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Abstract. We establish a necessary and sufficient condition for the existence of an entire dis-

tributional solution for a general class of nonlinear elliptic equations with variable potential and
nondecreasing nonlinear term. Our result establishes the relationship between the Green function

and the growths of the weight and of the nonlinear term. The main result also points out the
connection with a fixed point problem for an integral operator.
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1. Introduction

Nonlinear elliptic problems on the whole space do not have necessarily a solution.
The existence of solutions is in relationship not only with the nonlinearity but also
with the growth of the variable potential involved in the problem.

In their seminal paper on entire solutions of sublinear elliptic equations, Brezis
and Kamin [3] pointed out a striking phenomenon. They showed that a sublinear
elliptic problem on the whole space has a solution if and only if a related linear
partial differential equation depending only on the potential has a solution. Brezis
and Kamin considered the nonlinear problem

−∆u = ρ(x)uα, x ∈ RN (N > 3), (1.1)

with 0 < α < 1, ρ ∈ L∞loc(RN ) \ {0}, ρ > 0.
The main result in [3] establishes that problem (1.1) has a bounded positive solution

if and only if the linear equation

−∆u = ρ(x), x ∈ RN
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has a bounded solution, namely if the mapping

RN 3 x 7−→
∫
RN

ρ(y)

|x− y|N−2
dy

is in L∞(RN ). This result points out the relationship between the growth of the
potential and the Green function on the whole space.

The analysis developed in [3] shows that a bounded solution of problem (1.1) exists
for potentials like

ρ(x) =
1

1 + |x|q
or ρ(x) =

1

(1 + |x|2) | log(2 + |x|)|q
(q > 2),

while no solution exists if

ρ(x) =
1

1 + |x|q
with q 6 2 .

Brezis and Kamin [3] proved also that a stronger nonexistence result holds, provided
that ∫

|x|>1

ρ(x)

|x|N−2
dx = +∞.

In such a case there is no function u ∈ L1
loc(RN ) satisfying{

−∆u = ρ(x)uα in RN
u > 0 in RN .

In the present paper, we are concerned with a related problem on the whole space.
The main novelties in our approach are the following:

(a) We study a class of nonlinear elliptic equations with general nonlinear term,
which is not only of power-type.

(b) We consider a reversed sign for the variable potential with respect to the
framework considered by Brezis and Kamin [3]. Due to this assumption, we are
not concerned with super-harmonic functions, and not with subharmonic functions
defined on the whole Euclidean space.

(c) The methods that we develop in the present paper can be applied to larger
classes of differential operators. Indeed, our proofs remain valid in the general setting
of A-Laplace operators formulated by Pucci and Serrin [11, 12], namely differential
operators of the type

div (A(|∇u|)∇u), (1.2)

where A = A(ρ) ∈ C(0,∞) and

ρ 7−→ ρA(ρ) is strictly increasing in (0,∞) and ρA(ρ)→ 0 as ρ→ 0.

This framework includes the degenerate p-Laplace operator (A(ρ) = ρp−2, p > 1) and

the mean curvature operator (A(ρ) = 1/
√

1 + ρ2).
(d) Our necessary and sufficient condition for the existence of an entire distribu-

tional solution is established in terms of the growth of the variable potential and the
nonlinear term, in relationship with the Green function on the whole space. The
entire solution appears as the fixed point of a suitable integral operator.
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Our paper extends some recent results from [10], where it is studied only the
sublinear case corresponding to f(u) = uρ with ρ ∈ (0, 1). The analysis carried out in
the present paper allows to extend the results in [10] to larger classes of nonlinearities,
including to those with linear behaviour like

f(u) =
u

log(u+ 1)
, f(u) =

u√
u2 + 1

or f(u) =
arctanu

u
.

We also point out that general classes of nonlinear elliptic problems on the whole space
can be treated by means of our results, including problems with superlinear terms.
The monotonicity assumption of the nonlinear term is necessary only in some cases.
As in [9] and [10], our main result establishes a necessary and sufficient condition
for the existence of bounded solutions in terms of the relationship between the Green
function and the growths of the indefinite potential and the nonlinear term. This idea
is used in the previous papers [4] [5], [6], [7], [8], and [13]. We also refer to the works
[14], [15], [16] for a relationship between solutions of nonlinear partial differential
equations and fixed points of related nonlinear operators.

Consider the nonlinear problem{
∆u = V (x) f(u) in RN (N > 3)
u > 0, u 6= 0 in RN , (1.3)

where V > 0 is a nontrivial weight and f > 0 is nondecreasing.
We point out that problem (1.3) is not of interest if N ∈ {1, 2}. Indeed, the

solution should be subharmonic and nonnegative. Thus by the Liouville theorem, u
is constant provided that N ∈ {1, 2}, which attracts V = 0 in RN .

Throughout this paper we assume that V ∈ L∞loc(RN ) \ {0}, V > 0, and f : R→ R
is a nondecreasing Borel function.

We are interested in distributional solutions of problem (1.3), namely solutions in
D′(RN ). Thus we say that u : R→ R is a solution of problem (1.3) if u is continuous,

the mapping RN 3 x 7−→ V (x)f(u(x)) is in L1
loc(RN ),

and for all v ∈ C2
c (RN ) ∫

RN

u∆vdx =

∫
RN

V (x)f(u)vdx.

2. Case of bounded domains

The basic idea to solve problem (1.3) is to approximate it with equations on
bounded domains of higher and higher measure. The most natural is to consider
open balls B(0, n) in RN and then to take n→∞. We perform our analysis on balls
of the Euclidean space even if similar existence results hold for more general open
bounded sets Ω ⊂ RN . We refer to regular domains Ω, which are characterized by
the property that all continuous function g : ∂Ω → R admits a harmonic extension
H(g; Ω) to Ω. In other words, these are domains Ω for which the problem{

∆H(g; Ω) = 0 in Ω
H(g; Ω) = g on ∂Ω

has a solution.
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We recall that a function u : Ω → R is super-harmonic if the following properties
hold:

(i) u is lower-semicontinuous;
(ii) H(u;ω) 6 u in ω, for all ω ⊂⊂ Ω.
The function u : Ω→ R is sub-harmonic if −u is super-harmonic.

2.1. Formulation of the problem. Throughout this section we assume the follow-
ing hypotheses:

V ∈ L∞loc(RN ) \ {0} and V > 0 in RN ; (2.1)

f : [0,+∞)→ [0,+∞) is Borel measurable, nondecreasing, nontrivial, and f(0) = 0.
(2.2)

Let Ω ⊂ RN be a regular domain. We are interested in distributional solutions of
the nonlinear problem {

∆u = V (x) f(u) in D′(Ω)
u > 0, u 6= 0 in Ω .

(2.3)

This means that u : Ω → [0,+∞) is a continuous nontrivial function such that
V f(u) ∈ L1

loc(Ω) and for all v ∈ C2
c (Ω)∫

Ω

u∆vdx =

∫
Ω

V (x)f(u)vdx.

Let Ω ⊂ RN be a ball (or even a regular bounded domain) such that V 6= 0 in Ω.
Assume that

g : Ω→ [0,+∞) is a continuous notrivial function. (2.4)

Consider the nonlinear elliptic problem ∆u = V (x) f(u) in D′(Ω)
u = g on ∂Ω
u > 0, u 6= 0 in Ω.

(2.5)

We say that u : Ω→ R is a lower-solution of

∆u = V (x) f(u) in D′(Ω) (2.6)

if u is continuous, V f(u) ∈ L1
loc(Ω), and for all v ∈ C2

c (Ω) with v > 0∫
Ω

u∆vdx >
∫

Ω

V (x)f(u)vdx.

The function u : Ω → R is an upper-solution of problem (2.6) if −u is a lower-
solution of this problem.

The weak comparison principle asserts that if u (resp., u) is lower-solution (resp.,
upper-solution) of problem (2.6) such that (2.2) holds and

lim inf
x→y

(u− u)(x) > 0 for all y ∈ ∂Ω,

then u 6 u in ω. We refer to Pucci and Serrin [12] for details (see also Ĉırstea and
Rădulescu [6]).
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2.2. The main existence result. In this section, we prove an existence and unique-
ness property, which extends Theorem 5 in Ĉırstea and Rădulescu [5] and Theorem
A.1 in Ĉırstea and Rădulescu [6]. We state the main result in the framework of balls,
even if it still holds for bounded regular domains Ω ⊂ RN that have a Green function.

Let G be the Green function of Ω. Then for all y ∈ Ω

−∆G(·, y) = δy in Ω,

where δy is the Dirac mass at y.
If u : Ω→ R is a Borel measurable function, we define the integral operator

GΩu(x) :=

∫
Ω

G(x, y)u(y)dy

for all x ∈ Ω such that the integral makes sense.
Cf. Armitage and Gardiner [1] for all Borel function u > 0, the following alternative

holds:
(i) either GΩu(x) = +∞ for all x ∈ Ω

or
(ii) 0 is the only nonnegative harmonic function bounded above by GΩu in Ω.
The operator GΩ has the following additional properties:
(G1) GΩ is compact as defined on the space of bounded Borel functions;
(G2) GΩu is a bounded Borel function, provided that u is bounded. Moreover,

lim
x→y

GΩu(x) = 0 for all y ∈ ∂Ω.

This operator will play a central role in the construction of the solution of problem
(2.5). This solution will be obtained as the fixed point of an operator that involves
both GΩ and the harmonic extension operator.

Theorem 2.1. Let Ω ⊂ RN be a ball. Assume that hypotheses (2.1), (2.2), (2.4) are
fulfilled, and V 6= 0 in Ω. Then problem (2.5) has a unique distributional solution.

Proof. Let us first show that if a solution exists then it must be unique. Assume that
u1 and u2 are distributional solutions of problem (2.5) and denote

ω := {x ∈ Ω; u1(x) < u2(x)} .
Set u := u1 − u2. Assuming by contradiction that ω 6= ∅ we have u > 0 in ω and

∆u = V (x)(f(u1)− f(u2)) 6 0 in D′(ω).

Thus u is a superharmonic function in ω satisfying

lim inf
x→y

u(x) > 0 for all y ∈ ∂Ω.

Using the maximum principle, we obtain u > 0. This contradicts the definition of ω.
We deduce that ω = ∅, hence u1 > u2 in Ω. A similar argument shows that u1 6 u2

in Ω. This shows that u1 = u2.
In order to establish the existence of the solution, we see that 0 is a lower-solution

and n is an upper-solution (for n large enough). Thus a solution of problem (2.5)
exists but we cannot guarantee that it is nontrivial. In fact, as remarked by Pucci
and Serrin [12], the dead core phenomenon can occur, namely the solution exists, is
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nonnegative but it vanishes in an interior region. This is characteristic to the sublinear
framework, which is including in the setting of the present paper. In such a case, the
maximum principle does not hold. In fact, as established by Pucci and Serrin [11, 12],
the maximum principle holds for operators like in (1.2) if and only if f > 0 on some
neighbourhood (0, δ) and ∫ δ

0

ds

H−1(F (s))
= +∞,

where F (s) :=
∫ t

0
f(t)dt and

H(ρ) := ρ2A(ρ)−
∫ ρ

0

sA(s)ds, ρ > 0.

The following auxiliary result extends Lemma 1 in El Mabrouk [10] to more general
nonlinearities. This result asserts that solutions of problem (2.5) are fixed points of
the integral operator

Tu(x) = H(g;ω)(x)−
∫

Ω

G(x, y)V (y)f(u(y))dy

defined on the space of locally bounded nonnegative Borel functions.

Lemma 2.2. Let u : Ω → R be a locally bounded nonnegative Borel function. Then
u is a solution of problem (2.5) if and only if for all open regular subset ω ⊂⊂ Ω

u(x) +

∫
ω

G(x, y)V (y)f(u(y))dy = H(g;ω)(x) for all x ∈ ω.

Proof of Lemma 2.2. By the uniqueness of the harmonic extension, it is enough to
show that the function

v(x) := u(x) +

∫
ω

G(x, y)V (y)f(u(y))dy for all x ∈ ω (2.7)

is harmonic, for all open regular set ω ⊂⊂ Ω. Fix such a subset ω. We first observe
that since u is bounded, then v is a bounded function. Using now the definition of
v we deduce that v is continuous if and only if u is continuous. Fix ϕ ∈ C2

loc(ω).
Multiplying by ∆ϕ(x) in the expression of v and integrating in ω, we find∫

ω

v∆ϕdx =

∫
ω

u∆ϕdx−
∫
ω

V (x)f(u(x))ϕdx.

This relation shows that v is harmonic in ω if and only if u is a solution of problem
(2.5). The proof of Lemma 2.2 is concluded. �

Returning to the proof of Theorem 2.1, set M := ‖g‖L∞(∂Ω) and define the bounded
function ζ : R→ R by

ζ(s) =

{
min{f(s), f(M)} if s > 0
0 if s < 0.

Define the functions un : ω → R by u0 = 0 and

un = H(g;ω)− zn for all n > 1,
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where

zn(x) := Gω(V ζ(un−1))(x) =

∫
ω

G(x, y)V (y)ζ(un−1(y))dy for all n > 1.

Since ζ ∈ L∞(R), we obtain that (zn) is a bounded sequence. Using the fact that
the operator Gω is compact, we can assume up to a subsequence that (zn) converges
in L∞(Ω) to u : ω → R. Taking now n→∞ in the definition of un we obtain

u(x) = H(g;ω)(x)−
∫
ω

G(x, y)V (y)f(u(y))dy,

for all open regular set ω ⊂⊂ Ω. By Lemma 2.2 we obtain that u is a distributional
solution of problem (2.5). �

The hypothesis that f is nondecreasing has been crucial to prove the uniqueness
of the solution in Theorem 2.1. This result establishes the existence of a unique non-
negative solution. In view of the compact support property related to the maximum
principle (see Pucci and Serrin [12]), the fact that this solution is positive strongly
depends on the growth of the nonlinear term f . In fact, if f has a superlinear be-
haviour (say, f(u) = up with p > 1) then the unique solution of problem (2.5) is
positive. If f has a sublinear decay (say, f(u) = up with 0 < p < 1) then this solution
is nonnegative but not necessarily positive. Indeed, let us consider Ω = B(0, 1) ⊂ RN
(N > 3), f(u) = uγ/(γ+2) (γ > 0), V = 1, and

g =
[
(γ + 2)2 + (N − 2)(γ + 2)

]−(γ+2)/2
.

Then problem (2.5) admits the unique solution u(x) = g |x|γ+2 > 0, which vanishes
at the origin.

3. Case of the whole space

In this section, we analyze the existence of a solution of problem (1.3). This
is performed in relationship with the growth of the potential V combined with the
Green function of the whole space. As in [5], the main idea is to approximate problem
(1.3) with problems on balls B(0, n) and then to study the asymptotic behaviour as
n→∞.

We start with an useful result, which extends to our subharmonic setting a classical
property pf harmonic functions. The Baire theorem implies that if u is the pointwise
limit of a sequence of harmonic functions on Ω, then u is harmonic on a dense subset of
Ω. The following result establishes a related property for a sequence of nonnegative
solutions of problem (2.5). The proof makes use of the characterization property
established in Lemma 2.2.

Lemma 3.1. Assume that u is the pointwise limit of a sequence of nonnegative,
locally uniformly bounded solutions of equation (2.5). Then u is also a solution of
equation (2.5).

Proof. Let ω ⊂⊂ Ω an arbitrary open regular set. Applying Lemma 2.2 we obtain for
all x ∈ ω

un(x) +

∫
ω

G(x, y)V (y)f(un(y))dy = H(un|∂Ω;ω)(x). (3.1)
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Set vn := H(un|∂Ω;ω). Then (vn) is a bounded sequence of harmonic functions on ω,
which converges pointwise. Thus (vn) converges to a harmonic function. Passing to
the limit as n→∞ in relation (3.1) we obtain for all x ∈ ω

u(x) +

∫
ω

G(x, y)V (y)f(u(y))dy = H(u|∂Ω;ω)(x),

hence is a solution of problem (2.5). �

Consider the nonlinear elliptic problem ∆u = V (x) f(u) in D′(B(0, n))
u = 1 if |x| = n
u > 0 in B(0, n).

(3.2)

As established in Theorem 2.1, problem (3.2) has a unique solution un. By the
maximum principle we have un 6 1. Set

ũn(x) :=

{
un(x) if |x| 6 n
1 if |x| > n.

Using again the maximum principle we deduce that (ũn) is a nonincreasing sequence
of nonnegative functions.

Proposition 3.2. Let

u(x) := inf{ũn(x); n > 1}. (3.3)

Then the following properties hold.
(i) We have

∆u = V (x)f(u) in D′(RN ). (3.4)

(ii) The following alternative is true: either
(a) u = 0

or
(b) supx∈RN u(x) = 1 and for all x ∈ RN

u(x) +

∫
RN

G(x, y)V (y)f(u(y))dy = 1. (3.5)

Proof. (i) By definition, u is the pointwise limit of a sequence (un) of nonnegative
bounded functions satisfying equation (2.6). Applying Lemma 3.1 we deduce that u
solves the same equation.

(ii) If supx∈RN u(x) = 0 then assertion (a) holds.
Assume that supx∈RN u(x) = M ∈ (0, 1]. We first deduce that M = 1. For this

purpose it is enough to show that

u 6Mun for all n > 1. (3.6)

Consider the boundary value problems
∆v = V (x) f(v) in D′(B(0, n))

v =
u

M
if |x| = n

v > 0 in B(0, n)
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and  ∆w = V (x) f(w) in D′(B(0, n))
w = u if |x| = n
w > 0 in B(0, n).

By Theorem 2.1, these problems have unique solution. We first obtain{
∆(v − un) = V (x) (f(v)− f(un)) in D′(B(0, n))
v − un 6 0 if |x| = n.

Since f is increasing we deduce by the maximum principle that

v 6 un in B(0, n). (3.7)

On the other side we have{
∆(Mv − w) 6 V (x) (f(Mv)− f(w)) in D′(B(0, n))
Mv − w = 0 if |x| = n.

Using again the maximum principle in combination with the information that M ∈
(0, 1] we find

Mv > w in B(0, n). (3.8)

Combining relations (3.7) and (3.8), we obtain (3.6).
It remains to prove relation (3.5). Since u solves (3.4), we find by Lemma 2.2 that

for all x ∈ B(0, n)

u(x) +

∫
B(0,n)

GB(0,n)(x, y)V (y)f(u(y))dy = H(u;B(0, n))(x) 6 1 . (3.9)

Let (zn) be the sequence of harmonic bounded functions defined by

zn := H(u;B(0, n)) in B(0, n).

Then zn 6 zn+1 6 1 in B(0, n), hence z : RN → R defined by

z(x) := sup
n
zn(x) for all x ∈ RN

is a harmonic bounded function. Using the Liouville theorem we have z ≡ C 6 1.
Since supRN u = 1, we deduce that C = 1 hence z(x) = 1 for all x.

On the other hand, using the properties of the Green function we have

sup
n
GB(0,n)(x, y) = GRN (x, y).

Passing now to the limit as n→∞ in relation (3.9) we obtain (3.5). �

Conversely, we prove that if problem (3.4) admits a nonnegative nontrivial bounded
solution, then the function u defined by relation (3.3) is nontrivial and it is a fixed
point of the integral operator

Sv(x) := 1−
∫
RN

G(x, y)V (y)f(v(y))dy.

More precisely, the following property holds.

Proposition 3.3. Assume that problem (3.4) admits a nonnegative nontrivial
bounded solution. Then the function u defined by (3.3) satisfies relation (3.5).
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Proof. Recall that

u(x) := inf{ũn(x); n > 1},
where un is the unique solution of the Dirichlet problem (3.2). Using Lemma 2.2 we
have for all x ∈ B(0, n)

un(x) +

∫
B(0,n)

GB(0,n)(x, y)V (y)f(un(y))dy = 1.

This shows that in order to conclude the proof, it is enough to show that∫
B(0,n)

GB(0,n)(x, y)V (y)f(un(y))dy →
∫
RN

GRN (x, y)V (y)f(u(y))dy as n→∞.

(3.10)
Let U be a bounded solution of problem (3.4). By rescaling, we can assume without

loss of generality that 1 < supRN U < +∞. In order to prove (3.10), we consider the
auxiliary problem  ∆zn = V (x) f(zn) in D′(B(0, n))

zn = supU if |x| = n
zn > 0 in B(0, n).

Using Lemma 2.2 we obtain for all x ∈ RN

zn(x) +

∫
B(0,n)

G(x, y)V (y)f(zn(y))dy = supU.

Using now Proposition 3.2 we have∫
B(0,n)

G(x, y)V (y)f(zn(y))dy = supU − zn(x)→
∫
RN

G(x, y)V (y)f(z(y))dy,

where z := inf zn. We point out that z 6= 0, since zn > un by the maximum principle.
Using now the Lebesgue dominated convergence theorem we obtain (3.10). �

Combining Propositions 3.2 and 3.3 we obtain the main result of this paper, which
establishes a characterization property for the existence of bounded solutions of prob-
lem (1.3).

Theorem 3.4. Let

ũn(x) :=

{
un(x) if |x| 6 n
1 if |x| > n,

where un is the unique solution of the problem ∆u = V (x) f(u) in D′(B(0, n))
u = 1 if |x| = n
u > 0 in B(0, n).

Define

u(x) := inf{ũn(x); n > 1}.
Then problem (1.3) admits a bounded distributional solution if and only if

sup
x∈RN

u(x) = 1.
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In such a case, u satisfies the additional property

u(x) +

∫
RN

G(x, y)V (y)f(u(y))dy = 1 for all x ∈ RN .
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