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Abstract

In this paper we deal with a second order nonlinear evolution inclusion, with a nonmonotone, noncoercive 
viscosity term. Using a parabolic regularization (approximation) of the problem and a priori bounds that 
permit passing to the limit, we prove that the problem has a solution.
© 2017 Elsevier Inc. All rights reserved.
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1. Introduction

Let T = [0, b] and let (X, H, X∗) be an evolution triple of spaces, with the embedding of X
into H being compact (see Section 2 for definitions).

In this paper, we study the following nonlinear evolution inclusion:
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{
u′′(t) + A(t,u′(t)) + Bu(t) ∈ F(t, u(t), u′(t)) for almost all t ∈ T ,

u(0) = u0, u′(0) = u1.

}
(1)

In the past, such multi-valued problems were studied by Gasinski [3], Gasinski and Smolka 
[6,7], Migórski et al. [11–14], Ochal [15], Papageorgiou, Rădulescu and Repovš [16,17], Papa-
georgiou and Yannakakis [18,19]. The works of Gasinski [3], Gasinski and Smolka [6,7] and 
Ochal [15], all deal with hemivariational inequalities, that is, F(t, x, y) = ∂J (x) with J (·) being 
a locally Lipschitz functional and ∂J (·) denoting the Clarke subdifferential of J (·). In Papageor-
giou and Yannakakis [18,19], the multivalued term F(t, x, y) is general (not necessarily of the 
subdifferential type) and depends also on the time derivative of the unknown function u(·). With 
the exception of Gasinski and Smolka [7], in all the other works the viscosity term A(t, ·) is 
assumed to be coercive or zero. In the work of Gasinski and Smolka [7], the viscosity term is 
autonomous (that is, time independent) and A : X → X∗ is linear and bounded.

In this work, the viscosity term A : T × X → X∗ is time dependent, noncoercive, nonlinear 
and nonmonotone in x ∈ X. In this way, we extend and improve the result of Gasinski and 
Smolka [7]. Our approach uses a kind of parabolic regularization of the inclusion, analogous to 
the one used by Lions [10, p. 346] in the context of semilinear hyperbolic equations.

2. Mathematical background and hypotheses

Let V, Y be Banach spaces and assume that V is embedded continuously and densely into Y
(denoted by V ↪→ Y ). Then we have the following properties:

(i) Y ∗ is embedded continuously into V ∗;
(ii) if V is reflexive, then Y ∗ ↪→ V ∗.
The following notion is a useful tool in the theory of evolution equations.

Definition 1. By an “evolution triple” (or “Gelfand triple”) we understand a triple of spaces 
(X, H, X∗) such that

(a) X is a separable reflexive Banach space and X∗ is its topological dual;
(b) H is a separable Hilbert space identified with its dual H ∗, that is, H = H ∗ (pivot space);
(c) X ↪→ H .

Then from the initial remarks we have

X ↪→ H = H ∗ ↪→ X∗.

In what follows, we denote by || · || the norm of X, by | · | the norm of H and by || · ||∗ the 
norm of X∗. Evidently we can find ĉ1, ĉ2 > 0 such that

| · | � ĉ1|| · || and || · ||∗ � ĉ2| · | .

By (·, ·) we denote the inner product of H and by 〈·, ·〉 the duality brackets for the pair (X∗, X). 
We have

〈·, ·〉|H×X = (·, ·). (2)
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Let 1 < p < ∞. The following space is important in the study of problem (1):

Wp(0, b) =
{
u ∈ Lp(T ,X) : u′ ∈ Lp′

(T ,X∗)
} (

1

p
+ 1

p′ = 1

)
.

Here u′ is understood in the distributional sense (weak derivative). We know that Lp(T , X)∗
= Lp′

(T , X∗) (see, for example, Gasinski and Papageorgiou [4, p. 129]). Suppose that u ∈
Wp(0, b). If we view u(·) as an X∗-valued function, then u(·) is absolutely continuous, hence 
differentiable almost everywhere and this derivative coincides with the distributional one. So, 
u′ ∈ Lp′

(T , X∗) and we can say

Wp(0, b) ⊆ AC1,p′
(T ,X∗) = W 1,p′

((0, b),X∗).

The space Wp(0, b) is equipped with the norm

||u||Wp =
[
||u||pLp(T ,X) + ||u′||p

Lp′
(T ,X∗)

] 1
p

for all u ∈ Wp(0, b).

Evidently, another equivalent norm on Wp(0, b) is

|u|Wp = ||u||Lp(T ,X) + ||u′||Lp(T ,X∗) for all u ∈ Wp(0, b).

With any of the above norms, Wp(0, b) becomes a separable reflexive Banach space. We have 
that

Wp(0, b) ↪→ C(T ,H); (3)

Wp(0, b) ↪→ Lp(T ,H) and the embedding is compact. (4)

The elements of Wp(0, b) satisfy an integration by parts formula which will be useful in our 
analysis.

Proposition 2. If u, v ∈ Wp(0, b) and ξ(t) = (u(t), v(t)) for all t ∈ T , then ξ(·) is absolutely 
continuous and dξ

dt
(t) = 〈u′(t), v(t)〉 + 〈u(t), v′(t)〉 for almost all t ∈ T .

Now suppose that (�, �, μ) is a finite measure space, � is μ − complete and Y is a sepa-
rable Banach space. A multifunction (set-valued function) F : � → 2Y \{∅} is said to be “graph 
measurable”, if

GrF = {(ω, y) ∈ � × Y : y ∈ F(ω)} ∈ � × B(Y ),

with B(Y ) being the Borel σ -field of Y .
If F(·) has closed values, then graph measurability is equivalent to saying that for every y ∈ Y

the R+-valued function

ω �→ d(y,F (ω)) = inf{||y − v||Y : v ∈ F(ω)}
is �-measurable.
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Given a graph measurable multifunction F : � → 2Y \{∅}, the Yankov–von Neumann–
Aumann selection theorem (see Hu and Papageorgiou [8, p. 158]) implies that F(·) admits 
a measurable selection, i.e. that there exists f : � → Y a �-measurable function such that 
f (ω) ∈ F(ω) μ-almost everywhere. In fact, we can find an entire sequence {fn}n�1 of mea-
surable selections such that F(ω) ⊆ {fn(ω)}n≥1 μ-almost everywhere.

For 1 ≤ p ≤ ∞, we define

S
p
F = {f ∈ Lp(�,Y ) : f (ω) ∈ F(ω) μ-almost everywhere}.

It is easy to see that Sp
F �= ∅ if and only if ω �→ inf{||v||Y : v ∈ F(ω)} belongs to Lp(�). This set 

is “decomposable” in the sense that if (A, f1, f2) ∈ � × S
p
F × S

p
F , then

χAf1 + χAcf2 ∈ S
p
F .

Finally, for a sequence {Cn}n≥1 of nonempty subsets of Y , we define

w − lim sup
n→∞

Cn = {y ∈ Y : y = w − lim
k→∞ynk

, ynk
∈ Cnk

, n1 < n2 < · · · < nk < · · · }.

For more details on the notions discussed in this section, we refer to Gasinski and Papageor-
giou [4], Roubiček [20], Zeidler [21] (for evolution triples and related notations) and Hu and 
Papageorgiou [8] (for measurable multifunctions).

Let V be a reflexive Banach space and A : V → V ∗ a map. We say that A is “pseudomono-
tone”, if A is continuous from every finite dimensional subspace of V into V ∗

w (= the dual V ∗
equipped with the weak topology) and if

vn
w−→ v in V, lim sup

n→∞
〈A(vn), vn − v〉 ≤ 0

then

〈A(v), v − y〉 ≤ lim inf
n→∞ 〈A(vn), vn − y〉 for all y ∈ V.

An everywhere defined maximal monotone operator is pseudomonotone. If V is finite dimen-
sional, then every continuous map A : V → V ∗ is pseudomonotone.

In what follows, for any Banach space Z, we will use the following notations:

Pf (c)(Z) = {C ⊆ Z : C is nonempty, closed (and convex)},
P(w)k(c)(Z) = {C ⊆ Z : C is nonempty, (weakly-) compact (and convex)}.

The hypotheses on the data of problem (1) are the following:

H(A): A : T × T → X∗ is a map such that

(i) for all y ∈ X, t �→ A(t, y) is measurable;
(ii) for almost all t ∈ T , the map y �→ A(t, y) is pseudomonotone;
(iii) ||A(t, y)||∗ ≤ a1(t) + c1||y||p−1 for almost all t ∈ T and all y ∈ X, with a1 ∈ Lp′

(T ), 
c1 > 0, 2 ≤ p < ∞;

(iv) 〈A(t, y), y〉 ≥ 0 for almost all t ∈ T and all y ∈ X.
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H(B): B ∈ L (X, X∗), 〈Bx, y〉 = 〈x, By〉 for all x, y ∈ X and 〈Bx, x〉 ≥ c0||x||2 for all x ∈ X

and some c0 > 0.
H(F): F : T × H × H → Pfc(H) is a multifunction such that

(i) for all x, y ∈ H , t �→ F(t, x, y) is graph measurable;
(ii) for almost all t ∈ T , the graph GrF(t, ·, ·) is sequentially closed in H ×Hw ×Hw (here Hw

denotes the Hilbert space H furnished with the weak topology);
(iii) |F(t, x, y)| = sup{|h| : h ∈ F(t, x, y)} ≤ a2(t)(1 + |x| + |y|) for almost all t ∈ T and all 

x, y ∈ H with a2 ∈ L2(T )+.

Definition 3. We say that u ∈ C(T , X) is a “solution” of problem (1) with u0 ∈ X, u1 ∈ H , if

• u′ ∈ Wp(0, b) and
• there exists f ∈ S2

F(·,u(·),u′(·)) such that

{
u′′(t) + A(t,u′(t)) + Bu(t) = f (t) for almost all t ∈ T ,

u(0) = u0, u
′(0) = u1.

}

In what follows, we denote by S(u0, u1) the set of solutions of problem (1). Recalling that 
Wp(0, b) ↪→ C(T , H) (see (3)), we have that

S(u0, u1) ⊆ C1(T ,H).

By Troyanski’s renorming theorem (see Gasinski and Papageorgiou [4, p. 911]) we may assume 
without loss of generality that both X and X∗ are locally uniformly convex. Let F : X → X∗ be 
the duality map of X defined by

F(x) = {x∗ ∈ X∗ : 〈x∗, x〉 = ||x||2 = ||x∗||2∗}.
We know that F(·) is single-valued and a homeomorphism (see Gasinski and Papageorgiou [4, 
p. 316] and Zeidler [21, p. 861]).

For every r ≥ p, let Kr : X → X∗ be the map defined by

Kr(y) = ||y||r−2F(y) for all y ∈ X.

3. Existence theorem

Given ε > 0, we consider the following perturbation (parabolic regularization) of problem (1):

{
u′′(t) + A(t,u′(t)) + εKr(u

′(t)) + Bu(t) ∈ F(t, u(t), u′(t)) for a.a. t ∈ T ,

u(0) = u0, u′(0) = u1.

}
(5)

Consider the map Aε : T × X → X∗ defined by

Aε(t, y) = A(t, y) + εKr(y) for all t ∈ T , and all y ∈ X.

This map has the following properties:
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(i) for all y ∈ X, the map t �→ Aε(t, y) is measurable;
(ii) for almost all t ∈ T , the map y �→ Aε(t, y) is pseudomonotone;
(iii) ||Aε(t, y)||∗ ≤ â1(t) + ĉ1||y||r−1 for almost all t ∈ T , all y ∈ X and with â1 ∈ Lp′

(T ), 
ĉ1 > 0 (recall that r ≥ p and 1

r
+ 1

r ′ = 1);
(iv) 〈Aε(t, y), y〉 ≥ ε||y||r for all t ∈ T , all y ∈ X.

So, in problem (1) the viscosity term Aε(t, ·) is coercive. Therefore we can apply Theorem 1 
of Papageorgiou and Yannakakis [18] and we obtain the following existence result for the ap-
proximate (regularized) problem (5).

Proposition 4. If hypotheses H(A), H(B), H(F) hold and u0 ∈ X, u1 ∈ H , then problem (5)
admits a solution uε ∈ W 1,r ((0, b), X) ∩ C1(T , H) with

u′
ε ∈ Wr(0, b).

To produce a solution for the original problem (1), we have to pass to the limit as ε → 0+. 
To do this, we need to have a priori bounds for the solutions uε(·) which are independent of 
ε ∈ (0, 1] and r ≥ p.

Proposition 5. If hypotheses H(A), H(B), H(F) hold, u0 ∈ X, u1 ∈ H and u(·) is a solution 
of (5), then there exists M0 > 0 which is independent of ε ∈ (0, 1] and r ≥ p for which we have

||u||C(T ,X), ||u′||C(T ,H), ε
1
r ||u′||Lr(T ,X), ||u′′||L2(T ,X∗) ≤ M0.

Proof. It follows from Proposition 4 that u′ ∈ Wr(0, b) and that there exists f ∈ S2
F(·,u(·),u′(·))

such that

u′′(t) + A(t,u′(t)) + εKr(u
′(t)) + Bu(t) = f (t) for almost all t ∈ T .

We act with u′(t) ∈ X. Then

〈u′′(t), u′(t)〉 + 〈A(t,u′(t)), u′(t)〉 + ε〈Kr(u
′(t)), u′(t)〉 = (f (t), u′(t)) (6)

for almost all t ∈ T (see (2) ).

We examine separately each summand on the left-hand side of (6). Recall that u′
r ∈ Wr(0, b). 

So from Proposition 2 (the integration by parts formula), we have

〈u′′(t), u′(t)〉 = 1

2

d

dt
|u′(t)|2 for almost all t ∈ T . (7)

Hypothesis H(A)(iv) and the definition of the duality map, imply that

〈A(t,u′(t)), u′(t)〉 + ε〈Kr(u
′(t)), u′(t)〉 ≥ ε||u′(t)||r for almost all t ∈ T . (8)

By hypothesis H(B), we have
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〈Bu(t), u′(t)〉 = 1

2

d

dt
〈Bu(t), u(t)〉 for almost all t ∈ T . (9)

We return to (6) and use (7), (8), (9). We obtain

1

2

d

dt
|u′(t)|2 + ε||u′(t)||r + 1

2

d

dt
〈Bu(t), u(t)〉 ≤ (f (t), u′(t)) for a.a. t ∈ T ,

⇒ 1

2
|u′(t)|2 + ε

t∫
0

||u′(s)||rds + c0||u(t)||2

≤
t∫

0

(f (s), u′(s))ds + 1

2
|u1|2 + 1

2
||B||L ||u0||2 (see hypothesis H(B)). (10)

Using hypothesis H(F)(iii), we get

t∫
0

(f (s), u′(s))ds

≤
t∫

0

[a2(s) + a2(s)(|u(s)| + |u′(s)|)]|u′(s)|ds

≤
t∫

0

|u′(s)|2ds +
t∫

0

a2(s)
2ds +

t∫
0

a2(s)
2[|u(s)|2 + |u′(s)|2]ds. (11)

Recall that u ∈ W 1,r ((0, b), X) (see Proposition 4). So, u ∈ AC1,r (T , H) and we can write

u(t) = u0 +
t∫

0

u′(s)ds for all t ∈ T

⇒ |u(t)|2 ≤ 2|u0|2 + 2b

t∫
0

|u′(s)|2ds for all t ∈ T (using Jensen’s inequality). (12)

We use (12) in (11) and obtain

t∫
0

(f (s), u′(s))ds

≤ ||a2||22 +
t∫
[1 + a2(s)

2]|u′(s)|2ds +
t∫

2a2(s)
2

⎡
⎣|u0|2 + b

s∫
|u′(τ )|2dτ

⎤
⎦ds
0 0 0
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≤ c2 +
t∫

0

η(s)|u′(s)|2ds + 2b

t∫
0

a2(s)
2

s∫
0

|u′(τ )|2dτds (13)

for some c2 > 0 and η ∈ L1(T ).

We use (13) in (10) and have

1

2
|u′(t)|2 + ε

t∫
0

||u′(s)||pds + c0||u(t)||2

≤ c3 +
t∫

0

η(s)|u′(s)|2ds + 2b

t∫
0

a2(s)
2

s∫
0

|u′(τ )|2dτds for some c3 > 0. (14)

Invoking Proposition 1.7.87 of Denkowski, Migórski and Papageorgiou [2, p. 128] we can find 
M > 0 (independent of ε ∈ (0, 1] and r ≥ p) such that

|u′(t)|2 ≤ M for all t ∈ T ,

⇒ ||u′||C(T ,H) ≤ M1 = M
1
2 .

Using this bound in (14), we can find M2 > 0 (independent of ε ∈ (0, 1] and r ≥ p) such that

||u||C(T ,X) ≤ M2 and ε
1
r ||u′||Lr(T ,X) ≤ M2.

Finally, directly from (5), we see that there exists M3 > 0 (independent of ε ∈ (0, 1] and 
r ≥ p) such that

||u′′||
Lr′ (T ,X∗) ≤ M3.

We set M0 = max{M1, M2, M3} > 0 and get the desired bound. �
The bounds produced in Proposition 5 permit passing to the limit as ε → 0+ to obtain a 

solution for problem (1).

Theorem 6. If hypotheses H(A), H(B), H(F) hold and u0 ∈ X, u1 ∈ H , then S(u0, u1) �= ∅.

Proof. Let εn → 0+ and let un = uεn be solutions of the “regularized” problem (5) (see Propo-
sition 4). Because of the bounds established in Proposition 5 and by passing to a suitable 
subsequence if necessary, we can say that

{
un

w∗−−→ u in L∞(T ,X), un
w−→ u in C(T ,H), un → u in Lr(T ,H)

u′
n

w∗−−→ y in L∞(T ,H), u′′
n

w−→ v in Lr ′
(T ,X∗) (see (3) and (4)).

}
(15)

Recall that un ∈ AC1,r (T , H) for all n ∈N and so
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un(t) = u0 +
t∫

0

u′
n(s)ds for all t ∈ T ,

⇒ u(t) = u0 +
t∫

0

y(s)ds for all t ∈ T (see (15)),

⇒ u ∈ AC1,r (T ,H) and u′ = y.

Since un ∈ Wr(0, b) for all n ∈N, we have

v = y′ = u′′ ∈ Lr ′
(T ,X∗) (see Hu and Papageorgiou [9, p. 6]).

Let a : Lr(T , X) → Lr ′
(T , X∗) be the nonlinear map defined by

a(u)(·) = A(·, u(·)) for all u ∈ Lr(T ,X).

Also, let K̂r : Lr(T , X) → Lr ′
(T , X∗) be defined by

K̂r (u)(·) = ||u(·)||r−2F (u(·)) for all u ∈ Lr(T ,X).

Both maps are continuous and monotone, hence maximal monotone (see Gasinski and Papageor-
giou [4, Corollary 3.2.32, p. 320]).

Finally, let B̂ ∈ L (Lr(T , X), Lr ′
(T , X∗)) be defined by

B̂(u)(·) = B(u(·)) for all u ∈ Lr(T ,X).

We have

u′′
n + a(u′

n) + εnK̂r (u
′
n) + B̂un = fn in Lr(T ,X∗) (16)

with fn ∈ S2
F(·,un(·),u′

n(·)) for all n ∈ N.

From (15) we have

un
w−→ u in Lr(T ,X),

⇒ B̂un
w−→ B̂u in Lr ′

(T ,X∗) as n → ∞. (17)

Also, we have

||K̂r (u
′
n)||Lr′ (T ,X∗) = ||u′

n||r−1
Lr (T ,X)

,

⇒ εn||K̂r (u
′
n)||Lr′ (T ,X∗) = ε

1
r
n

(
ε

1
r
n ||u′

n||Lr (T ,X)

)r−1

(recall that 1
r

+ 1
r ′ = 1)

≤ ε
1
r
n Mr−1

0 for all n ∈ N (see Proposition 5)

⇒ εn||K̂r (u
′ )|| r′ ∗ → 0 as n → ∞ (18)
r L (T ,X )
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From (15) and since v = u′′, we have

u′′
n

w−→ u′′ in Lr ′
(T ,X∗). (19)

Finally, hypothesis H(F)(iii) and Proposition 5 imply that

{fn}n≥1 ⊆ L2(T ,H) is bounded.

By passing to a subsequence if necessary, we may assume that

fn
w−→ f in L2(T ,H).

Invoking Proposition 3.9 of Hu and Papageorgiou [8, p. 694], we have

f (t) ∈ convw − lim sup
n→∞

{fn(t)}

≤ convw − lim sup
n→∞

F(t, un(t), u
′
n(t)) for almost all t ∈ T (see (16)). (20)

From (15) we see that

u′
n

w−→ u′ in W 1,r ′
((0, b),X∗).

Recall that W 1,r ′
((0, b), X∗) ↪→ C(T , X∗). So, it follows that

u′
n

w−→ u′ in C(T ,X∗)

⇒ u′
n(t)

w−→ u′(t) in X∗ for all t ∈ T . (21)

On the other hand, by Proposition 5 we have

|u′
n(t)| ≤ M0 for all t ∈ T , and all n ∈ N.

So, by passing to a subsequence (a priori the subsequence depends on t ∈ T ), we have

u′
n(t)

w−→ ŷ(t) in H

⇒ ŷ(t) = u′(t) for all t ∈ T (see (21)).

Hence for the original sequence we have

u′
n(t)

w−→ u′(t) in H for all t ∈ T . (22)

We know that {un}n≥1 ⊆ Wr(0, b) is bounded (see Proposition 5) and recall that Wr(0, b) ↪→
Lr(T , H) compactly (see (4)). From this compact embedding and from (22), we obtain

un(t) → u(t) in H for all t ∈ T as n → ∞. (23)
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From (20), (22), (23) and hypothesis H(F)(iii) we infer that

f (t) ∈ F(t, u(t), u′(t)) for almost all t ∈ T ,

⇒ f ∈ S2
F(·,u(·),u′(·)).

In what follows, we denote by ((·, ·)) the duality brackets for the pair

(Lr ′
(T ,X∗),Lr(T ,X)).

Acting with u′
n − u′ ∈ Lr(T , X) on (16), we have

((u′′
n,u

′
n − u′)) + ((a(u′

n), u
′
n − u′)) + ((εnK̂r (u

′
n), u

′
r − u′)) + ((B̂un,u

′
n − u′))

=
b∫

0

(fn,u
′
n − u′)dt for all n ∈N. (24)

Note that

((u′′
n,u

′
n − u′)) =

b∫
0

〈u′′
n,u

′
n − u′〉dt

=
b∫

0

〈u′′
n − u′′, u′

n − u′〉dt + ((u′′, u′
n − u′))

=
b∫

0

1

2

d

dt
|u′

n − u′|2dt + ((u′′, u′
n − u′)) (see Proposition 2)

= 1

2
|u′

n(b) − u′(b)|2 + ((u′′, u′
n − u′))

(since u′
n(0) = u′(0) = u1 for all n ∈ N, see (22))

⇒ lim inf
n→∞ ((u′′

n,u
′
n − u′)) = 1

2
lim inf
n→∞ |u′

n(b) − u′(b)|2 ≥ 0. (25)

Also we have

((B̂(un − u),u′
n − u′)) =

b∫
0

1

2

d

dt
〈B(un − u),un − u〉dt

1

2
〈B(un − u)(b), (un − u)(b)〉 ≥ 0 (see hypothesis H(B))

⇒ ((B̂u,u′
n − u′)) ≤ ((B̂un,u

′
n − u′)) for all n ∈N. (26)

Recall that



4760 N.S. Papageorgiou et al. / J. Differential Equations 264 (2018) 4749–4763
ε
1
2
n ||un||Lr(T ,X) ≤ M0 for all n ∈N, r ≥ p (see Proposition 5).

Suppose that rm → +∞, rm ≥ p for all m ∈ N. Then for every n ∈ N, ε
1

rm
n → 1 as m → ∞. 

Invoking Problem 1.175 of Gasinski and Papageorgiou [5], we can find {mn}n≥1 with mn → +∞
such that

ε

1
rmn
n → 1 as n → ∞.

Therefore there exists n0 ∈N such that

1

2
≤ ε

1
rmn
n for all n ≥ n0,

1

2
||u′

n||Lrmn (T ,X) ≤ M0 for all n ≥ n0,

⇒ ||u′
n||Lp(T ,X) ≤ 2M0 for all n ≥ n0 (recall that rmn ≥ p).

On account of (15) and since y = u′, we have

u′
n

w−→ u′ in Lp(T ,X). (27)

It follows from (26) and (27) that

0 ≤ lim inf
n→∞ ((B̂un,u

′
n − u′)). (28)

In addition, we have

εnK̂p(u′
n) → 0 in Lp′

(T ,X∗) as n → ∞ (see (18)). (29)

By Proposition 5 and (27) it follows that

{u′
n}n≥1 ⊆ Wp(0, b) is bounded,

⇒ {u′
n}n≥1 ⊆ Lp(T ,H) is relatively compact (see (4)).

Therefore we have

u′
n → u′ in Lp(T ,H) (see (27)),

⇒
b∫

0

(fn,u
′
n − u′)dt → 0 as n → ∞ (recall that p ≥ 2). (30)

If in (24) we pass to the limit as n → ∞ and use (25), (28), (29), (30), then

lim sup((a(u′
n), u

′
n − u′)) ≤ 0.
n→∞
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Invoking Theorem 2.35 of Hu and Papageorgiou [9, p. 41], we have

a(un)
w−→ a(u′) in Lp′

(T ,X∗) as n → ∞. (31)

In (24) we pass to the limit as n → ∞ and use (15) (with v = u′′) (27), (29), (31). We obtain

u′′ + a(u′) + B̂u = f, u(0) = u0, u
′(0) = u1, f ∈ S2

F(·,u(·),u′(·)),

⇒ u ∈ S(u0, u1) �= ∅.

The proof is now complete. �
3.1. An example

We illustrate the main abstract result of this paper with a hyperbolic boundary value problem. 
Let � ⊆R

N be a bounded domain. We consider the following boundary value problem

⎧⎨
⎩

∂2u

∂t2 − div (a(t, z)|Dut |p−2Dut) + β(z)ut − �u = f (t, z, u) + γ ut in T × �,

u|T ×∂� = 0, u(0, z) = u0(z), ut (0, z) = u1(z),

⎫⎬
⎭ (32)

with ut = ∂u
∂t

, 2 ≤ p ≤ ∞, γ > 0.
The forcing term f (t, z, ·) need not to be continuous. So, following Chang [1], to deal 

with (32), we replace it by a multivalued problem (partial differential inclusion), by filling in 
the gaps at the discontinuity points of f (t, z, ·). So we define

fl(t, z, x) = lim inf
x′→x

f (t, z, x′) and fu(t, z, x) = lim sup
x′→x

f (t, z, x′).

Then we replace (32) by the following partial differential inclusion

⎧⎨
⎩

∂2u

∂t2 − div (a(t, z)|Dut |p−2Dut) + β(z)ut − �u ∈ [fl(t, z, u), fu(t, z, u)] in T × �,

u|T ×∂� = 0, u(0, z) = u0(z), ut (0, z) = u1(z).

⎫⎬
⎭
(33)

Our hypotheses on the data of (33) are the following:
H(a): a ∈ L∞(T × �), a(t, z) ≥ 0 for almost all (t, z) ∈ T × �.
H(β): β ∈ L∞(�), β(z) ≥ 0 for almost all z ∈ �.
H(f ): f : T × � ×R → R is a function such that

(i) fl, fu are superpositionally measurable (that is, for all u : T × � → R measurable, the 
functions (t, z) �→ fl(t, z, u(t, z)), fu(t, z, u(t, z)) are both measurable);

(ii) there exists a ∈ L2(T × �) such that

|f (t, z, x)| ≤ a2(t, z)(1 + |x|) for almost all (t, z) ∈ T × �, and all x ∈R.
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Let X = W
1,p

0 (�), H = L2(�) and X∗ = W−1,p′
(�). Then (X, H, X∗) is an evolution triple 

with X ↪→ H compactly (by the Sobolev embedding theorem).
Let A : T × X → X∗ be defined by

〈A(t,u),h〉 =
∫
�

a(t, z)|Du|p−2(Du,Dh)RN dz +
∫
�

β(z)uhdz for all u,h ∈ W
1,p
0 (�).

Then A(t, u) is measurable in t ∈ T , continuous and monotone in u ∈ W
1,p

0 (�) (hence, maximal 

monotone) and 〈A(t, u), u〉 ≥ 0 for almost all t ∈ T , and all u ∈ W
1,p
0 (�).

Let B ∈ L (X, X∗) be defined by

〈Bu,h〉 =
∫
�

(Du,Dh)RN dz for all u,h ∈ W
1,p

0 (�).

Clearly, B satisfies hypothesis H(B).
Finally, let G(t, z, x) = [fl(t, z, x), fu(t, z, x)] and set

F(t, u, v) = S2
G(t,·,u(·)) + γ v for all u,v ∈ L2(�).

Hypothesis H(f ) implies that F satisfies H(F).
Using A(t, u), Bu and F(t, u, v) as defined above, we can rewrite problem (33) as the 

equivalent second order nonlinear evolution inclusion (1). Assuming that u0 ∈ W
1,p

0 (�) and 
that u1 ∈ L2(�), we can use Theorem 6 and infer that problem (30) has a solution u ∈
C1(T , L2(�)) ∩ C(T , W 1,p(�)) with ∂u

∂t
∈ Lp(�, W 1,p

0 (�)) and ∂
2u
∂t

∈ Lp′
(�, W−1,p′

(�)).
Note that if a = 0, f (t, z, x) = x and γ = 0, then we have the Klein–Gordon equation. If 

f (t, z, x) = f (x) = η sinx with η > 0, then we have the sine Gordon equation.
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[17] N.S. Papageorgiou, V.D. Rădulescu, D.D. Repovš, Sensitivity analysis for optimal control problems governed by 

nonlinear evolution inclusions, Adv. Nonlinear Anal. 6 (2) (2017) 199–235.
[18] N.S. Papageorgiou, N. Yannakakis, Second order nonlinear evolutions inclusions I: existence and relaxations results, 

Acta Math. Sin. (Engl. Ser.) 21 (2005) 977–996.
[19] N.S. Papageorgiou, N. Yannakakis, Second order nonlinear evolutions inclusions II: structure of the solution set, 

Acta Math. Sin. (Engl. Ser.) 22 (2006) 195–206.
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