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Abstract

In this paper we deal with a second order nonlinear evolution inclusion, with a nonmonotone, noncoercive
viscosity term. Using a parabolic regularization (approximation) of the problem and a priori bounds that
permit passing to the limit, we prove that the problem has a solution.
© 2017 Elsevier Inc. All rights reserved.

MSC: primary 35L90; secondary 35R70, 47H04, 47HO05

Keywords: Evolution triple; Compact embedding; Parabolic regularization; Noncoercive viscosity term; A priori bounds

1. Introduction

Let T = [0, b] and let (X, H, X™*) be an evolution triple of spaces, with the embedding of X
into H being compact (see Section 2 for definitions).
In this paper, we study the following nonlinear evolution inclusion:

* Corresponding author.
E-mail addresses: npapg @math.ntua.gr (N.S. Papageorgiou), vicentiu.radulescu@imar.ro (V.D. Radulescu),
dusan.repovs @ guest.arnes.si (D.D. Repovs).

https://doi.org/10.1016/j.jde.2017.12.022
0022-0396/© 2017 Elsevier Inc. All rights reserved.


http://www.sciencedirect.com
https://doi.org/10.1016/j.jde.2017.12.022
http://www.elsevier.com/locate/jde
mailto:npapg@math.ntua.gr
mailto:vicentiu.radulescu@imar.ro
mailto:dusan.repovs@guest.arnes.si
https://doi.org/10.1016/j.jde.2017.12.022
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jde.2017.12.022&domain=pdf

4750 N.S. Papageorgiou et al. / J. Differential Equations 264 (2018) 4749-4763
u”(t) + A(t,u'(t)) + Bu(t) € F(t,u(t),u'(t)) for almostall t € T,

_ 10) — (1
u(0)=ug, u'(0)=uy.

In the past, such multi-valued problems were studied by Gasinski [3], Gasinski and Smolka
[6,7], Migoérski et al. [11-14], Ochal [15], Papageorgiou, Radulescu and Repovs [16,17], Papa-
georgiou and Yannakakis [18,19]. The works of Gasinski [3], Gasinski and Smolka [6,7] and
Ochal [15], all deal with hemivariational inequalities, that is, F (¢, x, y) = dJ (x) with J(-) being
a locally Lipschitz functional and 9 J (-) denoting the Clarke subdifferential of J(-). In Papageor-
giou and Yannakakis [18,19], the multivalued term F (¢, x, y) is general (not necessarily of the
subdifferential type) and depends also on the time derivative of the unknown function u(-). With
the exception of Gasinski and Smolka [7], in all the other works the viscosity term A(z, -) is
assumed to be coercive or zero. In the work of Gasinski and Smolka [7], the viscosity term is
autonomous (that is, time independent) and A : X — X* is linear and bounded.

In this work, the viscosity term A : T x X — X* is time dependent, noncoercive, nonlinear
and nonmonotone in x € X. In this way, we extend and improve the result of Gasinski and
Smolka [7]. Our approach uses a kind of parabolic regularization of the inclusion, analogous to
the one used by Lions [10, p. 346] in the context of semilinear hyperbolic equations.

2. Mathematical background and hypotheses

Let V, Y be Banach spaces and assume that V' is embedded continuously and densely into Y
(denoted by V < Y). Then we have the following properties:

(i) Y* is embedded continuously into V*;

(ii) if V is reflexive, then Y* — V*,

The following notion is a useful tool in the theory of evolution equations.

Definition 1. By an “evolution triple” (or “Gelfand triple”) we understand a triple of spaces
(X, H, X*) such that

(a) X is a separable reflexive Banach space and X* is its topological dual,
(b) H is a separable Hilbert space identified with its dual H*, that is, H = H* (pivot space);
(c) X— H.

Then from the initial remarks we have
X< H=H*"— X*.

In what follows, we denote by || - || the norm of X, by | - | the norm of H and by || - ||« the
norm of X*. Evidently we can find ¢1, ¢; > 0 such that

[-I<éill-lland [[ -]l < &l -]

By (-, -) we denote the inner product of H and by (-, -) the duality brackets for the pair (X*, X).
We have

(- MExx =C,). 2
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Let 1 < p < 0o. The following space is important in the study of problem (1):
» Py N 1 1
WP(O,b)z{ueL(T,X):ueL (T,X)} St=1).

Here u’ is understood in the distributional sense (weak derivative). We know that L?(T, X)*
= L" (T, X*) (see, for example, Gasinski and Papageorgiou [4, p. 129]). Suppose that u €
W,(0,b). If we view u(-) as an X*-valued function, then u(-) is absolutely continuous, hence
differentiable almost everywhere and this derivative coincides with the distributional one. So,
u' e Ll’/(T, X*) and we can say

W,(0,b) € ACHP (T, X*) = WhP'((0, ), X*).

The space W, (0, b) is equipped with the norm

1
ity = [l 7y 1112 ] foralla e W, (0,5),

Evidently, another equivalent norm on W, (0, b) is
lulw, = llullLr(r,x) + |u'[|Le (7, x+) for allu € W, (0, b).

With any of the above norms, W, (0, b) becomes a separable reflexive Banach space. We have
that

W,(0,0) — C(T, H); 3)
W, (0,b) — LP(T, H) and the embedding is compact. 4)

The elements of W, (0, b) satisfy an integration by parts formula which will be useful in our
analysis.

Proposition 2. If u,v € W,(0,b) and £(t) = (u(t),v(t)) for all t € T, then &(-) is absolutely
continuous and z—f(t) = {(u'(t),v(t)) + (u(t), V') for almost all t € T.

Now suppose that (€2, X, u) is a finite measure space, X is i — complete and Y is a sepa-

rable Banach space. A multifunction (set-valued function) F : @ — 2¥\{#} is said to be “graph
measurable”, if

GrF={(w,y)eQxY:yeF(w)}eXx B(Y),
with B(Y) being the Borel o-field of Y.

If F(-) has closed values, then graph measurability is equivalent to saying that for every y € Y
the R -valued function

> d(y, F(w)) =inf{|[y —v[ly : v € F(w)}

is X-measurable.
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Given a graph measurable multifunction F : @ — 2¥\{#}, the Yankov—von Neumann—
Aumann selection theorem (see Hu and Papageorgiou [8, p. 158]) implies that F(-) admits
a measurable selection, i.e. that there exists f : & — Y a X-measurable function such that
f(w) € F(w) p-almost everywhere. In fact, we can find an entire sequence {f;},>1 of mea-
surable selections such that F(w) C { f,(w)},~; n-almost everywhere.

For 1 < p < o0, we define B

Sh={feLlP(Q,Y): f(») € F(w) u-almost everywhere}.

It is easy to see that S? # ¢ if and only if w — inf{||v]|y : v € F(w)} belongs to L? (L2). This set
is “decomposable” in the sense that if (A, f1, f2) € X X Sﬁ X S,’;, then

xafi+ xac fr € Sp.

Finally, for a sequence {C,},>1 of nonempty subsets of ¥, we define

w—limsupC, ={yeY:y=w— lim y,, yy € Cy,n1 <np <---<ng<---}5
n—00 k— 00
For more details on the notions discussed in this section, we refer to Gasinski and Papageor-
giou [4], Roubicek [20], Zeidler [21] (for evolution triples and related notations) and Hu and
Papageorgiou [8] (for measurable multifunctions).

Let V be a reflexive Banach space and A : V — V* a map. We say that A is “pseudomono-
tone”, if A is continuous from every finite dimensional subspace of V into V,} (= the dual V*
equipped with the weak topology) and if

Uy 2 vin V, limsup{A(v,), v, —v) <0
n—oo

then
(A(w), v —y) <liminf(A(v,),v, —y) forally e V.
n—>oo

An everywhere defined maximal monotone operator is pseudomonotone. If V is finite dimen-
sional, then every continuous map A : V — V* is pseudomonotone.
In what follows, for any Banach space Z, we will use the following notations:

Pr)(Z) ={C < Z : C is nonempty, closed (and convex)},
Paykey(Z) ={C < Z : C is nonempty, (weakly-) compact (and convex)}.

The hypotheses on the data of problem (1) are the following:
H(A): A:T x T — X*is a map such that

(i) forall y € X, ¢+ A(t, y) is measurable;

(i1) for almostall t € T, the map y > A(¢, y) is pseudomonotone;

(ii) ||A(t, V)|« < a1(t) + c1||y||P~" for almost all 7 € T and all y € X, with a; € LP/(T),
c1>0,2<p<o0;

(iv) (A(z,y),y) >=0foralmostalls € T and all y € X.
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H(B): B e Z(X,X"), (Bx,y) = (x, By) forall x, y € X and (Bx, x) > co||x||* forall x € X
and some cq > 0.
H(F): F:T x Hx H— Py, (H) is amultifunction such that
(i) forallx,ye H,t+— F(t,x,y) is graph measurable;
(ii) for almostall # € T', the graph Gr F (¢, -, -) is sequentially closed in H x Hy, x Hy, (here Hy,
denotes the Hilbert space H furnished with the weak topology);
(i) |F(t,x,y)| =sup{|h]|:h e F(t,x,y)} <ax()(1 + |x| + |y]) for almost all r € T and all
x,y € H witha, € LZ(T)+.
Definition 3. We say that u € C(T, X) is a “solution” of problem (1) with ug € X, u; € H, if

e u' € W,(0,b) and
e there exists f € Slz,(_ WO () such that

u”(t) + A@t,u'(t)) + Bu(t) = f(¢) for almost allt € T,
u(0) =ug, u'(0) =u;.

In what follows, we denote by S(uq, u1) the set of solutions of problem (1). Recalling that
W, (0,b) — C(T, H) (see (3)), we have that

S(uo, up) € C(T, H).
By Troyanski’s renorming theorem (see Gasinski and Papageorgiou [4, p. 911]) we may assume
without loss of generality that both X and X* are locally uniformly convex. Let 7 : X — X™ be
the duality map of X defined by
Fo) ={x* e X*: (2%, x) = [1x]1* = |Ix*|13).
We know that F(-) is single-valued and a homeomorphism (see Gasinski and Papageorgiou [4,

p. 316] and Zeidler [21, p. 861]).
For every r > p, let K, : X — X* be the map defined by

K, () =yl F(y) forall y € X.
3. Existence theorem
Given € > 0, we consider the following perturbation (parabolic regularization) of problem (1):

u’(t) + A(t,u' (1)) + €K, (u'(t)) + Bu(t) € F(t,u(t),u'(t)) foraa. t €T, 5)
u(0) =ug, ' (0)=u;.

Consider the map A¢ : T x X — X* defined by
Ac(t,y)=A(t,y)+€K,(y)forallt €T, andall y € X.

This map has the following properties:
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(i) forall y € X, the map ¢ +— A (¢, y) is measurable;
(i1) for almost all # € T, the map y — Ac(, y) is pseudomonotone;
(iii) ||Ae(t, Y)|ls < ai1(t) + é1]y|/"~" for almost all € T, all y € X and with a; € L? (T),

¢1 > 0 (recall that r > p and % + % =1);
(1v) (Ae(t,y),y) =€]|y||" forallt e T,all y € X.
So, in problem (1) the viscosity term A¢(?, -) is coercive. Therefore we can apply Theorem 1
of Papageorgiou and Yannakakis [18] and we obtain the following existence result for the ap-

proximate (regularized) problem (5).

Proposition 4. If hypotheses H(A), H(B), H(F) hold and ug € X,u| € H, then problem (5)
admits a solution uc € W7 ((0, b), X) N CN(T, H) with

u. € W,(0,b).
To produce a solution for the original problem (1), we have to pass to the limit as € — 0.
To do this, we need to have a priori bounds for the solutions u.(-) which are independent of

ee€(0,1]and r > p.

Proposition 5. [f hypotheses H(A), H(B), H(F) hold, ug € X,uy € H and u(-) is a solution
of (5), then there exists My > 0 which is independent of € € (0, 1] and r > p for which we have

/ 1 / VA
Nulleer,x), W'lleer,my, €7l Lo, x), 20, x+) < Mo.

Proof. It follows from Proposition 4 that u’ € W, (0, b) and that there exists f € S%(. ()’ ()
such that

u”(t) + A(t,u' (1)) + €K, (u'(t)) + Bu(t) = f(¢) for almostall t € T.

We act with u/(t) € X. Then

" (@), u' (1)) + (A(r,u' (1)), u' (1)) + (K, ' (1)), u' (1)) = (f (1), u' (1)) (6)
for almost all t € T (see (2) ).

We examine separately each summand on the left-hand side of (6). Recall that u). € W,.(0, b).
So from Proposition 2 (the integration by parts formula), we have

1d
W’ (1), u’' (t)) = EEW(I)lz for almost all t € T. @)
Hypothesis H(A)(iv) and the definition of the duality map, imply that

(A, u' (1)), u' (1)) + €(K, @' (1)), u' (1)) > €||u’(1)||” for almost all £ € T. (8)

By hypothesis H (B), we have
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(Bu(t), u'(t)) = %%(Bu(t), u(t)) for almostallr € T. 9

We return to (6) and use (7), (8), (9). We obtain

L P + el O + 2L (Buw, u@) < (F(0), ' (0)) foraateT
2 dt 2dt ’ - ’ o ’

t
1
= §|u’(r>|2+e/||u’<s>||fds+co||u(r)||2
0

t
1 1 .
< / (f ), u'(5))ds + Sl 12 + EIIBIL%IIMOIIZ (see hypothesis H (B)). (10)
0
Using hypothesis H (F)(iii), we get

t
/(f(S), u'(s))ds
0

t
=< /[az(S) +ax($)(Ju(s)| + u'($)D1lu’ () ]ds
0

t t

t
< / lu' (s)|2ds + / ax(s)?ds + / a2 ()*[|u(s) > + |u’(s)|*1ds. (11)
0

0 0
Recall that u € W ((0, b), X) (see Proposition 4). So, u € ACY" (T, H) and we can write

t
u(t) =ug+ f u'(s)ds forallteT
0

t
= |u(t)|2 < 2|uo|2 + Zb/ |u/(s)|2ds for all t € T (using Jensen’s inequality). (12)
0

We use (12) in (11) and obtain

t
/ (f(s). i (s))ds
0

t 1 N

< llaz2|l5 + / [1 4 ax ()11’ ()] ds + f 2ax(5)? | |uol® +b f lu'(0)|?dt | ds
0 0 0
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t t N

gcz+fn(s)|u’(s)|2ds+2b/a2(s)2/|u’(r)|2dzds (13)
0 0 0

for some ¢; > 0and 5 € LY(T).

We use (13) in (10) and have

1
1
5|u/(r)|2+ef||u/(s>||”ds+co||u<t>||2
0

t t N

503+/n(s)|u’(s)|2ds+2b/a2(s)2/ |’ (t)|>dzds for some c3 > 0. (14)
0 0 0

Invoking Proposition 1.7.87 of Denkowski, Migérski and Papageorgiou [2, p. 128] we can find
M > 0 (independent of € € (0, 1] and r > p) such that

lu'()]> <M forall €T,

1
= ullcr,my <My =M?2.
Using this bound in (14), we can find M> > 0 (independent of € € (0, 1] and r > p) such that
1
llullccr,xy < Mp and €7 [|u||r (7, x) < Ma.

Finally, directly from (5), we see that there exists M3 > 0 (independent of € € (0, 1] and
r > p) such that

||M//| |L’/(T,X*) < M3~
We set My = max{M;, My, M3} > 0 and get the desired bound. O

The bounds produced in Proposition 5 permit passing to the limit as € — 07 to obtain a
solution for problem (1).

Theorem 6. If hypotheses H(A), H(B), H(F) hold and ug € X,uy € H, then S(uo, u1) # 0.
Proof. Let e, — 01 and let u,, = ue, be solutions of the “regularized” problem (5) (see Propo-

sition 4). Because of the bounds established in Proposition 5 and by passing to a suitable
subsequence if necessary, we can say that

: w, > win LT, X), uy > uin C(T. H), u, — uin L' (T. H) } as)

W s yin LO(T, HY, ! 2 vin L7 (T, X*) (see (3) and (4)).
n n

Recall that u, € ACY" (T, H) for all n € N and so
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t
un(t) = ug + / u,(s)ds forallt €T,

0
t

= u(t) =uo+ / y(s)ds forallt € T (see (15)),
0
=uecAC"(T,H)and u’ = y.

Since u,, € W, (0, b) for all n € N, we have

v=y =u"eL" (T, X*) (see Hu and Papageorgiou [9, p. 6]).

Leta:L" (T, X) — Lr/(T, X*) be the nonlinear map defined by
a(w)()=A(,u() forallu e L' (T, X).
Also, let K, : L (T, X) — L" (T, X*) be defined by

Ko ) () = luG)|"2F () forallu € L' (T, X).

Finally, let Be L' (T, X), Lr/(T, X*)) be defined by

Bw)(-) = B(u(-)) forallu € L' (T, X).

‘We have

u, +a(u,) + enler(u;) + Bu, = f, in L' (T, X*)
with f, € S%(_’un(_)’u;(,)) foralln € N.

From (15) we have

U — win L' (T, X),

= Bu, — Buin Lr/(T, X*)asn — oo.

Also, we have

C ’ rr—1
||Kr(uﬂ)||Lr/(T,X*) = HM"H’L’(T,X)’

1

. 1 1 r—1
= el Kr Il oy =€n (en’ ||u;||Lr<T,x>) (recall that § 4 & =1)

1
<e€, M(r)_1 for all n € N (see Proposition 5)

:>6"||KV(M;)”LV'(T,X*) —0asn— oo

4757

Both maps are continuous and monotone, hence maximal monotone (see Gasinski and Papageor-
giou [4, Corollary 3.2.32, p. 320]).

(16)

a7

(18)
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From (15) and since v = u”, we have
u! 2 u” in L' (T, X*).
Finally, hypothesis H (F)(iii) and Proposition 5 imply that
{fuln=1 € L*(T, H) is bounded.
By passing to a subsequence if necessary, we may assume that
fu— fin L*(T, H).
Invoking Proposition 3.9 of Hu and Papageorgiou [8, p. 694], we have

f () econvw — limsup{ f,,(t)}

n—oo

<convw — limsup F(t, u, (1), u, (¢)) for almost all # € T (see (16)).

n—oo

From (15) we see that

w2 uin W0, b), X*).

n
Recall that Wl"/((O, b), X*) — C(T, X*). So, it follows that
;) w /. *
u, —u inC(T,X")
= ul (1) = u'(r) in X*forallr € T.

On the other hand, by Proposition 5 we have

|lu,, ()] < Mo forallt € T, and all n € N.

So, by passing to a subsequence (a priori the subsequence depends on ¢ € T'), we have

ul (t) = $(t) in H

=3@)=u'(t)forallt € T (see (21)).

Hence for the original sequence we have

' (t) = u'(t)in H forall r € T.

19)

(20)

21

(22)

We know that {u,},>1 € W, (0, b) is bounded (see Proposition 5) and recall that W, (0, b) —

L"(T, H) compactly (see (4)). From this compact embedding and from (22), we obtain

u,(t) > u(t)in H forallt € T as n — oo.

(23)
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From (20), (22), (23) and hypothesis H (F)(iii) we infer that

f@) e F(t,u(t),u'(t)) for almostall t € T,
2
= [ €Skcutaroy:
In what follows, we denote by ((-, -)) the duality brackets for the pair
(L (T, X*), L' (T, X)).

Acting with u), —u’ € L' (T, X) on (16), we have

(W), uly —u')) + ((a@ul), uly — u')) + (en Ky (), ul. — u')) + (Buy, uly — u'))

b
= /(fn, M;L —u')dt for all n € N. (24)
0

Note that

b

(@t =) = [t = ayar

(uy —u" u), —u'ydt + (", u)y —u'))

— St O Y—— . ©

lu! —u'[?dt + (", ul, — u')) (see Proposition 2)

N =
S~

Sl (®) = u' (D) + (", u)y —u'))
(since u}, (0) = u’(0) = u; for all n € N, see (22))

! —

1
= liminf((u), u/, — u)) = = liminf |u/,(b) — u’(b)|* > 0. (25)
n— 00 2 n—o0o

Also we have

d
E(B(un —u), u, —u)dt

N =

b
(Bup —u),uy —u')) = f
0

%(B(Mn —u)(b), (up, —u)(b)) > 0 (see hypothesis H(B))
= ((Bu,u, —u')) < (Buy, ul, — u')) forall n € N. (26)

Recall that
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1
€7 [unllLr(7,x) < Mg foralln e N, r > p (see Proposition 5).

1
Suppose that r,, — 400, r;, > p for all m € N. Then for every n € N, ¢, — 1 as m — oo.
Invoking Problem 1.175 of Gasinski and Papageorgiou [5], we can find {m,},>1 with m, — 400
such that

1
rmp

€, " — lasn— oo.

Therefore there exists ng € N such that

1
3 <e," forall n > nyg,

1
Ellu;zHUmn (1.x) < Mo for all n > ny,
= ||“;l [lLr(r,x) <2My for all n > ny (recall that r,,, > p).

On account of (15) and since y = u’, we have

ul, 2> u'in LP(T, X). (27)
It follows from (26) and (27) that
0 < liminf((Bu,, u,, —u")). (28)
n—>0oo
In addition, we have
€K p(ul) = 0in LP (T, X*) asn — oo (see (18)). (29)

By Proposition 5 and (27) it follows that

{u) }n=1 € W, (0, b) is bounded,

= {u,}n>=1 € LP(T, H) is relatively compact (see (4)).

Therefore we have

u, — u’ in LP(T, H) (see (27)),
b
= /(fn, ul, —u")dt — 0 as n — oo (recall that p > 2). (30)
0

If in (24) we pass to the limit as n — oo and use (25), (28), (29), (30), then

limsup((a(u),), u,, —u’)) <O0.
n—oo
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Invoking Theorem 2.35 of Hu and Papageorgiou [9, p. 41], we have

a(un) = a@')in LP (T, X*) as n — oo. 31)
In (24) we pass to the limit as n — oo and use (15) (with v =u") (27), (29), (31). We obtain
u" +a')+ Bu= fr u©) =ug,u'(0)=uy, f € S%(i’u(.)’u/(.))v
=u € S(ug,ur) #90.
The proof is now complete. O

3.1. An example

We illustrate the main abstract result of this paper with a hyperbolic boundary value problem.
Let @ € RY be a bounded domain. We consider the following boundary value problem

2

u o _ .
a2 div(a(t, 2)|Dus [P~ Dug) + B()us — Au= f (1, z,u) + yu; in T x Q,

M|T><BQ = 07 M(O, Z) = ”O(Z), ut(07 Z) = ul(z)v

(32)

Withu,:%—?,prfoo,y>0.

The forcing term f(t, z,-) need not to be continuous. So, following Chang [1], to deal
with (32), we replace it by a multivalued problem (partial differential inclusion), by filling in
the gaps at the discontinuity points of f(¢, z, -). So we define

fi(t,z,x) =liminf (¢, z,x) and f,(t, z, x) =limsup f(¢, z, x').
x'—>x

x'—x
Then we replace (32) by the following partial differential inclusion

2

u
el — div (a(t, 2)| Du; [P~ Duy) + Ry — Au € [ filt, z,u), fu(t. 2. w)]in T x Q,

ulrxae =0, u(0,z) =uo(z), u0,2) =u1(2).
(33)

Our hypotheses on the data of (33) are the following:

H(a):a e L®(T x Q),a(t,z) >0 foralmostall (r,z) € T x Q.
H(B): B € L*®(R2), B(z) > 0 for almost all z € Q.

H(f): f: T x Q2 xR — Ris a function such that

(1) fi, fu are superpositionally measurable (that is, for all u : T x 2 — R measurable, the

functions (¢, z) — fi(t,z,u(t,z)), fu(t,z,u(t,z)) are both measurable);
(i) there exists a € L2(T x ) such that

| f(t,z,x)| <ax(t,z)(1 + |x|) for almost all (¢,z) € T x 2, and all x € R.
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Let X = W(}”’ (Q), H=L*) and X* = W17 (Q). Then (X, H, X*) is an evolution triple
with X < H compactly (by the Sobolev embedding theorem).
Let A: T x X — X* be defined by

(A(t,u), h) =/a(t, z)|Du|p_2(Du, Dh)pndz —i—/ﬂ(z)uhdz forall u,h e W(}’p(Q).
Q Q

Then A(z, u) is measurable in ¢ € T, continuous and monotone in u € WO1 "7 (Q) (hence, maximal

monotone) and (A(¢,u), u) >0 for almost allr € T, and all u € Wg’p(Q).
Let B € Z(X, X*) be defined by

(Bu, h) = f(Du, Dh)gndz forallu, h € Wy"(Q).
Q

Clearly, B satisfies hypothesis H(B).
Finally, let G (¢, z, x) = [ fi (¢, z, x), fu(t, z,x)] and set

F(t,u,0) = S&..u(y + v forallu, v e L(Q).

Hypothesis H (f) implies that F satisfies H (F).

Using A(t,u), Bu and F(t,u,v) as defined above, we can rewrite problem (33) as the
equivalent second order nonlinear evolution inclusion (1). Assuming that ug € Wol’p (2) and
that u; € L%(2), we can use Theorem 6 and infer that problem (30) has a solution u €
CH(T, L) N C(T, WP (Q)) with 24 e LP(R, W(}”’(Q)) and 332—;‘ e LP'(Q, W17 (Q)).

Note that if a =0, f(¢,z,x) = x and y = 0, then we have the Klein—Gordon equation. If
f(t,z,x) = f(x) =nsinx with n > 0, then we have the sine Gordon equation.
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