn − sn+1)

t4
n

= lim
n→∞

2−2n! − 2− (n+1)!
2

2−4n! = +∞,
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it follows that

lim
n→∞

G(sn)

s5
n

= 0, lim
n→∞

G(tn)

t4
n

= +∞.

Hence condition (h′′
0) holds.

Then, let � is a bounded domain in R
3 with smooth boundary ∂� and consider the

Young function


(t) :=
∫ t

0

s|s|3
log(1 + |s|) ds.

From the previous computations Theorem 4.1 ensures that, for each λ > 0, the
following non-homogeneous Neumann problem

⎧⎪⎨
⎪⎩

−div

( |∇u|3
log(1 + |∇u|)∇u

)
+ |u|3

log(1 + |u|)u = λh(x)g(u) in �,

∂u

∂ν
= 0 on ∂�,

(N hg
λ )

admits a sequence of pairwise distinct weak solutions which strongly converges to
zero in W 1L
(�).
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