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Dušan D. Repovš — Qihu Zhang

Abstract. We consider the existence of solutions of the following p(x)-

Laplacian Dirichlet problem without the Ambrosetti–Rabinowitz condition:{
−div(|∇u|p(x)−2∇u) = f(x, u) in Ω,

u = 0 on ∂Ω.

We give a new growth condition and we point out its importance for check-

ing the Cerami compactness condition. We prove the existence of solu-

tions of the above problem via the critical point theory, and also provide
some multiplicity properties. The present paper extend previous results of

Q. Zhang and C. Zhao (Existence of strong solutions of a p(x)-Laplacian

Dirichlet problem without the Ambrosetti–Rabinowitz condition, Comput-
ers and Mathematics with Applications, 2015) and we establish the exis-

tence of solutions under weaker hypotheses on the nonlinear term.
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1. Introduction

In recent years, the study of differential equations and variational problems

with variable exponent growth conditions has been a topic of great interest. This

type of problems has very strong background, for instance in image processing,

nonlinear electrorheological fluids and elastic mechanics. Some of these phenom-

ena are related to the Winslow effect, which describes the behavior of certain

fluids that become solids or quasi-solids when subjected to an electric field. The

result was named after American engineer Willis M. Winslow.

There are many papers dealing with problems with variable exponents, see

[1]–[8], [10]–[25], [28], [33], [34], [37], [38], [40]–[46], [48]–[49]. On results con-

cerning the existence of solutions of these kinds of problems, we refer to [8], [14],

[15], [18], [21], [33], [36], [45]. We also refer to the recent monograph [35] which

treats variational methods in the framework of nonlinear problems with variable

exponent.

In this paper, we consider the existence of solutions of the following class of

Dirichlet problems:

(P)

−∆p(x)u := −div(|∇u|p(x)−2∇u) = f(x, u) in Ω,

u = 0 on ∂Ω,

where Ω ⊂ RN is a bounded domain with C1,α smooth boundary, and p( · ) > 1

is of class C1(Ω).

Since the elliptic operator with variable exponent is not homogeneous, new

methods and techniques are needed to study these types of problems. We point

out that commonly known methods and techniques for studying constant expo-

nent equations fail in the setting of problems involving variable exponents. For

instance, the eigenvalues of the p(x)-Laplacian Dirichlet problem were studied

in [16]. In this case, if Ω ⊂ RN is a smooth bounded domain, then the Rayleigh

quotient

(1.1) λp( · ) = inf
u∈W 1,p( · )

0 (Ω)\{0}

∫
Ω

1

p(x)
|∇u|p(x) dx∫

Ω

1

p(x)
|u|p(x) dx

is in general zero, and λp( · ) > 0 holds only under some special conditions.

In [41], the author generalized the Picone identities for half-linear elliptic

operators with p(x)-Laplacian. In the same paper some applications to Stur-

mian comparison theory are also presented, but the formula is different from the

constant exponent case. In a related setting, we point out that the formula∫
Ω

|u(x)|p dx = p

∫ ∞
0

tp−1 |{x ∈ Ω; |u(x)| > t}| dt

has no variable exponent analogue.
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In [23] and [46], the authors deal with the local boundedness and the Harnack

inequality for the p(x)-Laplace equation. However, it was shown in [23] that even

in the case of a very nice exponent, for example,

p(x) :=


3 for 0 < x ≤ 1

2
,

3− 2

(
x− 1

2

)
for

1

2
< x < 1,

the constant in the Harnack inequality depends on the minimizer, that is, the

inequality supu ≤ c inf u does not hold for any absolute constant c.

The standard norm in variable exponent Sobolev spaces is the so-called Lux-

emburg norm |u|p( · ) (see Section 2) and the integral
∫

Ω
|u(x)|p(x) dx does not

satisfy the constant power relation.

On several occasions, it is difficult to judge whether or not results about

p-Laplacian can be generalized to p(x)-Laplacian, and even if this can be done,

it is still difficult to figure out the form in which the results should be.

Our main goal is to obtain a couple of existence results for problem (P)

without the Ambrosetti–Rabinowitz condition via critical point theory. For this

purpose, we use a new method for checking the Cerami compactness condition

under a new growth condition. Our results can be regarded as extensions of the

corresponding results for the p-Laplacian problems, but the growth condition

and the methods for checking the Cerami compactness condition are different

with respect to quasilinear equations with constant exponent.

Next, we give a review of some results related to our work. Since the

Ambrosetti–Rabinowitz type condition is quite restrictive and excludes many

cases of nonlinearity, there are many papers dealing with the problem without

the Ambrosetti–Rabinowitz type growth condition. For the constant exponent

case p( · ) ≡ p, we refer to [26], [27], [31], [39].

In [26], the authors considered problem (P) for p( · ) ≡ p, and proved the

existence of weak solutions under the following assumptions:

lim
|t|→+∞

F (x, t)

|t|p
= +∞, where F (x, t) =

∫ t

0

f(x, s) ds;

and there exists a constant C∗ > 0 such that H(x, t) ≤ H(x, s) + C∗ for each

x ∈ Ω, 0 < t < s or s < t < 0, where H(x, t) = tf(x, t)− pF (x, t).

In [27], the author studied problem (P) for p( · ) ≡ p. Under the assumption

that f(x, s)/|s|p−2s is increasing when s ≥ s0 and decreasing when s ≤ −s0, for

all x ∈ Ω, the existence of weak solutions was obtained.

In [31], the authors studied problem (P) for p( · ) ≡ 2, which becomes a Lapla-

cian problem. The main result in [31] establishes the existence of weak solu-

tions by assuming that f(x, s)/s is increasing when s ≥ s0 and decreasing when

s ≤ −s0, for all x ∈ Ω.
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In [39], the author also studied problem (P) for p( · ) ≡ 2 and proved the

existence of weak solutions under the assumption

sf(x, u) ≥ C0|s|µ, where µ > 2 and C0 > 0.

If p( · ) is a general function, results on variable exponent problem without

the Ambrosetti–Rabinowitz type growth condition are rare due to the complexity

of p(x)-Laplacian (see [3], [5], [20], [19], [42]). However, their assumptions imply

Gp+(x, t) = f(x, t)t − p+F (x, t) ≥ 0 and F (x, t) > 0 as t → +∞, so we can

see that F (x, t) ≥ Ctp
+

as t → +∞. This is too strong and unnatural for the

p(x)-Laplacian problems.

In [45], the author considered problem (P) under the following growth con-

dition:

• there exist constants M,C1, C2 > 0, a > p on Ω such that, for all x ∈ Ω

and all |t| ≥M ,

(1.2) C1|t|p(x)[ln(e+ |t|)]a(x)−1 ≤ C2
tf(x, t)

ln(e+ |t|)
≤ tf(x, t)− p(x)F (x, t).

A typical example is f(x, t) = |t|p(x)−2t [ln(1 + |t|)]a(x). This function satis-

fies the above condition (1.2), but does not satisfy the Ambrosetti–Rabinowitz

condition.

Our paper was motivated by [45]. We further weaken condition (1.2). To

begin, we point out that the assumption a > p on Ω is unnecessary in the present

paper.

Before stating our main results, we make the following assumptions:

(f0) f : Ω× R→ R satisfies the Carathéodory condition and

|f(x, t)| ≤ C(1 + |t|α(x)−1), for all (x, t) ∈ Ω× R,

where α ∈ C(Ω) and p(x) < α(x) < p∗(x) on Ω.

(f1) There exist constants M,C > 0, such that

(1.3) C
tf(x, t)

K(t)
≤ tf(x, t)− p(x)F (x, t), for all |t| ≥M and all x ∈ Ω,

and

(1.4)
tf(x, t)

|t|p(x)[K(t)]p(x)
→ +∞ uniformly as |t| → +∞ for x ∈ Ω,

where K satisfies the following hypotheses:

(K) 1 ≤ K( · ) ∈ C1([0,+∞), [1,+∞)) is increasing and [ln(e + t)]2 ≥
K(t)→ +∞ as |t| → +∞, which satisfies tK ′(t)/K(t) ≤ σ0 ∈ (0, 1),

where σ0 is a constant.

(f2) f(x, t) = o(|t|p(x)−1) uniformly for x ∈ Ω as t→ 0.

(f3) f(x,−t) = −f(x, t), for all x ∈ Ω, for all t ∈ R.
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(f4) F satisfies

F (x, t)

|t|p(x)[ln(e+ |t|)]p(x)
→ +∞ uniformly as |t| → +∞ for x ∈ Ω.

(p1) There is a vector l ∈ RN \ {0} such that for any x ∈ Ω, ρ(t) = p(x+ tl)

is monotone for t ∈ Ix(l) = {t | x+ tl ∈ Ω}.
(p2) p has a local maximum point, that is, there exist x0 ∈ Ω and δ > 0 such

that B(x0, 3δ) ⊂ Ω and

min
|x−x0|≤δ

p(x) > max
2δ≤|x−x0|≤3δ

p(x).

(p3) p has a sequence of local maximum points, that is, there exist a sequence

of points xn ∈ Ω and δn > 0 such that B(x0, 3δn) are mutually disjoint

and

min
|x−xn|≤δn

p(x) > max
2δn≤|x−xn|≤3δn

p(x).

We state our main results in what follows.

Theorem 1.1. Assume that hypotheses (f0)–(f2), (p1) and (f4) or (p2) are

fulfilled. Then problem (P) has a nontrivial solution.

Theorem 1.2. Assume that hypotheses (f0), (f1), (f3) and (f4) or (p3) are

fulfilled. Then problem (P) has infinitely many pairs of solutions.

Remark 1.3. (a) The following functions satisfy hypothesis (K):

K1(t) = ln(e+ |t|),

K2(t) = ln(e+ ln(e+ |t|)),

K3(t) = [ln(e+ ln(e+ |t|))] ln(e+ |t|).

Let K = K1, and f(x, t) = |t|p(x)−2t[ln(1 + |t|)]p(x)ρ(|t|), where 1 ≤ ρ(|t|) ≤
[ln(e + |tt|)]2, ρ′ ≥ 0 and ρ(|t|) → +∞ as |t| → +∞, for example ρ(|t|) =

ln(e + ln(e + |t|)). Then f satisfies conditions (f0)–(f4), but it does not satisfy

the Ambrosetti–Rabinowitz condition, and does not satisfy (1.2).

(b) We do not need any monotonicity assumption on f(x, · ).

This paper is organized as follows. In Section 2, we do some preparatory

work including some basic properties of the variable exponent Sobolev spaces,

which can be regarded as a special class of generalized Orlicz–Sobolev spaces. In

Section 3, we give proofs of the results stated above.

2. Preliminary results

Throughout this paper, we use letters c, ci, C, Ci, i = 1, 2, . . ., to denote

generic positive constants which may vary from line to line, and we will specify

them whenever necessary.
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One of the reasons for the huge development of the theory of classical Lebe-

sgue and Sobolev spaces Lp and W 1,p (where 1 ≤ p ≤ ∞) is its usefulness for

the description of many phenomena arising in applied sciences. For instance,

many materials can be modeled with sufficient accuracy by using the function

spaces Lp and W 1,p, where p is a fixed constant. For some materials with

nonhomogeneities, for instance electrorheological fluids (sometimes referred to as

“smart fluids”), this approach is not adequate, but rather the exponent p should

be allowed to vary. This leads us to the study of variable exponent Lebesgue

and Sobolev spaces, Lp( · ) and W 1,p( · ), where p is a real-valued function.

In order to discuss problem (P), we need some results about the space

W
1,p( · )
0 (Ω), which we call the variable exponent Sobolev space. We first state

some basic properties of W
1,p(·)
0 (Ω) (for details, see [12], [17], [15], [25], [35]

and [38]). Denote

C+(Ω) = {h | h ∈ C(Ω), h(x) > 1 for x ∈ Ω},

h+ = max
Ω

h(x), h− = min
Ω
h(x), for any h ∈ C(Ω),

Lp( · )(Ω) =

{
u

∣∣∣∣ u is a measurable real-valued function,

∫
Ω

|u(x)|p(x) dx <∞
}
.

We introduce the norm on Lp( · )(Ω) by

|u|p( · ) = inf

{
λ > 0

∣∣∣∣ ∫
Ω

∣∣∣∣u(x)

λ

∣∣∣∣p(x)

dx ≤ 1

}
.

Then (Lp( · )(Ω), | · |p( · )) becomes a Banach space and it is called the variable

exponent Lebesgue space.

Proposition 2.1 (see [12], [35]). (a) The space (Lp( · )(Ω), | · |p( · )) is a sepa-

rable, uniform convex Banach space, and its conjugate space is Lq( · )(Ω), where

1/q( · ) + 1/p( ·) ≡ 1. For any u ∈ Lp( · )(Ω) and v ∈ Lq( · )(Ω), we have∣∣∣∣ ∫
Ω

uv dx

∣∣∣∣ ≤ ( 1

p−
+

1

q−

)
|u|p( · )|v|q( · ).

(b) If p1, p2 ∈ C+(Ω), p1(x) ≤ p2(x) for any x ∈ Ω, then Lp2( · )(Ω) ⊂
Lp1( · )(Ω), and this imbedding is continuous.

Proposition 2.2 (see [15], [35]). If f : Ω×R→ R is a Carathéodory function

and satisfies

|f(x, s)| ≤ a(x) + b|s|p1(x)/p2(x) for any x ∈ Ω, s ∈ R,

where p1, p2 ∈ C+(Ω), a ∈ Lp2( · )(Ω), a(x) ≥ 0, b ≥ 0, then the Nemytskĭı oper-

ator from Lp1( · )(Ω) to Lp2( · )(Ω) defined by (Nfu)(x) = f(x, u(x)), is a contin-

uous and bounded operator.
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Proposition 2.3 (see [15], [35]). If we denote

ρ(u) =

∫
Ω

|u|p(x) dx, for all u ∈ Lp( · )(Ω),

then there exists ξ ∈ Ω such that |u|p(ξ)p( · ) =
∫

Ω
|u|p(x) dx and

(a) |u|p( · ) < 1 (= 1; > 1) if and only if ρ(u) < 1 (= 1; > 1);

(b) if |u|p( · ) > 1 then |u|p
−

p( · ) ≤ ρ(u) ≤ |u|p
+

p( · );

if |u|p( · ) < 1 then |u|p
−

p( · ) ≥ ρ(u) ≥ |u|p
+

p( · );

(c) |u|p( · ) → 0 if and only if ρ(u)→ 0;

|u|p( · ) →∞ if and only if ρ(u)→∞.

Proposition 2.4 (see [15], [35]). If u, un ∈ Lp( · )(Ω), n = 1, 2, . . ., then the

following statements are equivalent:

(a) lim
k→∞

|uk − u|p( · ) = 0;

(b) lim
k→∞

ρ(uk − u) = 0;

(c) uk → u in measure in Ω and lim
k→∞

ρ(uk) = ρ(u).

The space W 1,p( · )(Ω) is defined by

W 1,p( · )(Ω) = {u ∈ Lp( · )(Ω) | ∇u ∈ (Lp( · )(Ω))N},

and it can be equipped with the norm

‖u‖ = |u|p( · ) + |∇u|p( · ), for all u ∈W 1,p( · )(Ω).

We denote by W
1,p( · )
0 (Ω) the closure of C∞0 (Ω) in W 1,p( · )(Ω) and set

p∗(x) =


Np(x)

N − p(x)
if p(x) < N,

∞ if p(x) ≥ N.

Then we have the following properties.

Proposition 2.5 (see [12], [15], [35]).

(a) W 1,p( · )(Ω) and W
1,p( · )
0 (Ω) are separable reflexive Banach spaces;

(b) if q ∈ C+(Ω) and q(x) < p∗(x) for any x ∈ Ω, then the imbedding from

W 1,p( · )(Ω) to Lq( · )(Ω) is compact;

(c) there is a constant C > 0 such that

|u|p( · ) ≤ C|∇u|p( · ), for all u ∈W 1,p( · )
0 (Ω).

It follows from (a) of Proposition 2.5 that |∇u|p( · ) and ‖u‖ are equivalent

norms on W
1,p( · )
0 (Ω). From now on, we will use |∇u|p( · ) instead of ‖u‖ as the

norm on W
1,p( · )
0 (Ω).

The Lebesgue and Sobolev spaces with variable exponents coincide with the

usual Lebesgue and Sobolev spaces provided that p is constant. These function
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spaces Lp(x) and W 1,p(x) have some unusual properties, see [35, p. 8–9]. Some of

these properties are the following:

(i) Assuming that 1 < p− ≤ p+ <∞ and p : Ω→ [1,∞) is a smooth function,

the following co-area formula∫
Ω

|u(x)|p dx = p

∫ ∞
0

tp−1 |{x ∈ Ω; |u(x)| > t}| dt

has no analogue in the framework of variable exponents.

(ii) Spaces Lp(x) do not satisfy the mean continuity property. More exactly,

if p is nonconstant and continuous in an open ball B, then there is some u ∈
Lp(x)(B) such that u(x + h) 6∈ Lp(x)(B) for every h ∈ RN with arbitrary small

norm.

(iii) Function spaces with variable exponent are never invariant with respect

to translations. The convolution is also limited. For instance, the classical Young

inequality

|f ∗ g|p(x) ≤ C|f |p(x)‖g‖L1

holds if and only if p is constant.

Proposition 2.6 (see [16]). If the assumption (p1) is satisfied, then λp( · )
defined in (1.1) is positive.

Next, we prove some results related to the p(x)-Laplace operator −∆p(x) as

defined at the beginning of Section 1. Consider the following functional:

J(u) =

∫
Ω

1

p(x)
|∇u|p(x) dx, u ∈ X := W

1,p( · )
0 (Ω).

Then (see [9]) J ∈ C1(X,R) and the p(x)-Laplace operator is the derivative

operator of J in the weak sense. We denote L = J ′ : X → X∗, then

(L(u), v) =

∫
Ω

|∇u|p(x)−2∇u∇v dx, for all v, u ∈ X.

Theorem 2.7 (see [15], [21]).

(a) L : X → X∗ is a continuous, bounded and strictly monotone operator;

(b) L is a mapping of type (S+), that is, if un ⇀ u in X and lim
n→+∞

(L(un)−
L(u), un − u) ≤ 0, then un → u in X;

(c) L : X → X∗ is a homeomorphism.

Denote

B(x0, ε, δ, θ) =

{
x ∈ RN

∣∣∣∣ δ ≤ |x− x0| ≤ ε,
x− x0

|x− x0|
· ∇p(x0)

|∇p(x0)|
≥ cos θ

}
,

where θ ∈ (0, π/2). Then we obtain the following.
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Lemma 2.8. If p ∈ C1(Ω), x0 ∈ Ω satisfy ∇p(x0) 6= 0, then there exists

a small enough ε > 0 such that

(x− x0) · ∇p(x) > 0, for all x ∈ B(x0, ε, δ, θ),(2.1)

max{p(x) | x ∈ B(x0, ε)} = max{p(x) | x ∈ B(x0, ε, δ, θ), |x− x0| = ε}.(2.2)

Proof. A proof of this lemma can be found in [45]. For readers’ convenience,

we include it here.

Since p ∈ C1(Ω), for any x ∈ B(x0, ε, δ, θ), when ε > 0 is small enough, we

have

∇p(x) · (x− x0) = (∇p(x0) + o(1)) · (x− x0)

=∇p(x0) · (x− x0) + o(|x− x0|)

≥ |∇p(x0)| |x− x0| cos θ + o(|x− x0|) > 0,

where o(1) ∈ RN is a function and o(1)→ 0 uniformly as |x− x0| → 0.

When ε is small enough, condition (2.1) is valid. Since p ∈ C1(Ω), there

exists a small enough positive ε such that

p(x)− p(x0) = ∇p(y) · (x− x0) = (∇p(x0) + o(1)) · (x− x0),

where y = x0 + τ(x − x0) and τ ∈ (0, 1), o(1) ∈ RN is a function and o(1) → 0

uniformly as |x− x0| → 0.

Suppose that x ∈ B(x0, ε) \ B(x0, ε, δ, θ). Let x∗ = x0 + ε∇p(x0)/|∇p(x0)|.
Suppose that

x− x0

|x− x0|
· ∇p(x0)

|∇p(x0)|
< cos θ.

When ε is small enough, we have

p(x)− p(x0) = (∇p(x0) + o(1)) · (x− x0) < |∇p(x0)| |x− x0| cos θ + ε · o(1)

≤ (∇p(x0) + o(1)) · ε∇p(x0)/|∇p(x0)| = p(x∗)− p(x0),

where o(1) ∈ RN is a function and o(1)→ 0 as ε→ 0.

Suppose that |x− x0| < δ. When ε is small enough, we have

p(x)− p(x0) = (∇p(x0) + o(1)) · (x− x0) ≤ |∇p(x0)| |x− x0|+ ε · o(1)

< (∇p(x0) + o(1)) · ε∇p(x0)/|∇p(x0)| = p(x∗)− p(x0),

where o(1) ∈ RN is a function and o(1)→ 0 as ε→ 0. Thus

(2.3) max{p(x) | x ∈ B(x0, ε)} = max{p(x) | x ∈ B(x0, ε, δ, θ)}.

It follows from (2.1) and (2.3) that relation (2.2) holds. �

Lemma 2.9. Suppose that F (x, u) satisfies (f4). Let

h(x) =

0 if |x− x0| > ε,

ε− |x− x0| if |x− x0| ≤ ε,
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where ε is defined as in Lemma 2.8. Then∫
Ω

|∇th|p(x) dx−
∫

Ω

F (x, th) dx→ −∞ as t→ +∞.

Proof. Obviously,∫
Ω

1

p(x)
|∇th|p(x) dx ≤ C2

∫
B(x0,ε,δ,θ)

|∇th|p(x) dx.

We make a spherical coordinate transformation. Denote r = |x − x0|. Since

p ∈ C1(Ω), it follows from (2.1) that there exist positive constants c1 and c2
such that

p(ε, ω)− c2(ε− r) ≤ p(r, ω) ≤ p(ε, ω)− c1(ε− r), for all (r, ω) ∈ B(x0, ε, δ, θ).

Therefore ∫
B(x0,ε,δ,θ)

|∇th|p(x) dx =

∫
B(x0,ε,δ,θ)

|t|p(r,ω)rN−1 dr dω(2.4)

≤
∫
B(x0,ε,δ,θ)

|t|p(ε,ω)−c1(ε−r)rN−1 dr dω

≤ εN−1

∫
B(x0,ε,δ,θ)

tp(ε,ω)−c1(ε−r) dr dω

≤ εN−1

∫
B(x0,1,1,θ)

tp(ε,ω)

c1 ln t
dω.

Denote

G(x, u) =
F (x, u)

|u|p(x)[ln(e+ |u|)]p(x)
.

Then

(2.5) G(x, u)→ +∞ uniformly as |u| → +∞ for x ∈ Ω.

Thus there exists a positive constant M such that G(x, u) ≥ 1, for all |u| ≥ M

and for all x ∈ Ω. Denote

E1 = {x ∈ B(x0, ε) | th ≥M} = {x ∈ B(x0, ε) | |x− x0| ≤ ε−M/t},

E2 = B(x0, ε) \ E1.

Then we have∫
Ω

F (x, th) dx =

∫
B(x0,ε)

F (x, th) dx

=

∫
E1

F (x, th) dx+

∫
E2

F (x, th) dx ≥
∫
E1

F (x, th) dx− C1.
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When t is large enough, we have∫
E1

F (x, th) dx =

∫
E1

|th|p(x)[ln(e+ |th|)]p(x)G(x, th) dx

=

∫
B(x0,ε−M/t,δ,θ)

C1|th|p(x)[ln(e+ |th|)]p(x)G(x, th) dx

=

∫
B(x0,ε−M/t,δ,θ)

C1|t(ε− r)|p(r,ω)rN−1

· [ln(e+ |t(ε− r)|)]p(r,ω)G(r, ω, t(ε− r)) dr dω

≥C1δ
N−1

∫
B(x0,ε−M/t,δ,θ)

|t|p(ε,ω)−c2(ε−r)|ε− r|p(ε,ω)−c1(ε−r)

· [ln(e+ |t(ε− r)|)]p(r,ω)G(r, ω, t(ε− r)) dr dω

=C1δ
N−1

∫
B(x0,1,1,θ)

dω

∫ ε−M/t

δ

|t|p(ε,ω)−c2(ε−r)|ε− r|p(ε,ω)−c1(ε−r)

· [ln(e+ |t(ε− r)|)]p(r,ω)G(r, ω, t(ε− r)) dr

≥C1δ
N−1

∫
B(x0,1,1,θ)

dω

∫ ε−1/ln t

δ

|t|p(ε,ω)−c2(ε−r)|ε− r|p(ε,ω)

· [ln(e+ |t(ε− r)|)]p(r,ω)G(r, ω, t(ε− r)) dr

≥C2δ
N−1G(rt, ωt, t(ε− rt))

∫
B(x0,1,1,θ)

(
1

ln t

)p(ε,ω)[
ln

(
e+

t

ln t

)]p(ε,ω)

·
∫ ε−1/ln t

δ

|t|p(ε,ω)−c2(ε−r) dr dω

≥C3δ
N−1G(rt, ωt, t(ε− rt))

∫
B(x0,1,1,θ)

|t|p(ε,ω)−c2/ln t

c2 ln t
dω

≥C4δ
N−1G(rt, ωt, t(ε− rt))

∫
B(x0,1,1,θ)

|t|p(ε,ω)

c2 ln t
dω,

where (rt, ωt) ∈ E1 is such that

G(rt, ωt, t(ε− rt)) = min

{
G(r, ω, t(ε− r))

∣∣∣∣ (r, ω) ∈ B
(
x0, ε−

1

ln t
, δ, θ

)}
.

Note that t(ε− rt) ≥ t/ln t→ +∞ as t→ +∞. Thus

(2.6)

∫
Ω

F (x, th) dx ≥ G(rt, ωt, t(ε− rt))C5

∫
B(x0,1,1,θ)

|t|p(ε,ω)

ln t
dω − C1

as t→ +∞. It follows from (2.4), (2.5) and (2.6) that Ψ(th)→ −∞. �
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Lemma 2.10. The following Ki (i = 1, 2, 3) satisfy hypothesis (K)

K1(t) = ln(e+ |t|);

K2(t) = ln(e+ ln(e+ |t|));

K3(t) = [ln(e+ ln(e+ |t|))] ln(e+ |t|).

Proof. We only need to check that K3(t) satisfies hypothesis (K). The

proofs for the other functions are similar.

We observe that 1 ≤ K( · ) ∈ C1([0,+∞), [1,+∞)) is increasing and K(t)→
+∞ as t→ +∞. So we only need to prove that tK ′(t)/K(t) ≤ σ ∈ (0, 1), where

σ is a constant. By computation we obtain

tK ′

K
=

t

K

{
[ln(e+ |t|)]sgn t

[e+ ln(e+ |t|)](e+ |t|)
+

[ln(e+ ln(e+ |t|))]sgn t

(e+ |t|)

}
=

|t|
[ln(e+ ln(e+ |t|))][e+ ln(e+ |t|)](e+ |t|)

+
|t|

[ln(e+ |t|)](e+ |t|)
.

We have

|t| ≤ 1

3
[ln(e+ ln(e+ |t|))][e+ ln(e+ |t|)](e+ |t|),

|t| ≤ 1

2
[ln(e+ |t|)](e+ |t|)

and we complete the proof by observing that tK ′/K ≤ 5/6, for all t ∈ R. �

3. Proofs of main results

In this section we give the proofs of our main results.

Definition 3.1. We say that u ∈W 1,p( · )
0 (Ω) is a weak solution of (P) if∫

Ω

|∇u|p(x)−2∇u · ∇v dx =

∫
Ω

f(x, u)vd x, for all v ∈ X := W
1,p( · )
0 (Ω).

The corresponding functional of (P) is

ϕ(u) =

∫
Ω

1

p(x)
|∇u|p(x) dx−

∫
Ω

F (x, u) dx, u ∈ X,

where F (x, t) =
∫ t

0
f(x, s) ds.

Definition 3.2. We say that ϕ satisfies the Cerami condition in X, if any

sequence {un} ⊂ X such that {ϕ(un)} is bounded and ‖ϕ′(un)‖(1 + ‖un‖)→ 0

as n→ +∞ has a convergent subsequence.

Lemma 3.3. If f satisfies (f0) and (f1), then ϕ satisfies the Cerami condition.



Nonhomogeneous Problems without the Ambrosetti–Rabinowitz Condition 67

Proof. Let {un} ⊂ X be a Cerami sequence, that is ϕ(un) → c and

‖ϕ′(un)‖(1 + ‖un‖)→ 0. Therefore ϕ′(un) = L(un)− f(x, un)→ 0 in X∗, so we

have L(un) = f(x, un) + on(1), where on(1)→ 0 in X∗ as n→∞. Suppose that

{un} is bounded. Then {un} has a weakly convergent subsequence in X. With-

out loss of generality, we may assume that un ⇀ u. Then by Propositions 2.2

and 2.5, we have f(x, un) → f(x, u) in X∗. Thus L(un) = f(x, un) + on(1) →
f(x, u) in X∗. Since L is a homeomorphism, we have un → L−1(f(x, u)) in

X, and so ϕ satisfies the Cerami condition. Therefore u = L−1(f(x, u)), so

L(u) = f(x, u), which means that u is a solution of (P). Thus we only need to

prove the boundedness of the Cerami sequence {un}.
We argue by contradiction. Then there exist c ∈ R and {un} ⊂ X satisfying:

ϕ(un)→ c, ‖ϕ′(un)‖(1 + ‖un‖)→ 0, ‖un‖ → +∞.

Obviously,∣∣∣∣ 1

p(x)
un

∣∣∣∣
p( · )
≤ 1

p−
|un|p( · ),

∣∣∣∣∇ 1

p(x)
un

∣∣∣∣
p( · )
≤ 1

p−
|∇un|p( · ) + C|un|p( · ).

Thus ‖un/p(x)‖ ≤ C‖un‖. Therefore (ϕ′(un), un/p(x)) → 0. We may assume

that

c+1 ≥ ϕ(un)−
(
ϕ′(un),

1

p(x)
un

)
=

∫
Ω

1

p(x)
|∇un|p(x) dx−

∫
Ω

F (x, un) dx−
{∫

Ω

1

p(x)
|∇un|p(x) dx

−
∫

Ω

1

p(x)
f(x, un)un dx−

∫
Ω

1

p2(x)
un|∇un|p(x)−2∇un∇p dx

}
≥
∫

Ω

1

p2(x)
un|∇un|p(x)−2∇un∇p dx+

∫
Ω

{
1

p(x)
f(x, un)un − F (x, un)

}
dx.

Hence

(3.1)

∫
Ω

{
f(x, un)un

p(x)
− F (x, un)

}
dx ≤ C0

(∫
Ω

|un||∇un|p(x)−1 dx+ 1

)
≤ σ

∫
Ω

|∇un|p(x)

K(|un|)
dx+ C1 + C(σ)

∫
Ω

|un|p(x)[K(|un|)]p(x)−1 dx,

where σ is a small enough positive constant. Due to hypothesis (K), it is easy

to check that un/K(|un|) ∈ X, and ‖un/K(|un|)‖ ≤ C2‖un‖. Let un/K(|un|)
be a test function. We have∫

Ω

f(x, un)
un

K(|un|)
dx =

∫
Ω

|∇un|p(x)−2∇un∇
un

K|un|)
dx+ o(1)

=

∫
Ω

|∇un|p(x)

K(|un|)
dx−

∫
Ω

un|∇un|p(x)−2∇un∇
1

K(|un|)
dx+ o(1).
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By computation, we obtain∣∣∣∣ ∫
Ω

un|∇un|p(x)−2∇un∇
1

K(|un|)
dx

∣∣∣∣ ≤∫
Ω

|un||∇un|p(x)−1 |∇K(|un|)|
K2(|un|)

dx

≤
∫

Ω

|∇un|p(x)

K(|un|)
|un|K ′|un|)
K(|un|)

dx.

Note that |un|K ′(|un|)/K(|un|) ≤ σ0 ∈ (0, 1). Thus

(3.2) C3

∫
Ω

|∇un|p(x)

K(|un|)
dx− C4 ≤

∫
Ω

f(x, un)un
K(|un|)

dx ≤ C5

∫
Ω

|∇un|p(x)

K(|un|)
dx+ C6.

By (3.1), (3.2) and conditions (f0) and (f1), we have∫
Ω

f(x, un)
un

K(|un|)
dx

(f1)

≤ C7

∫
Ω

{
f(x, un)un

p(x)
− F (x, un)

}
dx+ C7

≤ C7

{
σ

∫
Ω

|∇un|p(x)

K(|un|)
dx+ C8 + C(σ)

∫
Ω

|un|p(x)[K(|un|)]p(x)−1 dx

}
≤ C7σ

∫
Ω

|∇un|p(x)

K(|un|)
dx+ C7C(σ)

∫
Ω

|un|p(x)[K(|un|)]p(x)−1dx+ C9

(3.2)

≤ 1

2

∫
Ω

f(x, un)un
K(|un|)

dx+ C7C(σ)

∫
Ω

|un|p(x)[K(|un|)]p(x)−1 dx+ C10.

Thus, by condition (f1) and the above inequality, we can see that

(3.3)

∫
Ω

f(x, un)
un

K(|un|)
dx ≤ C11

∫
Ω

|un|p(x)[K(|un|)]p(x)−1 dx+ C12.

Note that tf(x, t)/(|t|p(x)[K(t)]p(x)) → +∞ uniformly as |t| → +∞ for x ∈ Ω.

We claim that ∫
Ω

|un|p(x)[K(|un|)]p(x)−1 dx is bounded.

This means that ∫
Ω

f(x, un)
un

K(|un|)
dx is bounded.

In fact, by (K), we observe that there exists M > 0 large enough such that

(3.4)
tf(x, t)

K(t)
> 2C11|t|p(x)[K(t)]p(x)−1, for all |t| ≥M.

Denote Ωn = {x ∈ Ω | |un| ≥M}. We have

(3.5)

∫
Ω

f(x, un)
un

K(|un|)
dx ≥

∫
Ωn

2C11|un|p(x)[K(|un|)]p(x)−1 dx− C12.

Combining (3.3)–(3.5), we obtain∫
Ωn

C11|un|p(x)[K(|un|)]p(x)−1 dx ≤ C13,

and hence ∫
Ω

C11|un|p(x)[K(|un|)]p(x)−1 dx ≤ C14.
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Thus ∫
Ω

f(x, un)
un

K(|un|)
dx ≤ C14, for any n = 1, 2, . . .

This combined with (f0) implies that

(3.6)

{∫
Ω

|f(x, un)un|
K(|un|)

dx

}
is bounded.

Let ε > 0 satisfy ε < min{1, p−−1, 1/p∗+, (p∗/α)−−1}. Since ‖ϕ′(un)‖‖un‖→0,

we get∫
Ω

|∇un|p(x) dx =

∫
Ω

f(x, un)un dx+ o(1)

≤
∫ ε

Ω

|f(x, un)un|ε[K(|un|)]1−ε
[
|f(x, un)un|
K(|un|)

]1−ε

dx+ o(1).

By condition (f1), we have |f(x, un)un| ≥ |un|p(x) for large enough vertun| , and

[K(|un|)]1−ε ≤ [ln(e+ |un|)]2(1−ε) for large enough |un|, so we have

|f(x, un)un|ε[K(|un|)]1−ε ≤ C15(|f(x, un)un|ε(1+ε) + 1).

Therefore∫
Ω

|∇un|p(x) dx =

∫
Ω

f(x, un)un dx+ o(1)

≤ C15(1 + ‖un‖)1+ε

∫
Ω

[
|f(x, un)un|1+ε + 1

(1 + ‖un‖)(1+ε)/ε

]ε[ |f(x, un)un|
K(|un|)

]1−ε

dx+ o(1).

By Young’s inequality, we have

(3.7)

∫
Ω

|∇un|p(x) dx

≤ C15(1 + ‖un‖)1+ε

∫
Ω

|f(x, un)un|1+ε + 1

(1 + ‖un‖)(1+ε)/ε
+
|f(x, un)un|
K(|un|)

dx+ o(1).

According to the definition of ε, we have

|f(x, un)un|1+ε + 1 ≤ C(|un|p
∗(x) + 1)

and

(1 + ‖un‖)(1+ε)/ε ≥ (1 + ‖un‖)(1+ε)(p∗)+ .

Therefore∫
Ω

|f(x, un)un|1+ε + 1

(1 + ‖un‖)(1+ε)/ε
dx ≤

∫
Ω

C(|un|p
∗(x) + 1)

(1 + ‖un‖)(1+ε)/ε
dx

≤ C(|un|(p
∗)+ + 1)

(1 + ‖un‖)(1+ε)/ε
≤ C#(‖un‖(p

∗)+ + 1)

(1 + ‖un‖)(1+ε)/ε
.

Thus, the sequence {∫
Ω

|f(x, un)un|1+ε + 1

(1 + ‖un‖)(1+ε)/ε
dx

}
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is bounded. This combined with (3.6) and (3.7) implies∫
Ω

|∇un|p(x) dx ≤ C16(1 + ‖un‖)1+ε + C17.

Note that ε < p− − 1. This is a contradiction, hence {un} is bounded in X, as

claimed. �

Proof of Theorem 1.1. We first establish the existence of a nontrivial

weak solution. We show that ϕ satisfies conditions of the mountain pass lemma.

By Lemma 3.3, ϕ satisfies the Cerami condition. Since p(x) < α(x) < p∗(x), the

embedding X ↪→ Lα( · )(Ω) is compact. Hence there exists C0 > 0 such that

|u|p( · ) ≤ C0‖u‖, for all u ∈ X.

Let σ > 0 be small enough such that σ ≤ 1
4 λp( · ). By assumptions (f0) and (f2),

we obtain

F (x, t) ≤ σ 1

p(x)
|t|p(x) + C(σ)|t|α(x), for all (x, t) ∈ Ω× R.

By (p1) and Lemma 2.6, we have λp( · ) > 0 and∫
Ω

1

p(x)
|∇u|p(x) dx− σ

∫
Ω

1

p(x)
|u|p(x) dx ≥ 3

4

∫
Ω

1

p(x)
|∇u|p(x).

Since α ∈ C(Ω) and p(x) < α(x) < p∗(x), we can divide the domain Ω into n0

disjoint small subdomains Ωi (i = 1, . . . , n0) such that Ω =
n0⋃
i=1

Ωi and

sup
Ωi

p(x) < inf
Ωi

α(x) ≤ sup
Ωi

α(x) < inf
Ωi

p∗(x).

Let ε = min
1≤i≤n0

{
inf
Ωi

α(x)− sup
Ωi

p(x)
}

and denote by ‖u‖Ωi the norm of u on Ωi,

that is ∫
Ωi

1

p(x)

∣∣∣∣∇ u

‖u‖Ωi

∣∣∣∣p(x)

dx+

∫
Ωi

1

p(x)

∣∣∣∣ u

‖u‖Ωi

∣∣∣∣p(x)

dx = 1.

Then ‖u‖Ωi ≤ C‖u‖ and there exist ξi, ηi ∈ Ωi such that

|u|α(ξi)
α( · ) =

∫
Ωi

|u|α(x) dx,

‖u‖p(ηi)Ωi
=

∫
Ωi

(
1

p(x)
|∇u|p(x) +

1

p(x)
|u|p(x)

)
dx.

When ‖u‖ is small enough, we have

C(σ)

∫
Ω

|u|α(x) dx =C(σ)

n0∑
i=1

∫
Ωi

|u|α(x) dx

=C(σ)

n0∑
i=1

|u|α(ξi)
α( · ) (where ξi ∈ Ωi)
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≤C
n0∑
i=1

‖u‖α(ξi)
Ωi

(by Proposition 2.5)

≤C‖u‖ε
n0∑
i=1

‖u‖p(ηi)Ωi
(where ηi ∈ Ωi)

=C‖u‖ε
n0∑
i=1

∫
Ωi

(
1

p(x)
|∇u|p(x) +

1

p(x)
|u|p(x)

)
dx

=C‖u‖ε
∫

Ω

(
1

p(x)
|∇u|p(x) +

1

p(x)
|u|p(x)

)
dx

≤ 1

4

∫
Ω

1

p(x)
|∇u|p(x) dx.

Thus

ϕ(u) ≥
∫

Ω

1

p(x)
|∇u|p(x) − σ

∫
Ω

1

p(x)
|u|p(x) dx− C(σ)

∫
Ω

|u|α(x) dx

≥ 1

2

∫
Ω

1

p(x)
|∇u|p(x)

when ‖u‖ is small enough. Therefore, there exist r > 0 and δ > 0 such that

ϕ(u) ≥ δ > 0 for every u ∈ X and ‖u‖ = r.

Suppose (p2) is satisfied. Define h ∈ C0(B(x0, 3δ)) as follows:

h(x) =


0 if |x− x0| ≥ 3δ,

3δ − |x− x0| if 2δ ≤ |x− x0| < 3δ,

δ if |x− x0| < 2δ.

Note that min
|x−x0|≤δ

p(x) > max
2δ≤|x−x0|≤3δ

p(x). It is now easy to check that

ϕ(th) =

∫
Ω

1

p(x)
|∇th|p(x) −

∫
Ω

F (x, th) dx

≤
∫
B(x0,3δ)\(B(x0,2δ))

1

p(x)
|∇th|p(x) −

∫
(B(x0,δ))

C1|th|p(x) dx+ C2 → −∞

as t → +∞. Since ϕ(0) = 0, the functional ϕ satisfies the conditions of the

mountain pass lemma. So ϕ admits at least one nontrivial critical point, which

implies that problem (P) has a nontrivial weak solution u.

Suppose (f4) is satisfied. We may assume that there exists x0 ∈ Ω such that

∇p(x0) 6= 0. Define h ∈ C0(B(x0, ε)) as follows:

h(x) =

0 if |x− x0| ≥ ε,
ε− |x− x0| if |x− x0| < ε.

By (f4) and Lemma 2.9, there exists ε > 0 small enough such that

ϕ(th) =

∫
Ω

1

p(x)
|∇th|p(x) −

∫
Ω

F (x, th) dx→ −∞ as t→ +∞.
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Since functional ϕ(0) = 0, ϕ satisfies the conditions of the mountain pass lemma.

So ϕ admits at least one nontrivial critical point, which implies that problem (P)

has a nontrivial weak solution u. �

In order to prove Theorem 1.2, we need to make some preparations. Note that

X := W
1,p( · )
0 (Ω) is a reflexive and separable Banach space (see [47], Section 17,

Theorems 2 and 3). Therefore there exist {ej} ⊂ X and {e∗j} ⊂ X∗ such that

X = span{ej , j = 1, 2, . . .}, X∗ = spanW
∗
{e∗j , j = 1, 2, . . .},

and

〈e∗j , ej〉 =

1 if i = j,

0 if i 6= j.

For convenience, we write

Xj = span{ej}, Yk =

k⊕
j=1

Xj and Zk =

∞⊕
j=k

Xj .

Lemma 3.4. Assume that α ∈ C+(Ω), α(x) < p∗(x) for any x ∈ Ω. If

βk = sup{|u|α( · ) | ‖u‖ = 1, u ∈ Zk},

then lim
k→∞

βk = 0.

Proof. Obviously, 0 < βk+1 ≤ βk, so βk → β ≥ 0. Let uk ∈ Zk satisfy

‖uk‖ = 1, 0 ≤ βk − |uk|α( · ) <
1

k
.

Then there exists a subsequence of {uk} (which we still denote by uk) such that

uk ⇀ u, and

〈e∗j , u〉 = lim
k→∞

〈e∗j , uk〉 = 0, for all e∗j .

This implies that u = 0, and so uk ⇀ 0. Since the embedding from W
1,p( · )
0 (Ω)

into Lα( · )(Ω) is compact, we can conclude that uk → 0 in Lα( · )(Ω). Hence we

get βk → 0 as k →∞. �

In order to prove Theorem 1.2, we need the following auxiliary result, see

[50, Theorem 4.7]. If the Cerami condition is replaced by the PS condition, we

can use the following property, see [9, Theorem 3.6].

Lemma 3.5. Suppose that ϕ ∈ C1(X,R) is even and satisfies the Cerami

condition. Let V +, V − ⊂ X be closed subspaces of X with codimV + + 1 =

dimV −. Suppose that:

(1) ϕ(0) = 0;

(2) there exist τ > 0, γ > 0 such that, for all u ∈ V +, if ‖u‖ = γ then

ϕ(u) ≥ τ ; and

(3) there exists ρ > 0 such that, for all u ∈ V −, if ‖u‖ ≥ ρ then ϕ(u) ≤ 0.
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Consider the set:

Γ =
{
g ∈ C0(X,X) | g is odd, g(u) = u if u ∈ V − and ‖u‖ ≥ ρ

}
.

Then

(a) for all δ > 0, g ∈ Γ, S+
δ ∩ g(V −) 6= ∅, and it satisfies S+

δ = {u ∈ V + |
‖u‖ = δ}; and

(b) the number $ := inf
g∈Γ

sup
u∈V −

ϕ(g(u)) ≥ τ > 0 is a critical value for ϕ.

Proof of Theorem 1.2. We first establish the existence of infinitely many

pairs of weak solutions. According to (f0), (f1) and (f3), the functional ϕ is an

even functional and it satisfies the Cerami condition. Let V +
k = Zk be a closed

linear subspace of X and V +
k ⊕ Yk−1 = X.

Suppose that (f4) is satisfied. We may assume that there exists xn ∈ Ω such

that ∇p(xn) 6= 0. Define hn ∈ C0(B(xn, εn)) by

hn(x) =

0 if |x− xn| ≥ εn,
εn − |x− xn| if |x− xn| < εn.

Without loss of generality, we may assume that supphi ∩ supphj = ∅, for all

i 6= j. By Lemma 2.9, we can let εn > 0 be small enough, so that

ϕ(thn) =

∫
Ω

1

p(x)
|∇thn|p(x) −

∫
Ω

F (x, thn) dx→ −∞ as t→ +∞.

Suppose that (p3) is satisfied. Define hn ∈ C0(B(xn, εn)) by

hn(x) =


0 if |x− xn| ≥ 3δn,

3δn − |x− xn| if 2δn ≤ |x− xn| < 3δn,

δn if |x− xn| < 2δn.

Note that min
|x−xn|≤δn

p(x) > max
2δn≤|x−xn|≤3δn

p(x). It follows that

ϕ(thn) =

∫
Ω

1

p(x)
|∇thn|p(x) −

∫
Ω

F (x, thn) dx

≤
∫

2δn≤|x−xn|≤3δn

1

p(x)
|∇thn|p(x) −

∫
|x−xn|≤δn

C1|thn|p(x) dx+ C2→−∞

as t→ +∞.

Set V −k = span{h1, . . . , hk}. We will prove that there exist infinitely many

pairs of V +
k and V −k , such that ϕ satisfies the conditions of Lemma 3.5 and the

corresponding critical value satisfies

$k := inf
g∈Γ

sup
u∈V −

k

ϕ(g(u))→ +∞
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when k → +∞. This shows that there are infinitely many pairs of solutions of

problem (P). For any m = 1, 2, . . ., we will prove that there exist ρm > γm > 0

and large enough km such that

(A1) bkm := inf {ϕ(u) | u ∈ V +
km
, ‖u‖ = γm} → +∞ (m→ +∞); and

(A2) akm := max{ϕ(u) | u ∈ V −km , ‖u‖ = ρm} ≤ 0.

First, we prove (A1) as follows. By computation, for any u ∈ Zkm with

‖u‖ = γm = m, we have

ϕ(u) =

∫
Ω

1

p(x)
|∇u|p(x) dx−

∫
Ω

F (x, u) dx

≥ 1

p+

∫
Ω

|∇u|p(x) dx− C
∫

Ω

|u|α(x) dx− C1

∫
Ω

|u| dx

≥ 1

p+
‖u‖p

−
− C|u|α(ξ)

α( · ) − C2|u|α( · ) (where ξ ∈ Ω)

≥


1

p+
‖u‖p

−
− Cβα

−

km ‖u‖
α−
− C2βkm‖u‖ if |u|α( · ) ≤ 1,

1

p+
‖u‖p

−
− Cβα

+

km‖u‖
α+

− C2βkm‖u‖ if |u|α( · ) > 1,

≥ 1

p+
‖u‖p

−
− Cβα

−

km (‖u‖α
+

+ 1)− C2βkm‖u‖.

Obviously, there exists a large enough km such that, for all u ∈ Zkm with ‖u‖ =

γm = m,

1

p+
‖u‖p

−
− Cβα

−

km (‖u‖α
+

+ 1)− C2βkm‖u‖ ≥
1

2p+
‖u‖p

−
.

Therefore ϕ(u) ≥ ‖u‖p−/2p+, for all u ∈ Zkm with ‖u‖ = γm = m. Hence

bkm → +∞ as m→∞.
Next, we give a proof of (A2). According to the above discussion, it is easy

to see that

Ψ(thkm)→ −∞ as t→ +∞.
We conclude that, for all h ∈ V −km = span{h1, . . . , hkm} with ‖h‖ = 1,

ϕ(th)→ −∞ as t→ +∞. �
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