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1 Introduction

Let O ¢ RN be a bounded domain with a C*>-boundary 9Q. In this paper we study the following nonlinear
Neumann problem:

—diva(Du(z)) + B@)u@)IPu(z) = f(z,u(z)) inQ,

u_, on Q. =

on

Here n(-) stands for the outward unit normal on Q. Also, a : RY — RY is a continuous strictly monotone
map that satisfies certain other regularity conditions. The precise conditions on the map a(-) are listed in
Hypothesis H(a),. These assumptions are general enough to include some important classes of nonlinear
differential operators. In particular, they incorporate the p-Laplace differential operator. However, we stress
that in contrast to the p-Laplacian, the differential operator in (1.1) is not necessarily homogeneous and
this is a source of difficulties, especially when we look for nodal (that is, sign changing) solutions. The
potential (weight) function f(-) belongs to L°(Q) and may change sign (indefinite potential). Finally, the
reaction f(z, x) is a Carathéodory function (that is, for all x € R, the mapping z — f(z, x) is measurable and
fora.a.z € Q, x > f(z, x) is continuous).

Our aim is to prove a “three solutions theorem” for problem (1.1) providing, if possible, sign information
for all the solutions. We present two such multiplicity theorems under complementary conditions on the
reaction f(z, x). In the first multiplicity theorem, we assume that f(z,-) is (p — 1)-linear near +co, while near
zero it exhibits a “concave” term (that is, a (p — 1)-superlinear term). In the second multiplicity theorem,
f(z,-)is (p - 1)-superlinear near +oo, while near zeroitis (p — 1)-linear. In the first case, the energy functional
of the problem is coercive, while in the second case it is indefinite.
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In the past, such multiplicity results were proved for equations driven by the p-Laplacian. We refer to the
works of Liu [25], Liu and Liu [24] (Dirichlet problems) and Aizicovici, Papageorgiou and Staicu [3], Kyritsi
and Papageorgiou [21] (Neumann problems) for the coercive case and by Bartsch and Liu [4], Bartsch, Liu and
Weth [5], Filippakis, Kristaly and Papageorgiou [13], Liu [26], Sun [36] (Dirichlet problems) and Aizicovici,
Papageorgiou and Staicu [1, 2] (Neumann equations) for the noncoercive case with superlinear reaction. In
the aforementioned works, the hypotheses on the reaction f(z,x) are in general more restrictive and they
do not always provide sign information for all the solutions produced. We mention that another class of
coercive Dirichlet equations with a nonlinear nonhomogeneous differential operator was studied recently
by the authors in [32]. Finally, resonant semilinear equations with an indefinite and unbounded potential
were investigated by Papageorgiou and Radulescu [31].

Our approach combines variational methods based on the critical point theory, together with truncation
and perturbation techniques, and Morse theory (critical groups). In the next section, for the convenience of
the reader, we recall the main mathematical tools which will be used in the sequel.

2 Mathematical background. Auxiliary results

Let X be a Banach space and let X* be its topological dual. By (-, -) we denote the duality brackets for the
pair (X*, X). Given ¢ € C'(X), we say that it satisfies the “Cerami condition” (the “C-condition” for short) if
the following is true (see [7]):

Condition. Every sequence {x,},.; < X such that
(1) {e(x,)},51 € Risbounded,

2 1+ x,D¢'(x,) — 0in X* asn — oo

admits a strongly convergent subsequence.

This compactness-type condition is more general than the usual Palais—Smale condition. Nevertheless, the
C-condition suffices to prove a deformation theorem that develops the minimax theory for certain critical
values of ¢. In particular, we can have the following version of the well-known “mountain pass theorem”
(see, for example, Gasinski and Papageorgiou [15], Kristaly, Raddulescu and Varga [20], and Radulescu [35]).

Theorem 2.1. Let X be a Banach space, ¢ € C'(X) satisfies the C-condition, x,, x, € X with ||x, — x|l > r,

max{g(x,), p(x,)} < inf{p(x) : |x - x,ll = 7} = #,,

and ¢ = inf, o maxg<; @(y(t)) with T = {y € C([0,1], X) : y(0) = x,, y(1) = x;}. Then ¢ > 5, and c is a critical
value of ¢.

The analysis of problem (1.1) will use the Sobolev space W"?(Q2) and the Banach space C'(Q). The latter
function space is an ordered Banach space with positive cone C, = {u € C'(Q) : u(z) > 0 for all z € Q}. This
cone has a nonempty interior given by

intC, = {ueC, :u(z) >0forall z € Q}.

We will also use in the following some facts about the spectrum of (-A pt BI ,WEP(Q)) with B € L1(Q)
for 1 < g < c0. So, we consider the following nonlinear Neumann eigenvalue problem:

A u(2) + B@)u(2)I"*u(z) = Mu(2)lP*u(z) inQ,

2.1)
6_u =0 on 0Q).
on

This eigenvalue problem was studied recently by Mugnai and Papageorgiou [29]. Among other qualitative
properties, they proved thatif 8 € L1(Q) withg > Np' (1/p + 1/p’ = 1), then problem (2.1) has a smallest eigen-
value A, (p, ) which is simple, isolated and admits the following characterization:

%o, = inf 2

== ue WhP(Q), u # o}, (2.2)
llell,
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where
&(u) = ||Du||§ + Jﬁ(z)(z)lu(zﬂp dz forallu e W"P(Q).
Q

The infimum in (2.2) is realized on the one-dimensional eigenspace corresponding to 7\1( P E). From (2.2) it
is clear that the elements of this eigenspace have constant sign. By i, (p, B) e WhP(Q) we denote the positive
LP-normalized (that is, ||&, (p, ﬁ) I p= 1) eigenfunction corresponding to 7&1 (p> B). The interior regularity theory
implies that i, (p, f) € C**(Q) with « € (0, 1). If B € L™(Q), then &, (p, p) € intC, (see [29]).

Let 5 € C'(0, 00) and assume that

< forallt > 0,
no -9 23)

at’ ™ <qt) < (1 + 77" forallt > 0, with ¢, ¢, > 0.
Hypothesis H(a),. The hypotheses on the map a(-) are the following:

a(y) = ay(lyl)y forall y e RY

with ay(t) > 0 forall ¢ > 0 and

(i) ay€ CY0,0), t — tay(t), is strictly increasing, tay(t) — 0ast — 0" and lim,_, . % -1,
0

(i) IVa(y)l < ;{4 forall y € RN\{0} and some ¢, > 0,

(iii) %llfllz < (Va(»)&, &gy forall y e R¥\{0} and all £ € RY,

(iv) if Gy(¢t) = fot say(s) ds (¢ > 0), then there exists 7 € (1, p) such that ¢ — Go(tl/ ) is convex on (0, +00),

. TG()(t)
lim < 400
t—0* t

and tzao(t) - 1Gy(t) 2 ét? forallt > 0 and some ¢ > 0.

Remark 2.2. Let G(y) = Gy(|yl), y € RN. Then for all y € RV\{0}, we have
VG(y) = Gy(llyl) ﬁ = ay(Iyl)y = a(y).

Hence, G(-) is primitive of a(-). Hypotheses H(a), have some interesting consequences, which we present
below. We first observe that a( - ) is strictly monotone. Indeed, for all y, y' € RN,

! ! d ! li i
(a(y)—a(y ),y - y)py = J(Ea(y +ty-y))hy-y ) dt

]RN

0
1
= [(Valy’ + 1=y = 3= ¥ s
0
>qlly’ +t(y - y")IPlly - ¥'I>  (see Hypothesis H(a), (iii) and (2.3)).

It follows that the primitives G( - ) and G, ( - ) are strictly convex functions and G,( - ) is strictly increasing, too.
In addition, we have for all y € R" and some ¢, > 0,

1 1
a(y) = j %u(ty) dt = jVa(tmdt — o)l < j IVa(n) iyl dt < c,(1 + Iy127). 2.4)
0 0 0

Moreover, using Hypothesis H(a), (iii) and (2.3), we obtain for all y € RY,

o
p-1

1
(a(y), y) = J(%a(ty), y)RN dt = J-(Va(ty) 9, Y)g dt > Iy, (2.5)
0 0
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Since VG(y) = a(y) forall y € RY (recall a(0) = 0, G(0) = 0), we have
d
G = | St = [(atty) yes dt.
0 0
Then using (2.4) and (2.5), we have for all y € RY and some ¢, > 0,
S

p(p-1)

Hypothesis H(a), are general enough to incorporate in our framework differential operators of interest.

IyIP < G(y) < (1 + IylP). (2.6)

Example 2.3. The following maps satisfy Hypothesis H(a), :
(i) a(y)=lyl*?yforall y e RN with 1 < p < co,
(ii) a(y) = lyl*?y + ullyl? >y with1 < g < p, u >0,
(iii) a(y) = (1 + [[yIH P22y with 1 < p < co.
In case (i) we take
Gy(t) = % forallt >0

and the corresponding differential operator is the p-Laplacian defined by
A u = div(|Dul?Du) forallu e W"P(Q).

For this operator we take #(t) = (p— 1)t forall t > 0if 1 < p <2 and #(t) = tP' forall t > 0 if 2 < p and
1 < 7 < p (see Hypothesis H(a), (iv)).

In case (ii) we take
tP th
Gy(t)= —+— forallt>0
P 4

and the corresponding differential operator is the (p, g)-Laplacian defined by
Apu+plAgu for allu € WP (Q).
For this operator we have for all ¢ > 0,

nt) = (p- D" + u(g-1)t7" whenl<q<p<2,
n(t) =P+ (g - D! whenl<g<2<p,
nt) =t ! when2<g< p.

Indeed, for all y € RN\{0},

Va) =71+ (-2 ) + it (1 @2 )

First assume that 1 < g < p < 2. Then
IVa()ll < (p - DIyIP> + (g - Dllyl>.

Also, for all £ ¢ RN, we have

(Va()E Ern = ((p = DIYIP + u(q - DIyIT>) €)1

Therefore with (t) = (p — 1)t?™" + u(q — 1)t77" for t > 0, Hypotheses H(a), (ii)-(iii) are fulfilled.
Next, we assume that 1 < g < 2 < p. Then for all y € RV\{0} and all £ € R",

IVa()ll < (p = DIyIF + ulq - DIyIT? < (p - D[P~ + u(g - DIyl®?]

and
(Va()& E)gw = (IyIP~ + ulq - DIyIT?) IEI.
Therefore with (t) = t#™' + u(q - 1)t7" for t > 0, Hypotheses H(a), (ii)-(iii) are satisfied.
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Finally, assume that 2 < q < p. Then for all y € RV\{0} and all £ € R",
IVa()ll < (p = DIyIP™ + ul@ - DIYIT" < (p = DIIYIP + ulyl®™]

and
(Va(»)E Ogn = (IyIF7 + ullyl=>) 1E]1%.

Therefore with #(t) = t*”! + ut?" for t > 0, we see that Hypotheses H(a), (ii)-(iii) are fulfilled. Moreover, in
Hypothesis H(a), (iv), we have 7 = q.
In case (iii) we take
Go() = ~[1+#)5 1] foralle =0
p

and the corresponding differential operator is the generalized p-mean curvature differential operator

(1+ |Dul®)= Du forallu e WP(Q).
Note that

Va(y) = 1+ Iy T [(p-2)y @y + (1 + 1y forall y € RM\{0}.

We first assume that 1 < p < 2. Then for all y € RV\{0} and for all £ € R,

IVa(l < (1 + 1y 7 (@ - Pyl + 1+ IyIP < .0+ (p— DIYIDT  forsomec, >0
and
(Va()E O = (1 + Iy 7 [(1+ IyIPIER + (p = DIYIPIER] = (1 + (p - DIYID) T 11,
Therefore with #(t) = (1 + (p - l)tz)pT_zt for t > 0, Hypotheses H(a), (ii)-(iii) are satisfied.
Next, assume that 2 < p. Then for all y € RV\{0} and for all £ € RY,

IVa()l < ¢, (1+ Iy1») 7,
(Va()E E)gr = (1 + 191D 1€

Therefore with #(¢) = (1 + tz)PTﬂt, Hypotheses H(a), (ii)-(iii) are fulfilled. Moreover, in Hypothesis H(a), (iv),
wehavel <7< p.

Let A : WHP(Q) — WHP(Q)* be the nonlinear map defined by

(A(w), yy = J(a(Du),Dy)]RN dz forallu,ye whP(Q). 2.7
Q
From Gasinski and Papageorgiou [16], we have:
Proposition 2.4. Assume that Hypotheses H(a), (i)-(iii) are fulfilled. Then the map A : W"?(Q) — W"P(Q)*

defined by (2.7) is bounded (that is, it maps bounded sets into bounded sets), continuous, maximal monotone,
and of type (S),, that is, if u,, — uin W"*(Q) and lim sup,_, (A(u,,), u,, — u) < 0, then u,, — uin W"P(Q).

Let f, : O x R — R be a Carathéodory function with subcritical growth in x € R, that is,
|fo(z, %) < alz)(1 +|x|") fora.a.z e Qandall x € R

witha € L*(Q),, 1 <r < p*, where
Np .
= N-p if p<N,
+00 if N < p.
Let

X

Fy(z,x) = Jfo(z, s)ds

0
and let ¢, : W"(Q) — R be the C'-functional defined by

@Qo(u) = j G(Du(z)) dz - j Fy(z,u(z))dz forallu e W"P(Q).
Q Q
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The following result relates Holder and Sobolev local minimizers of a C'-functional.

Proposition 2.5. Assume that Hypotheses H(a), (i)-(iii) hold and u, € W"P(Q) is a local C' (Q)-minimizer of ¢,,
that is, there exists some p, > 0 such that

Po(ttg) < @o(uy +h)  forallh € C' (), iy < po-

Thenu, € Cl’ﬁ(()) with 3 € (0, 1) and u, is also a local WP (Q)-minimizer of ¢,, that is, there exists some p, > 0
such that
@o(tty) < @o(ug +h)  forallh e WP(Q), ||h] < p,.

Remark 2.6. In the above result and in the sequel, | - || denotes the norm of the Sobolev space W"?(Q), that
is,

lul = (||u||§ + ||Du||§)% for all u € WHP(Q).
Proposition 2.5 was first proved for the Dirichlet Sobolev space Hy(Q) and for G(y) = 3lyl* (y € RY) by
Brezis and Nirenberg [6] and it was extended to the Dirichlet Sobolev space WOI’P (Q) (1 < p < o0)and for
G(y) = 1—1)|| yII” (y € RY) by Garcia Azorero, Manfredi and Peral Alonso [14]. Proposition 2.5 can be found in
Motreanu and Papageorgiou [28].

Another mathematical tool that we will use in the sequel is the Morse theory and in particular critical
groups. So, let us recall some basic definitions and facts from that theory.

Let X be a Banach spaceand Y, € Y; ¢ X. For every integer k > 0 we denote by H,(Y;,Y,) the kth relative
singular homology group for the pair (Y;,Y,) with integer coefficients. We recall that H,(Y;,Y,) = 0 for all
integers k < 0.

Given ¢ € C'(X) and ¢ € R, we introduce the following sets:

P={xeX:px)<c, ¢ ={xeX:pkx)<ch
Kq,:{xeX:go'(x):O}, K;={x€K¢:<p(x)=c}.
The critical groups of ¢ at an isolated critical point x, € X with ¢(x,) = c (that s, x, € K;) are defined by
Ci(p,xy) = H(¢" U, ¢ nU\{0}) forallk > 0.

Here U is a neighborhood of x, € X such that K, N ¢° N U = {x,}. The excision property of singular homology
theory implies that the above definition of critical groups is independent of the choice of the neighborhood U.

Suppose that ¢ € C'(X) satisfies the C-condition and inf @(K,) > —oo. Let ¢ < inf ¢(K,,). Then the critical
groups of ¢ at infinity are defined by

Ci(p,00) = Hi(X,¢") forallk > 0.

The second deformation theorem (see, e.g., Gasinski and Papageorgiou [15, p. 628]) implies that the above
definition of critical groups of ¢ at infinity is independent of the particular choice of the level ¢ < inf ¢(K,).
Suppose that K, is finite. We introduce the following polynomials in t € R:

M(t, x) = Z rank Cy (¢, x)tk forall x € Ky
k=0

P(t,00) = Z rank Cy (o, oo)tk.
k=0
The Morse relation says that
Y M(t,x) = P(t,00) + (1 + )Q(1), (2.8)
xEK(P
where Q(t) = Y. B,t* is a formal series with nonnegative integer coefficients f3,.

As we already mentioned, by || - | we denote the norm of the Sobolev space W"#(Q)). The same notation
will also be used to denote the norm of RY. However, no confusion is possible, since it will always be
clear from the context which norm is used. For x € R, we set x* = max{+x, 0} and for u € W"?(Q) we define
u(+) = u(-)*. We know that

W) eWPP(Q), u=u"-u, lul=u"=u.
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Given a measurable function i : Q x R — R, we introduce the map
N,w)(-) = h(-,u(-)) forallu e W"P(Q)

(the Nemytskii map corresponding to k). Finally, by | - |, we denote the Lebesgue measure on R".

3 Coercive problems

In this section, we examine problem (1.1) under hypotheses on f(z, x) that make the energy functional
coercive. We prove a “three solutions theorem” providing sign information for all the solutions. First we fix
the hypotheses on the potential B(-):

Hypothesis H,. We have 8 € L*(Q).
Set f(z) = L= p(2).

Hypothesis H,. We assume that the reaction term f(z, x) is a Carathéodory function such that f(z,0) = 0 a.e.
in Q and

(i) If(z,x)| < a(z)(1 + |x[P") a.e.in Q, forall x € Rwitha € L®(Q),,

(ii) there exists a function 9 € L*(Q) such that 9(z) < I%X\l (p,B)ae.inQ, 9+ C—‘IX: (p, B) and

P
i e =90
uniformly for a.a. z € Q,
(iii) there exist q € (1, 7) (see Hypothesis H(a), (iv)), ¢ > 0 and & > 0 such that ¢|x|? < f(z, x)x < qF(z, x) for
a.a.ze O,allo < |x| <6,
(iv) for every p < 0, there exists €, >0 such that for a.a. z € Q, the mapping x — f(z,x) +eP|x|P’2x is

nondecreasing on [-p, p].

Remark 3.1. Hypothesis H, (i) implies that asymptotically at +co f(z,-)is (p — 1)-sublinear. Hypothesis H, (ii)
will make the energy functional coercive. Hypothesis H; (iii) implies the existence of a concave term near zero.
Finally, Hypothesis H, (iv) is weaker than assuming the monotonicity of f(z,-) and is a one-sided Lipschitz
condition on f(z,-).

Example 3.2. The following functions satisfy Hypothesis H;, . For the sake of simplicity, we drop the z-depen-
dence:

F(x) = P+ [T with 9 < pc_l B, 1<q<p,
£ 9(|x|T2x — |x|2x)  if x| < 1, th 9 q T ﬂA) )
X) = W1 < N N <g,u<p,r.
2T 00 - 1) if I > 1, p-11P busp

The next auxiliary result is useful to establish the coercivity of the energy functional of problem (1.1). This
property can be found in Mugnai and Papageorgiou [29, Lemma 4.11].

Lemma 3.3. Assume that 3,9 € L°(Q) and 9(z) < X, (p, ) a.e.in Q, 9 # A,(p, ). Then there exists some ¢; > 0
such that
&(u) - Jé(z)lu(z)lp dz > clul®  forallu e WP (Q),
Q
where &u) = |Dull} + |, B(2)|u(2)I? dz for allu € W"P(Q).

Let ¢ : W"P(Q) — R be the energy functional associated to problem (1.1), namely

o(u) = JG(Du(z))dz - JF(z, u(z))dz forallu e WhP(Q).
Q Q

Evidently, ¢ € C'(W"?(Q)).



552 —— N.S. Papageorgiou and V.D. Rddulescu, Nonlinear Neumann problems DE GRUYTER

Let A > |8 |l and consider the following truncations-perturbations of f(z,-):
fizox) = fz,x) + Mx")P' and  f(z,x) = f(z,-x7) — Mx")P .
We set

Fi(z,x) = Iﬁ(z, s)ds
0
and consider the C'-functional ¢, : W"?(Q) — R defined by

Fo(w) = JG(Du(z)) dz + % J (B(2) + Vlu(2)? dz - jﬁ;(z, wz))dz forallu e WHP(Q).
Q Q Q

Proposition 3.4. Assume that Hypotheses H(a),, H, and H, are fulfilled. Then problem (1.1) has at least two
nontrivial constant sign solutions u,, € intC, and v, € —int C,, both local minimizers of the energy functional ¢.

Proof. By virtue of Hypotheses H, (i)-(ii), given € > 0, we can find ¢, = ¢, (€) > 0 such that
F(z,x) < %(S(Z) +e)|x|’ +¢, fora.a.z e Qandall x € R. (3.1)
Thus, for allu € W?(Q),

7 (u) = J G(Du)dz + % J(,B(z) + Vlul? dz + J F,(z,u)dz

Q Q a
4 1
——ID uIIP B@)|ulf dz — — | (9(2) + &)ulf dz + ¢,|Qly (see [10])
“Pp-D i Pi
= [ o+ iﬁ M de £25 i%lulp dz] - SJulf + eloly
> %[—;1_661 - e] lull? + ¢ 101y (see Lemma3.3). (3.2)

Choosing ¢ € (0, ;‘Tcﬁl), we deduce from (3.2) that @, is coercive. Also, via the Sobolev embedding theorem,
we see that ¢, is sequentially weakly lower semi-continuous. So, by the Weierstrass theorem, we can find
u, € WP(Q) such that

@, (uy) = inf{@; (1) : u e WHP(Q)} = ;. (3.3)

By virtue of Hypothesis H(a), (iv), we can find ¢; > 0 and §, € (0, §] such that
G < 2yI" forall Iy] < 8. (34)

Hypothesis H; (iii) yields i
Qx| < F(z,x) forallz e Q, all |x] < 6. (3.5)
q

Recall that #;(p, §) € intC,. So, we can find # € (0, 1) small such that
7l (p, B)(2), ylDwy(p, B)(2)| € (0,8,] forallz € Q. (3.6)

Therefore

yy
G P) = | GnDa,(p, ) dz + ’7; jﬂ(z)ml(p, BIIP dz - jF(z,n @ (p, ) dz
Q

Q

ﬂm o’

11D (p; P + —IIﬁII - —nqllul(p Pl B.7)

see (3.4)—(3.6) and recall ||z, (p, B)I » = L.Since 1 < g < 7 < p, by choosing 77 € (0, 1) even smaller if necessary,
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relation (3.7) yields
o.(nu(p,P) <0 = @, (uy) =m, <0=¢,(0) (see(3.3)), henceu, + 0.
From (3.3) we have
Pr(ug) =0 = Alug) + (B + Mlugl” uy = N7 (up)- (3.8)

On (3.8) we act with —u; € W"P(Q) and using (2.5), we obtain

D1+ [(B@) + Vi @) d < o

Q

Since A > |||l » We infer that u, > 0, u, # 0. Therefore relation (3.8) becomes

—diva(Duy(2)) + B(2)uy(2)"" = f(z,uy(z)) a.e.inQ,
Alug) + pul™ = No(uy) = (see [2]).
’ 0 7 % =0 on o€,
on
From Hu and Papageorgiou [18], we know that u, € L°°(Q) and so we can apply the regularity result of
Lieberman [23, p.320] and deduce that u, € C,\{0}. Let p = |y, and let €,>0 be as postulated by Hypo-

thesis H; (iv). Then
— div a(Duy(2)) + €,(1)(2) ™" = f(2,15(2)) + €,uy(2)" " 20 ae.in Q. (3.9)
Let y,(t) = ta,(t). Hypothesis H(a), (iii) implies the one-dimensional estimate
tyo(t) = Lag(t) + tay(t) = ot?™"  forallt > 0, some ¢, > 0,

and so

t t
sz(')(s) ds = ty,(t) - Jyo(s) ds = ay(t) - Gy(t) = %tl’ forallt > 0.
0 0

This estimate and (3.9) permit the use of the strong maximum principle of Pucci and Serrin [34, p. 111] and so
we have u,(z) > 0 for all z € Q. Finally, we apply the boundary point theorem of Pucci and Serrin [34, p. 120]
and conclude that u, € intC,. Note that ¢, |, = ¢lc, . S0, u, € intC, isalocal C'(Q)-minimizer of ¢. Invoking
Proposition 2.5, we conclude that u, € intC, is a local W"?(Q) -minimizer of ¢.

Similarly, working this time with @_, we produce a nontrivial negative solution v, € —intC, of prob-
lem (1.1), which is a local minimizer of ¢. O

In fact, we can show the existence of extremal nontrivial constant sign solutions for problem (1.1). Namely,
we show that there exists a smallest nontrivial positive solution and a biggest nontrivial negative solution.
Our argument follows closely the reasoning of Papageorgiou and Radulescu [32], where the authors deal with
Dirichlet (p, q)-equations. For the convenience of the reader, we present the proofs in detail.

Note that Hypotheses H, (i), (iii) imply that we can find ¢, > [|8ll, and A such that

f(z,x)x = élx|? - cplx|? fora.a.z e Qandall x € R. (3.10)
This unilateral growth condition on f(z,-) leads to the following auxiliary Neumann problem:

—diva(Du(z)) = &lu(z)|7*u(z) - colu(z)|”*u(z) inQ,
(3.11)
ou =0 on 0Q.
on
Proposition 3.5. Assume that Hypothesis H(a), hold. Then problem (3.11) has a unique nontrivial positive
solution @1 € int C, and since (3.11) is add © = —ii € — int C,. is unique nontrivial negative solution of (3.11).
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Proof. First we show that problem (3.11) admits a nontrivial positive solution. To this end, let
v, W Q) - R
be the C*-functional defined by

Y, (u) = J’G(Du(z)) dz+ L J([S(z) + V()| dz - £~||u+||g + Muu*ug forall u € WP (Q).
J P q P

Recall that A > [|37||,. From this fact and since q < p, we infer that ¥, is coercive. Also, it is sequentially
weakly lower semi-continuous. Therefore, we can find i € W"?(Q) such that

¥, (it) = inf{¥, (u) : u € W'P(Q)}.

As before (see the proof of Proposition 3.4), using Hypothesis H(a), (iv), we show that ¥, (&1) < 0 = ¥, (0),
hence & # 0. Also, we have

Y(@)=0 = A@)+ (B+Mlalf*a =@ - (o - M@H? ™. (.12
On (3.12) we act with -~ € W"?(Q). Since A > |||, we see that i > 0, it # 0. Hence (3.12) becomes
A@) + paf ™" = et — it

which shows that # is a nontrivial positive solution of problem (3.11). Moreover, as before using the nonlinear
regularity theory, we obtain & € C,\{0}. Also, we have

diva(Dii(z)) < (I8l + co)iiz)? " ace.inQ,

hence @ € int C, (see Pucci and Serrin [34, p. 120]).
Next, we show the uniqueness of this positive solution. For this purpose, we consider the integral func-
tional o, : L'(Q2) — R = R U {+co} defined by

JG(Du%) dz ifu>0,ur e WP(Q),
o.(u)=14 a (3.13)

+00 otherwise.

Letu,,u, € domo, andlet y = (tu; + (1 - t)uz)% with ¢ € [0, 1]. From Diaz and Saa [9, Lemma 1], we have

1Dy < (1D (27 I + (1 = I Duy(2) 7).

Recall that G, (-) is increasing. Hence

GoIDY@I) < Go( (¢1Dw, @) " + (1 = DD (7))
< tGy(IDw;(2)°1]) + (1 - )Gy (IDuy(2)7 1) a.e.inQ  (see Hypothesis H(a), (iv),

which implies 1 1
G(Dy(2) < tG(Duy(2)7 ) + (1 - NG(Duy(2)7 ) ae.inQ

and hence o, is convex. Moreover, via Fatou’s lemma, we see that o, is lower semi-continuous.

Suppose that u, v € W"P(Q) are two nontrivial positive solutions of (3.11). From the first part of the
proof, we have u,v € intC,. Therefore u",v" € domo,. Let h € CY(Q). Then for ¢ € [-1,1] with |¢| small, we
have u" + th,v" + th € domo, and so the Gateaux derivatives of o, at " and at v” in the direction h exist.
Moreover, via the chain rule, we have
hdz ol w0 == | ~ AP

Q

—diva(Du)

u‘r—l

o wh =~ |
Q
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The convexity of o, implies the monotonicity of o' . Therefore

0< J(— div a(Du) N diva(Dv)) .

T
= e ' -v')dz

~ q-1 ~ p-1 ~ q-1 ~ o p-1
aul™ —¢ou &l - ¢ v r 1 .
( 2 W -v)dz, &= - 1Bl >0,

[E( L1 ) — &oWf T - 1)"’77)](14T -v")dz. (3.14)

ut™1 v

Since g < T < p, the function x — ﬁ — &oxF " is strictly decreasing on (0, +00). So, from (3.14) it follows that
u = vand this proves the uniqueness of the nontrivial positive solution i € int C, . Evidently, o = -1 € —intC,
is the unique nontrivial negative solution of problem (3.11). O

Using these unique constant sign solutions of (3.11), we can generate extremal constant sign solutions of (1.1).

Proposition 3.6. Assume that Hypotheses H(a), and H, hold. Then problem (1.1) has a smallest nontrivial
positive solution u, € intC, and a biggest nontrivial negative solution v, € —intC,.

Proof. Let S, be the set of nontrivial positive solutions of (1.1). From Proposition 3.4 we know that S, # 0
and S, ¢ intC,.Moreover, as in Aizicovici, Papageorgiou and Staicu [1], we have that S, is downward directed,
that is, if u;,u, € S,, then we can find u € S, such that u < u;, u < u,. So, without any loss of generality, we
may assume that there exists M > 0 such that

lul, <M forallu e S,. (3.15)
Claim. We haveiui <uforallu € S,.

Letu € S, and consider the Carathéodory function

0 ifx <0,
ho(z,x) = {éxT" = (¢p — M)xP™! if0 < x < u(z), (3.16)

cu(z) = (¢ - Mu(z)P™! ifu(z) < x.
As before, A > || ||, We set

H, (z,x) = J h, (z,s)ds
0

and consider the C'-functional Y, WhP(Q) — R defined by

y,(u) = JG(Du(z))dz + % J[ﬁ(z) + ANuz)|f dz - JH+(zlu(z)) dz forallu e Wh2(Q).
Q Q Q

Relation (3.16) implies that y, is coercive. Also, it is sequentially weakly lower semi-continuous. So, we can
find iz, € W"?(Q) such that
v, (ity) = inf{y, () : u € WP(Q)}. (3.17)

As before (see Proposition 3.5) and since u € int C,, we have
Y+ (i) <0 =y,(0),
hence i, # 0. From (3.11) we have
Yilit) =0 = Ality) + (B + Mlit|* ity = N, (k). (3.18)
On (3.18) we first act with —iz; € W"P(Q). Since A > ||~ ||, we obtain

iy 20, iy #0.
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Then on (3.18) we act with (i1, — u)* € W"?(Q). We have

(A(ﬁo),(ao—u)+)+I(ﬂ(z)+/\)ﬁg_l(u0 w*dz = [ b (2 i)y - u)* dz

Q

[eul™ — couf (i) — w)* dz (see (3.16))

fzu)(i, —u)" dz (see (3.10))

b'—, b—. :o-—,

= {(Au), (i, —u)*) + j(ﬁ(z) + Muf iy - u)" dz,

Q
which implies
(Alily) — Alw), (iig — )" + J( (2) + M@ — uP )ity — )" dz <0,
Q

and so
{ziy > u}ly =0 (since A > |71l )

hence i, < u. So, we have proved that
e[0,u] = v e W"P(Q): 0 < v(z) < u(z) ae.inQ}, i, # 0.

Then relation (3.18) becomes

Alfig) + piab™ = &l — ¢ al™  (see (3.16)) = i, is a nontrivial positive solution of (3.11),

= @iy =0 €intC, (see Proposition 3.5).
Therefore & < u for all u € S, and this proves the claim.

Now, let C c S, be a chain (that is, a totally ordered subset of S, ). We know that we can find {u,},., < C
such that intC = inf, ., u, (see Dunford and Schwartz [11, p. 336]). We have

Aw,) + pub™ = N¢(u,), u,<u,<M foralln>1 (see(3.15). (3.19)
So, {u,},s; € WHP(Q) is bounded and we may assume that
u, >u nW"(Q) and u, »u inI’(Q) asn — oo. (3.20)
On (3.19) we act with u, — u € W"P(Q), pass to the limit as n — oo and use (3.20). Then
lim (A(u,,), 4, —u) =0 = u, —u in WP(Q) (see Proposition 2.4). (3.20)
Passing to the limit as n — oo in (3.19) and using (3.21), we obtain
A(u)+ﬂup71 =Nf(u), <u<M = uecS,, u=infC.

Since C is an arbitrary chain of S, , from the Kuratowski-Zorn lemma we infer that we can find u, € S, a min-
imal element. Since S, is downward directed, we conclude that u, € intC, is the smallest nontrivial positive
solution of (1.1).

Similarly, let S_ be the set of nontrivial negative solutions of problem (1.1). From Proposition 3.4 we know
that S_ # @ and S_ ¢ —intC,. Also, S_ is upward directed, that is, if v;,v, € S_, then we can find v € S_ such
that v; < v;, v, < v (see [1]). Reasoning as above, via the Kuratowski-Zorn lemma, we produce v, € —intC,
the biggest nontrivial negative solution of (1.1). O

Using these extremal constant sign solutions of (1.1), we can produce a nodal solution. Via suitable truncation
and perturbation techniques, we focus on the order interval [v,,u,] = {u € W"(Q) : v, <u < u, a.e.in Q}.
Then using variational methods coupled with Morse theory, we show that problem (1.1) admits a solution
in [v,,u,] distinct from 0, u,, v,. Evidently, this a nodal solution.

To execute this solution plan, we need to compute the critical groups of ¢ at the origin.
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Proposition 3.7. Assume that Hypotheses H(a),, H, and H, hold. Then C,(¢,0) = 0 for all k > 0.
Proof. Recall that Hypotheses H; (i), (iii) imply that
F(z,x) 2 Glx|T - ¢;1x|” fora.a.z € Q, allx € R, with¢; >0, r > p.
Also, from Hypothesis H(a), (iv) and (2.6), we have
G(y) < cp(IyI” + IyI?) forall y € RN and some ¢;, > 0.
Then for all u € W"P(Q) and all ¢+ > 0, we have
o(tu) = JG(tDu) dz + % Jﬁ(z)lulp dz — JF(Z, tu)dz
Q Q Q

tP il
< ot IDul + P UDUIE) + = Wl lul + eyt Nl = Gthully - (see (3.22)-(3.23))

Since g < 7 < p < r, from (3.24) it is clear that we can find t* = t*(u) € (0, 1) such that
o(tu) <0 forallt € (0,t%).

Letu € W"P(Q), 0 < |lu| < 1 and ¢(u) = 0. We have
d o
o] =o', u)

= (A(u),u) + Jﬁlulp dz — J'f(z, wudz

Q Q

- J((a(Du),Du)]RN — 1G(Du)) dz + (1 - %) i B@)ul” dz

Q

+(t-¢q) J F(z,u)dz + J[qF(z, u) — f(z,u)u]dz (since p(u) = 0).

Q Q

By virtue of Hypothesis H(a), (iv), we have
(a(Du(z)), Du(z))gy — 1G(Du(2)) = é|Du(z)|? fora.a.z € Q.

Hypothesis H, (iii) implies that for a.a. z € Q and all |x| < §, with &, € (0, 8],
F(z,x) > %"|x|‘i > (%W.

On the other hand, Hypothesis H, (i) implies that we can find ¢;; = ¢,5(8;, ) > 0 such that
F(z,x) > —¢;5]x|” fora.a.z € Qandall |x| > §;.

Combining (3.28) and (3.29), we find ¢, = ¢;4,(8;,7) > 0 such that

G .
F(z,x) > —>|x|? — ¢;4|x|” fora.a.z € Qandall x € R.
6P q 14
1

Moreover, from Hypotheses H, (i), (iii) we have
qF(z,x) — f(z,x)x > —¢;5|x|” fora.a.z € Q, all x € Rand some ¢;5 > 0.

Returning to (3.26) and using (3.27), (3.30), and (3.31), we obtain

&

d ) . )
Spltw)| | > elDull+ [W -(1- E>||[;||m]||u||§ —cgllul” for some ¢ > .
1

We choose §, € (0, 8] small such that

(sf,'—iq > (1- ;)nﬁnm.

1
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(3.22)

(3.23)

(3.24)

(3.25)

(3.26)

(3.27)

(3.28)

(3.29)

(3.30)

(331

(3.32)
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Then from (3.32) we see that
d r
E<p(tu)|t:1 > ¢, lull? - cglull for some ¢, > 0.
Since p < r, there exists some p € (0, 1) small such that
%‘P(tu)L:l >0 forallu e W"P(Q) with 0 < |lul| < p, @(u) = 0. (3.33)

Now, let u € W"P(Q), with 0 < [lu| < p and @(u) = 0. We show in what follows that
e(tu) <0 forallt € [0,1]. (3.34)

We argue by contradiction. So, suppose that thereis somet, € (0, 1) such that ¢(t,u) > 0. Since ¢ is continuous
and ¢(u) = 0, by Bolzano’s theorem, we can find t; € (¢,, 1] such that ¢(t,u) = 0. Let

t, = min{t € [t,, 1] : p(tu) = 0} > ¢, > 0.

Then
o(tu) >0 forallt € [ty t,). (3.35)

Let y = t,u. We have 0 < |ly|| < [lull < p and ¢(y) = 0. Therefore, from (3.33) it follows that

>0 (3.36)

t=1

d

—(t

dtq)( )
Also, from (3.35) we have

m 2 o @)

d .
2 E‘P(t”)L:t* =t }Lt*

o(y) = ot u) =0 < @(tu) forallt e [ty,t,) = 0%<p(ty)

t=1

*

Comparing (3.36) and (3.37), we reach a contradiction. This proves (3.34).
By taking p € (0, 1) even smaller if necessary, we may assume that K,n BP = {0}, where

EP ={ue WhP(Q) : ul < p}.
Leth:[0,1]x (¢°NB,) — ¢’ N B, be the continuous function defined by
h(t,u) = (1-tju forall (t,u) € [0,1] x (¢° N B,).

From (3.34) we see that h(-, - ) is well-defined. This deformation shows that ¢° N BP is contractible in itself.
Fixu e B ) with ¢(u) > 0. We show that there exists a unique t(u) € (0, 1) such that

o(t(w)u) = 0. (3.38)

Note that ¢(u) > 0 and ¢ — ¢(tu) is continuous. So, the existence of some #(u) € (0, 1) follows from Bolzano’s
theorem. We need to show the uniqueness of t(u). Suppose there are 0 < £, = t(u), < £, = t(u), < 1 such that
¢(t,,u) = p(t,u) = 0. Then from (3.34), we have

k(t) = o(tt,u) <0 forallt € [0,1].
Hence g—‘ € (0, 1) is a maximizer of k(- ) and so
d td . d .
ak(t) t:% =0 = ?:&(p(ttzu) t:% = a(p(ttlu) - =0,
which contradicts (3.33). This proves the uniqueness of ¢(u).

From the uniqueness of t(u) € (0,1) and (3.34), we have

o(tu) <0 ift € (0,t(u)),

. (3.39)
e(tu) >0 ift e (t(u),1].
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Now, let & : BP\{O} — (0, 1] be defined by

. {1 ifu e B,\{0}, p(u) <0, (.40)

t(u) ifuce BP\{O}, @(u) > 0.

We claim that €, is continuous. Evidently, we need to check the continuity at u € BP\{O} with ¢(u) = 0. Let
u,, — u with ¢(u,) > 0 for all n > 1. Arguing by contradiction, suppose that by passing to a subsequence if
necessary, we have t(u,) <t < 1 for all n > 1. From (3.39) we have

e(tu,) >0 forallt e (f,1]andalln>1 = ¢(tu) >0 forallt € (£ 1]
= ¢(tu)=0 forallte (£,1] (see (3.34))
d
= 5(p(tu) = 0,

which contradicts (3.33). This proves the continuity of €.
Next, consider the map € : BP\{O} - (BP N ¢")\{0} defined by

R {u if u € B\0}, (u) <0,
ez(u) = _p
§wu ifuce B,\{0}, ¢(u) > 0.

Evidently, €, is continuous and
&la,nenior = 1dls,0g00\0)-
Therefore €, is a retraction of BP\{O} onto (Bp n <p°)\{0}. But BP\{O} is contractible in itself. Hence the same

holds for (BP N ¢°)\{0}. Recall that we have seen that BP n ¢° is contractible in itself. So, from Granas and
Dugundji [17, p. 389], we deduce that

H,(B,n ¢’ (B, n¢")\{oh) =0 forallk >0,
hence C;.(¢,0) = 0 for all k > 0 (see Section 2). O

Remark 3.8. The first such computation of the critical groups of ¢ for equations with concave nonlinearities
near the origin was conducted by Moroz [27] for Dirichlet problems driven by the Laplace operator (semilinear
equations) with 8 = 0. The conditions on f(z, x) in Moroz [27] were more restrictive. The result of Moroz [27]
was extended to Dirichlet problems driven by the p-Laplacian with 8 = 0, by Jiu and Su [19]. Our proof here
was inspired by these two works.

Now, we are ready to produce a nodal solution for problem (1.1).

Proposition 3.9. Assume that Hypotheses H(a),, H, and H, hold. Then problem (1.1) admits a nodal solution
Yo € [v,,u,] N CH(Q) (herev, € —intC, and u, € intC, are the two extremal nontrivial constant sign solutions
of (1.1) produced in Proposition 3.6).

Proof. As before, let A > ||f7]|, and consider the following truncation-perturbation of the reaction f(z,-):

f(z,0,(2) + Ao, (2)[P v, () ifx <v,(2),
flz,%) = { f(z,x) + MxlP2x ifu,(2) < x < u,(2), G.41)
fzu,(2) + A, (2)P! ifu,(z) < x.

This is a Carathéodory function. We set

X

F(z,x) = j f(z,5)ds

0

and consider the C'-functional ¥ : W"?(Q) — R defined by

V) = jG(Du(z)) dz + % J[ﬁ(z) @) dz - jﬁ(z,u(z)) dz forallu e W™(Q).
Q Q Q
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Also, we introduce the Carathéodory functions ﬂ(z, x) = f (z, +x%), we set
E.(z,x) = j fulz,s)ds
0

and consider the C'-functionals ‘Tfi : WH(Q) — R defined by

B, (u) = JG(Du(z))dz " % J[[S(z) M) dz - Jﬁ_,(z, wz)dz forallu e WHP(Q).

Q Q Q

We can easily check that

Kg < [v,,u,], K@ co,u,l], Kg <[v,,0].

The extremality of v, € —intC, and of u, € intC, implies that
K\? < [U*) u, ]s K\?+ = {0, u, }’ K@7 = {U* > 0} (3-42)

Claim. Bothu, € intC, and v, € —intC, are local minimizers of ¥.

Evidently, ¥, is coercive (see (3.41) and recall that A > [|f7||,). Also, it is sequentially weakly lower semi-
continuous. Therefore, we can find 7i, € W“?(Q) such that

¥, (@,) = inf{¥, (1) : u e WP (Q)}. (3.43)
As before (see the proof of Proposition 3.4), using Hypotheses H(a), (iv) and H, (iii), we show that
¥, (@,) < 0=¥,(0),
hence @i, # 0. From (3.43) we have
V(@) =0 = A@.)+(B+Vlal"a, =Ny @.). (3.44)

On (3.44) we act with —u~ € W"?(Q) and since A > |8 |,, we obtain that @, > 0, @1, # 0 (see (3.41)). Next
on (3.44) we act with (i1, — u,)* € W"P(Q) and we have

<A(a* )> (ﬁ* —Uu, )+> + j(ﬁ(z) + A)a{:il(a* —Uu, )+ dz = f+(zﬁ a*)(ﬁ* —Uu, )+ dZ

Q

Q
J[ Flzu) + AP V@, —u,) dz (see (341))
Q

(A, @, —u.)™) + j [Bz) + Al @, - u,)* dz,
Q

which implies
j (a(Dii,) — a(Du,), Dii, — Du,)gy dz + j B) + V)@ —ut Y@, —u,)dz =0
{t,>u,} {t,>u,}

and so
|{ﬁ* > u*}|N =0,

hence @, < u,. Hence we have proved that @, € Ky, and, € [0,u,], %, # 0, hence, = u, (see (3.42)). But
Ple =%,|c..

Thus u, is a local C!(Q)-minimizer of ¥, hence it is also a local W'#(Q)-minimizer of ¥ (see Proposition 2.5).
Similarly for v, € —intC, using this time the functional ¥_. This proves the claim.



DE GRUYTER N.S. Papageorgiou and V. D. Radulescu, Nonlinear Neumann problems =— 561

Without any loss of generality, we may assume that ¥(v,) < ¥(u,) (the analysis is similar if the oppo-
site inequality holds). From the claim we know that u, € intC, is a local minimizer of ¥. Hence we can
find p € (0,1) small such that

Y(v,) < ¥(u,) <inf{¥w) : lu-ul=p} =7, lv,-ul>p. (3.45)

Recall that ¥ is coercive, hence it satisfies the C-condition. Combining this fact and (3.45), we see that we can
apply Theorem 2.1 (the mountain pass theorem) and find y, € W"?(Q) such that

yo € Kg and 7, < ¥(y,). (3.46)

From (3.42) and (3.46) it follows that y, € [v,,u,], hence y, is a solution of problem (1.1) (see (3.41)).
Since y, is a critical point of ¥ of mountain pass type, we have

C, (¥, y) # 0. (3.47)

Also becauseu, €intC,,v, € —intC, and V| (.1 = @l 4. from the homotopy invariance of critical groups,
we have
Ci(¥,0) = Ci(9,0) =0 forallk >0 (see Proposition 3.7). (3.48)

Comparing (3.47) and (3.48), we see that y, + 0. Hence y, is a nodal solution of (1.1) and the nonlinear regu-
larity theory implies y, € C'(Q). 0

Now, we can state the following multiplicity theorem for problem (1.1).

Theorem 3.10. Assume that Hypotheses H(a),, H, and H; hold. Then problem (1.1) admits at least three non-
trivial solutions u, € intC,, v, € —intC, and y, € [v,,u,] N C'(Q) nodal.

Remark 3.11. Three solutions theorems for coercive nonlinear equations driven by the p-Laplacian (that is,
we have a(y) = [[y[l? %y for all y € RV, 1 < p < co) were proved by Liu [25], Liu and Liu [24] and Kyritsi and
Papageorgiou [21]. In [25] and [24], the authors deal with Dirichlet problems with 8 = 0 and the reaction f(z,-)
satisfies a global sign condition. They prove a three solutions theorem, but they do not produce a nodal solu-
tion. In Kyritsi and Papageorgiou [21] the problem is Neumann, with 3(z) = f8 € (0, +o0) for all z € Q and no
nodal solution is obtained.

4 Noncoercive problems

In the previous section it was assumed that the reaction f(z,-)is (p — 1)-sublinear near +coand (p — 1)-super-
linear near zero (see Hypotheses H, (i), (iii)). In this section, we investigate the complementary situation.
Namely, we consider nonlinearities which are (p — 1)-superlinear near +co and (p — 1)-sublinear near 0. In
this case the energy functional of the problem is indefinite. To express the (p — 1)-superlinearity of f(z,-)
near +co, we do not employ the usual in such cases Ambrosetti-Rabinowitz condition (AR-condition for
short). Instead we use a more general condition which incorporates in our setting “superlinear” reactions
with “slower” growth. These nonlinearities fail to satisfy the AR-condition.
We need to modify a little the conditions on the map a(y):

Hypothesis H(a),. We have
a(y) = a,(lyl)y forall y e RY
with ay(¢) > 0 for all ¢ > 0, hypotheses (i)—(iii) are the same as the corresponding Hypotheses H(a), (i)-(iii)
and
(iv) there exists some g € (1, p) such that the map ¢ — Go(té) is convex in (0, +0o0) and there exists some y € R
such that
y < pGy(t) — tay(t) forallt > 0.

Remark 4.1. The examples presented in Section 2 satisfy Hypotheses H(a),.
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Hypothesis H,. We assume that the reaction term f(z, x) is a Carathéodory function f: Q x R — R such that
f(z,0) = 0 a.e. in Q satisfying the following conditions:
Q) |f(z,x)| <a@) (1 +|x|"") ae.inQ, forall x € R, witha € L®(Q), and p < r < p*,
(ii) if F(z,x) = [ f(z,5)ds, then
F(z,x)

1m
x>0 |x|P

= +00
uniformly for a.a. z € Q,
(iii) there exists some 7 € ((r — p) max{%, 1}, p*) such that

0 < B, < liminf f(zx)x ~ pF(z %)

X—100 |x7|

uniformly for a.a. z € Q,
(iv) there exists some 9 € L®(Q), 9(z) < p%llil(p, B)ae.inQ, 9+ P‘Tllil(p, B) (recall that f3 = PC—"llﬁ € L®(Q))
such that

F >
lim sup PF%)
x—0 X p

< 9(z)

uniformly for a.a. z € Q,
(v) forevery p > 0, there exists € >0 such that for a.a. z € Q, the mapping x — f(z,x) + ep|x|P’2x is non-
decreasing on [-p, p].

Remark 4.2. Hypotheses H, (ii)—(iii) imply that the reaction f(z,-) is (p — 1)-superlinear near +co. In the
literature, “superlinear” problems are usually treated with the help of the so-called AR-condition. According
to that condition, there exist # > pand M > 0 such that

0 < F(z,x) < f(z,x)x fora.a.ze Q, all|x|>M, and i%f F(-,+M) > 0. (4.0)
A straightforward integration of (4.1) leads to
cglx|m < F(z,x) fora.a.z € Q, all |x| > M and some ¢;g > 0. (4.2)

Clearly, (4.2) implies the much weaker condition H, (ii). Here, we replace (4.1) (the AR-condition) by Hypo-
thesis H, (iii) which is weaker. Indeed, suppose that (4.1). We may assume that# > (r — p)max{%, 1}. Then

fz,x)x - pF(z,x) _ f(z,x)x —nF(z,x)
I B |

+(- p)% > (n-p)g fora.a.z e Qandall |x|> M,

hence Hypothesis H, (iii) holds. Similar superlinearity conditions were used by Costa and Magalhaes [8],
Fei [12] and Li, Wu and Zhou [22].

Example 4.3. The following functions satisfy Hypothesis H,. For the sake of simplicity, we drop the z-depen-
dence:

fr(x) = 91x|P%x + |x"Px with9 < A, (p,f), 1 < p<r < p*,
) 9|x|P2x if |x| < 1, itho < 1.( B) .
X) = W1 < 5 P), < < p.
: Ix[P2xIn |x] + 9|x|72x  if|x| > 1, P 1=

Note that f, satisfies the AR-condition (see (4.1)), but f, does not.

As before (see Section 3) with A > [|7||,» We consider the truncations-perturbations of f(z,-), fi(z, x)
and the corresponding C'-functionals ¢, : W"?(Q) — R. Also ¢ : W"?(Q) — R is the C'-energy functional
of problem (1.1) (see Section 3).

Proposition 4.4. Assume that Hypotheses H(a),, H,, H, hold. Then the functionals §, satisfy the C-condition.

Proof. We do the proof for the functional @,, the arguments for ¢_ being similar. So, let {u,},., < W"?(Q) be
such that
1§, (u,)] < M, forsomeM,; >0andalln>1 (4.3)

and
(1 + lu, D@, (u,) —» 0 inW"(Q)* asn — oo. (4.4)
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From (4.4), we have for all h €¢ W"?(Q) and some ¢, — 0%,

_ h
’(A(un),h) + J(ﬁ(z) Nl [P0 dz - J Fozu)h dzl < % (4.5)
Q Q U
In (4.5) we choose h = —u, € W"P(Q). Then by (2.5) we obtain forall n > 1,
C—ll||Du; 12+ J(ﬁ(z) PN dz<e, = u—0 inW"(Q) (recalld> B l,).  (4.6)
P Q
Next in (4.5) we choose h = u! € W"P(Q). It follows that
- J(a(DuZ),Du;)]RN dz - jﬁ(z)(uZ)p dz + Jf(z, u)u, dz <, foralln>1. 4.7)
Q Q Q
On the other hand, from (4.3) and (4.6) we have foralln > 1,
J pG(Du’) dz + j B dz - J pF(z,u’)dz < M, forsome M, > 0. “.8)

Q Q Q

Adding (4.7) and (4.8), we obtain for all n > 1,
J[pG(Du:) — (a(Du,)), Du, g~ dz + J[f(z, u)u, — pF(z,u,)] dz < My forsome M; > 0,

“ “ “9)

I[f(z, uu' — pF(z,u;)|dz < M, forsome M, > 0

Q

(see Hypothesis H(a), (iv)). By virtue of Hypotheses H, (i), (iii), we can find 3, € (0, 3,) and ¢,y > 0 such that
Bix" —¢9 < f(z,x)x - pF(z,x) fora.a.z € Qandall x > 0. (4.10)
Using (4.10) in (4.9), we deduce that there is some M, > 0 such that foralln > 1,

Billu, |7 < M, (4.11)

hence {u},., < L7(Q) is bounded.
First suppose that N # p. From Hypothesis H, (iii) it is clear that without any loss of generality we may
assume that 7 < r < p*. Hence, we can find ¢ € (0, 1) such that

1 1-t ¢

r T p*
Invoking the interpolation inequality (see, for example, Gasinski and Papageorgiou [15, p. 905]), we have
el < 1t IIuZII;* = |lulll < Mglu I forsome My > 0andalln > 1 (4.12)
(see (3.46) and use the Sobolev embedding theorem). Hypothesis H, (i) implies that
f(z,x)x < (1 +x") fora.a.z € Q,all x > 0 with ¢y > 0. (4.13)
From (4.5) with h = u} € W"P(Q), we have foralln > 1,

j(a(Du;), D)z + Jﬁ(u;)" dz - J fleuutdz<e,
Q Q Q

= —Pc_l 1||DM,+,||§ <o (1+]u,l) forsomec, >0 (4.14)

(see (2.5), (4.13), Hypothesis H, and recall that r > p). We know that u — |lu|, + [|Du] » is on equivalent
norm on W"?(Q) (see, for example, Gasinski and Papageorgiou [15, p. 227]). So, from (4.11) and (4.14) and
since T < r, we have foralln > 1,

lp I < e (1 + g ly) < c5(1 + N I (4.15)
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The hypothesis on t (see Hypothesis H, (iii)) implies that tr < p. So, from (4.15) it follows that
(U}, € WP(Q)isbounded = {u,},., € W"P(Q) is bounded (see (4.6)). (4.16)

If N = p, then p* = +co and from the Sobolev embedding theorem, we have that W"?(Q) < L*(Q) for all
1 < s < co. Then for the previous argument to work we replace p* by 5 > r > 7 and choose ¢ € (0, 1) such that

1 1-t t r—T
L el S, )
r

T n n-t
Note that % —r-tasy — p* =+oo.Butr — 7 < p (see Hypothesis H, (iii)). Therefore for 5 > r large, we
can have tr < p and so (4.16) holds.
By virtue of (4.16), we may assume that

u, % u inw(Q) and u, »u inL’(Q) asn — oo. (4.47)
In (4.5) we choose h = u, — u € W"P(Q), pass to the limit as n — oo and use (4.17). Thus, by Proposition 2.4,
JLrgO(A(un),un -u)y=0 = u, > u in whP(Q) = @, satisfies the C-condition.
Similarly for the functional ¢_. O
With some minor straightforward changes in the above proof, we can also have the following result.
Proposition 4.5. Assume that Hypotheses H(a),, H,, H, hold. Then the functional ¢ satisfies the C-condition.

First we will produce two nontrivial constant sign solutions. This will be done by using Theorem 2.1 (the
mountain pass theorem). To this end, we check the mountain pass geometry for the functionals @, .

Proposition 4.6. Assume that Hypotheses H(a),, Hy, H, hold. Then u = 0 is a local minimizer for the three
functionals ¢, and ¢.

Proof. We do the proof for the functional ¢, , the arguments for the functionals ¢_ and ¢ being similar. By
virtue of Hypothesis H, (iv), given € > 0, we can find § = §(¢) > 0 such that

F(z,x) < %[S(Z) +¢]lx|? fora.a.z e Qandall |x| < §. (4.18)
Let u € C'(Q)) such that [[ullci g < 8. Then

. (u) = J G(Du)dz + % j(ﬁ(z) + Mlul? dz + I F(z,u)dz

Q Q Q
a ||Du||P + = Jﬁ(z)lulp dz - JF(z, u)dz (see (2.6))
P(P D Py Q
> P(p Dl + i B)ul? dz - = J Al dz—  pul
a P 2 pa_[P-1 P _Eyp
p(p D [llDull jﬂ(z)lul dz i . 9(2)|ul dz] pllull
> 1 [CIT%I - e] lul?  for some c,5 > 0 (see Lemma 3.3). (4.19)

Choosing ¢ € (0, 2%15) from (4.19), we infer that u = 0 is a local C'(Q2)-minimizer of @,, hence u = 0 is a local
WP (Q)-minimizer of ¢, (see Proposition 2.5).
Similarly for the functionals ¢_ and ¢. O

The superlinearity of F(z, - ) (see Hypothesis H, (ii)) leads to the following result.

Proposition 4.7. Assume that Hypotheses H(a),, H,, H, hold andu € W"*(Q), u > 0, u # 0. Then ¢, (tu) — —oco
ast — +o0o.
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Proof. By virtue of Hypotheses H, (i)-(ii), given any # > 0, we can find ¢,4 = ,4(1) > 0 such that
F(z,x) 2 ylx|¥ —¢,c fora.a.z € Qandall x € R. (4.20)
Then for all t > 1, we have
tP
¢, (tu) = JG(tDu) dz + — J,B(z)lulp dz — JF(Z, tu) dz
Q P Q Q

(see (3.23), (4.20) and recall t > 1 and g < p)

< cppt?(IDulld + 1Dull?) + ey t? lullh — nt?lullb + 610y for some c;; > 0

< tPogllul® — nllulb] + eyl for some ¢, > 0. (4.21)

Choosing )
Cgllull
T
R

from (4.21) we infer that @, (fu) — —co as t — +oo. In a similar fashion we also show that ¢_(fu) — —oco
ast — —oo. O

Now, we have the mountain pass geometry for the functionals ¢, and we can produce two nontrivial constant
sign solutions of (1.1).

Proposition 4.8. Assume that Hypotheses H(a),, H,, H, hold. Then problem (1.1) has at least two nontrivial
constant sign solutions u, € intC, and v, € —intC,.

Proof. Proposition 4.6 implies that we can find p € (0, 1) small such that
#,(0) = 0 < inf{@, (u) : |ul = p} =7,.

This fact together with Propositions 4.4 and 4.7 permit the use of Theorem 2.1 (the mountain pass theorem).
So, we can find u, € W"?(Q) such that

up € K and 7, < ¢, () = ug # 0 and Aug) + (B + Mlugl” g = N7 (uy). (4.22)
On (4.22) we act with —u; € W"?(Q) and since A > || ,, we obtain u, > 0, 1, # 0. Therefore (4.22) yields
Alug) + Pub™ = Ny (up),

hence u, is a nontrivial positive solution of (1.1) and u, € C,\{0} (by the nonlinear regularity theory).
Let p = |lugllo, and let e, > 0 be as postulated by Hypothesis H, (iv). Then

— diva(Duy(2)) + (B(2) + €,)u(2)! " 2 f(2,1y(2)) + €,15(2)" ' 20 ae.inQ = u, € intC, (4.23)

(see the proof of Proposition 3.4 and Pucci-Serrin [34, pp. 111, 120]). Similarly, working with the functional ¢_,
we produce v, € — intC, a nontrivial negative solution of (1.1). O

To produce a third nontrivial solution, we will use Morse theory (critical groups). In the next two propositions,
we compute the critical groups at infinity for the functionals ¢ and @, .

Proposition 4.9. Assume that Hypotheses H(a),, H,, H, hold. Then C; (¢, c0) = 0 for all k > 0.

Proof. As in the proof of Proposition 4.7, we show that for every u € W"2(Q), u # 0, we have
¢(tu) > —0c0 ast — +oo. (4.24)
By virtue of Hypotheses H, (i), (iii), we have for some ¢,, > 0 and j3; € (0, 3,),

PE(z,x) - f(z,X)x < g — Bylx|" fora.a.z € Qandall x € R.
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For u € W"(Q) and ¢ > 0, we have

d /
E(p(tu) = (¢ (tu),u)
1

= (@' (tu), tu)

- %[ J(u(tDu),tDu)RNdz + Jﬁltulp dz - If(z, tu)(tu) dz]
Q Q

Q

<

[ [ pGDu)dz + ity + jmth] + 6l

Q Q

- J pF(z,tu)dz — B, |tul. (see Hypothesis H(a), (iv) and (4.24))
Q

~ | -

1
< ;[pso(tu) + (Iyl + c9)1Qy ] (4.25)
From (4.24) and (4.25), we deduce that
%(p(tu) <0 forallt > 0bigenough. (4.26)

Then by virtue of the implicit function theorem, we can find a unique function e € C(dB,) such that

e>0 and ¢leu)=p, < —M% (see (4.25)). (4.27)

We extend e on W™ (Q)\{0} as
1 u 1Lp
€(u) = _||u|| e( _IIuII) for all u e W>?(Q)\{0}.

Clearly, e, € C(W"P(Q)\{0}) and ¢(e,(u)u) = p, (see (4.27)). Moreovet, if p(u) = p,, then ¢,(u) = 1. Therefore,
if we set

() = 1 if p(u) < p,, 428)
) ife(u) > p,,

then e* € C(W P(Q)\{0}).
We consider the homotopy  : [0, 1] x (W"2(Q)\{0}) — WP (Q)\{0} defined by

h(t,u) = (1 - Hu+te* wyu  forall (t,u) € [0,1] x (W P(Q)\{0}).

Note that
h(O,u) =u, h(lL,u) =" (wu e ¢” forallu e WP (Q)\{0},
h(t,)lge. = idlgp. forallt € [0,1] (see (4.28)).
This shows that
¢ is a strong deformation retract of WhP(Q)\{0}. (4.29)

If we use the radial retraction

ro(t) = for all u € W"P(Q)\{0},

H
[l
we see that 9B, is a retract of W"?(Q)\{0} and W"?(Q)\{0} is deformable onto dB,. Therefore, [10, Theorem 6.5,
p. 325] implies that

0B, is a deformation retract of W"?(Q)\{0}. (4.30)

From (4.29) and (4.30) it follows that for all k > 0,
¢ and 0B, are homotopically equivalent = H,(W"?(Q), ¢"*) = H,(W"F(Q),0B,). (4.31)

Since W"?(Q) is infinite dimensional, we know that dB, is contractible in itself. Thus, by Granas and Dugundji
[17, p. 389],
H,(W"P(Q),0B,) =0 forallk > 0. (4.32)
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From (4.31) and (4.32) it follows that
H,(W"P(Q),¢P) =0 forallk > 0.

Choosing p, < —""% with |p, | large enough, we have for all k > 0,

Ci(p, 00) = H(W"P(Q), 9™,
hence C,(¢, 00) = 0. This completes the proof. O

Remark 4.10. The first computation of the critical groups of the energy functional for problems with super-
linear reaction was developed by Wang [37]. In that case the problem is Dirichlet, driven by the Laplacian,
B =0, and the superlinear reaction f is autonomous (that is, f(z,-) = f(-)), f € C'(R) and satisfies the
AR-condition (see (4.1)). Our proof uses ideas from the proof of Wang [37].

We can obtain an analogous result for the functionals ¢,.
Proposition 4.11. Assume that Hypotheses H(a),, H,, H, hold. Then C;(§.,00) = 0 for allk > 0.

Proof. LetG, = @, |cig)- From the nonlinear regularity theory (see Lieberman [23]), we have that K;, < cl(Qy)
and in fact K; < C,.Hence
K¢+ = K&+ - K g C+.
Since C'(Q)) is dense in W"?(Q), from Palais [30] we have for a < infy ¢, = infy G,,
H(W"P(Q),9?) = H(C'(Q),5)) = Ci(@,,00) = C(G,,00) forallk > 0. (4.33)
So, by virtue of (4.33), in order to prove the proposition, we need to show that
H(C'(Q),0%) =0 forallk > 0. (4.34)

To this end, let
0B = {ueC'(Q): lulogy =1} and 0B, = {u € 9B : u" # 0}.
We consider the homotopy A, : [0, 1] x aBi Lo aBi . defined by

(1 —t)u+tu, (p, B)
(L =ty + tit, (p, Pllcr

h,(t,u) = for all (t,u) € [0,1] x W"P(Q).
We have ~
h,(1,u) _m@p c oB°

1L+

- ||ﬁ1 (P> ﬁ)”cl(ﬂ)

hence aBi . is contractible in itself. As a consequence of Hypothesis H, (ii) for every u € oB¢

L+» WE have
G,(tu) > —00 ast — +co. (4.35)

For all u € aB¢

4> we have

% o, (tu) = %[J(a(D(tu)),D(tu))]RNdz + J(ﬁ(z) + M|tulf dz - Jﬁr(z, tu)tu dz]
Q Q Q

< %U POD(Ew) dz + [ (B2) + el dz — | pF(z,tu) dz + %o] for some ¢y > 0

Q Q Q

(see Hypothesis H(a), (iv) and (4.25))

1,
= ;[(P+(t”) + 030]

1,
;[m(tu) + ¢3]-
From (4.35) we see that for ¢ > 0 big enough we have &, (fu) < —%". Hence

%6 L(tu) <0 forallt > 0 large enough. (4.36)
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Let B‘f ={ueC(): lullcr @y < 1} and choose a € R such that

a< min{—%—o,infar}. (4.37)
p B

1

As before (see the proof of Proposition 4.9), from (4.37) and the implicit function theorem, we can find a unique
u € C(0BY), u > 1, such that
>a ift € [0, u(w)),
6,(tu) y=a ift = p(u), (4.38)
<a ift> u).

From (4.37) and (4.38), we have
6 = {tu:uedB, t > pw}. (4.39)

LetE, = {tu:u € 0B, t > 1}. From (4.39) we have 6¢ < E,. We consider the deformationf, : [0,1] x E, — E,
defined by

T, (s, ) = {(1 —s)tu+su(wyu  ift € [1, u(u)],
tu ift > p(u).

Then we have
B0, tu) = tu, D, (1,tu) €5 (see (4.39)) and h,(s,-)|s =idls foralls e [0,1].
This means that 67 is a strong deformation retract of E, . Hence
H(C'(Q), E,) = H(C'(Q),6%) forallk > 0. (4.40)

Let i : [0,1] x E, — E_ be the homotopy defined by

Wi(s,tu) = (1 —s)tu +s )
i ||tu||c1((1)

From Dugundji [10, p. 325], we obtain that 6312 is a deformation retract of E, . Therefore
H(C'(Q),E,) = H(C'(),0B{,) forallk>0
= H(C'(Q),67) = H(C'(Q),0B7,) forallk>0 (see (4.40)). (4.41)

We have seen earlier in the proof that aBi+ is contractible in itself. Thus, by Granas and Dugundji [17, p. 389],
H,(C'(€2),0B,) = 0, hence H,(C'((2),5%) = 0 for all k > 0 (see (4.41)).

So, we have proved relation (4.34) and from this it follows that for all k > 0, C,(@,, 00) = C,(G,, c0) = 0.
Similarly, we show that C,.(¢_, co) = 0 for all k > 0. O

Using this result, we can compute the critical groups of ¢ at u, € intC, and v, € —intC,.
Proposition 4.12. Assume that Hypotheses H(a),, H,, H, hold and K,, = {0, uy, v }. Then
Cil(p,ug) = C @, v9) = 8;,Z  forallk = 0.

Proof. Note that @, |c = ¢'lc andso K, = {0,u}.
Letn <0< A< @, (uy) = @u,) (since u, € intC,). We consider the following triple of sets:

7! <@ cWhP(Q) = W.
For this triple of sets, we consider the corresponding long exact sequence of homology groups
i, . 9, L
s — Hy(W, @) = Hy(W,¢}) — Hy (@1, 91) — -+, (4.42)

where i, is the homomorphism induced by the inclusion (W, §") — (W, @j}) and 0, is the boundary homomor-
phism. From the rank theorem and using the exactness of (4.42), we have

rank H, (W, (ﬁi) = rank ker 0, + rankim 0, = rankimi, + rankimo,. (4.43)



DE GRUYTER N.S. Papageorgiou and V. D. Radulescu, Nonlinear Neumann problems =—— 569

From the choice of A, we have
H(W, ") = Cu(§,,up) forallk > 0. (b44)

Also, since < 0 = @'(0) < ¢ (u,) and K = {0,uy}, we have for all k > 0,
H.W,§") = C(@,,00) = H(W,$") =0 (see Proposition 4.11) = imi, = {0}. (4.45)
Similarly, we have
Hy (@, 7) = C_y(,,0) = 8, 102 forallk >0 (seeProposition 4.6). (4.46)
We return to (4.43) and use (4.44), (4.45), (4.46). We obtain
rank C,(@,,u,) < L. (4.47)
But recall that 1, is a critical point of @, of mountain pass type (see the proof of Proposition 4.8). Therefore
Cy(@,,uy) # 0. (4.48)
From (4.47) and (4.48) and since in (4.42) only the tail (that is, k = 1) is nontrivial, we have
Ci(@,,uy) = 8,2 forallk > 0. (4.49)
Claim. We have C,(9,,u,) = C(¢@,u,) forallk > 0.
We consider the homotopy
h(t,u) = (1 - Dp(u) + t§,(u) forall (t,u) € [0,1] x WHP(Q).
Suppose that we can find {¢,},.5; < [0,1] and {u,},-; < WhP(Q) such that

t,—t u,—>u, inW'P(Q) and hl(t,u,) =0 foralln=>1. (4.50)

From (4.50), we have
Auty) + Bl 2wy + 1, Mo, [P0, = (1= £,)Np(u,) + 1,N7 (1)
- diva(Du,(2)) + (B(2) + t,)|u, ()P u,(2) = (1 - 1,) f (2, 1,(2)) + 1, f, (2 u,(2)) ae.inQ,
= ou

n_p on 0Q.
on

From Hu and Papageorgiou [18], we know that we can find M, > 0 such that
le,lleo < M, forallm > 1.
Then from Lieberman [23, p. 320], there are y € (0,1) and Mg > 0 such that
u, € C"(Q) and |u,lcvg < Mg foralln>1. (4.51)
Recall that C**(Q)) is embedded compactly in C'({2). So, from (4.50) and (4.51) it follows that
u, —» u,inC'(Q) = u, €intC, foralln>n, (sinceu, € intC,). (4.52)

We deduce that {u, } €K, a contradiction.

n2n, =

Invoking the homotopy invariance property of critical groups, we have
Ci(@,,uy) = Ci(p,u,) forallk > 0.

This proves the claim.
From the claim and (4.49), we have

Cilp,uy) = 8;,Z forallk = 0.
In a similar fashion, using this time ¢_, we show that
Ci(@,vy) = 6,1 Z forallk > 0.

This completes the proof. O
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Proposition 4.13. Assume that Hypotheses H(a),, H,, H, are fulfilled. Then problem (1.1) admits a third non-
trivial solution y, € C*(Q).

Proof. Arguing by contradiction, suppose that K, = {0, u,, v,}. From Proposition 4.12, we have

Cr(@, ug) = C (1) = 8,7 forallk > 0. (4.53)

Next, Proposition 4.6 yields
Cr(9,0) = 8,47 forallk > 0. (4.54)

Finally, from Proposition 4.9
Ci(p,00) =0 forallk > 0. (4.55)

From (4.53), (4.54), (4.55) and the Morse relation with ¢ = —1 (see (2.8)), we have 2(-1)! + (-1)° = 0, a contra-
diction. So, we can find y, € K, y, ¢ {0, 4y, v}. This is the third nontrivial solution of (1.1) and the nonlinear
regularity theory implies that y, € C'(Q). O

Therefore, we can state the following multiplicity theorem (three solutions theorem) for the noncoercive
version of problem (1.1).

Theorem 4.14. Assume that hypotheses H(a),, H,, H, hold. Then problem (1.1) has at least three nontrivial
solutions u,, € intC,, v, € —intC,, and y, € C'(Q).

Remark 4.15. It is an interesting open question, whether we can have the third nontrivial solution y, € C'(Q)
to be nodal. Nodal solutions for superlinear Neumann problems driven by the p-Laplacian with p(-) = j3,
where 3 € (0, +00), and a reaction satisfying the AR-condition, were obtained by Aizicovici, Papageorgiou and
Staicu [1], under stronger conditions. Theorem 4.14 extends the multiplicity theorem of Wang [37], where the
problem is semilinear (driven by the Laplacian), with Dirichlet boundary condition, 8 = 0 and a superlinear
reaction satisfying the AR-condition.

Funding: Vicentiu D. Radulescu has been supported by Grant CNCS-PCCA-23/2014.
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