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Abstract. We are concerned with the qualitative and asymptotic analysis of solutions
to the nonlocal equation

(~8Fu+V(z)u = Q()u" inRY,

where N >3, 0<s<l,and1 <p < NZi\Izs. As r — oo, we assume that the potentials
V(r) and Q(r) behave as

where a1, a € R, a, B > lezrsziy and 61, 6, > 0, Vj, Qo > 0. Under various hypothe-

ses on ay, ay, &, B, we establish the existence of infinitely many radial solutions. A key
role in our arguments is played by the Lyapunov-Schmidt reduction method.
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1 Introduction and the main result
We consider the following nonlocal equation driven by the fractional Laplace operator

(=A)’u+V(]z))u = Q(|z|)u”, in RV, (1.1)
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Fractional powers of the Laplacian arise in various equations in mathematical physics and
related fields; see, e.g., [1], [9], and [14]. Numerous results related to equations with fractional
Laplace operator sprout in literature. A characterization of the fractional Laplacian through
Dirichlet-Neumann maps was given in [3]. Regularity for fractional elliptic equations was
investigated in [4] and [17]. Existence of solutions was studied in many papers; see, e.g.,
[2,7,12].

Along with different results, there are various enlightening approaches. In [10], the author
obtained some symmetry results for equations involving the fractional Laplacian in RN by the
method of moving planes. In [2], symmetry results for nonlinear equations with fractional
Laplacian were achieved by the sliding method. Geometric inequality was applied to inves-
tigate symmetry properties for a boundary reaction problem in [18]. The method of moving
planes and ABP (Aleksandrov-Bakelman—Pucci) estimates for fractional Laplacian were em-
ployed in [6] to study radial symmetry and monotonicity properties for positive solutions
of fractional Laplacian. We refer the readers to [7] and [11] for very recent new approaches
dealing with fractional Laplacian equations, and to [15] for a comprehensive overview of
variational methods for nonlocal fractional problems.

Inspired by [19], we obtain the existence of radial positive solutions to (1.1) by Lyapunov—
Schmidt reduction. To the best of our knowledge, this method has never been employed in
investigating radial solutions to equations as (1.1).

We will use the radial solution of

(=A)Y’u+u=uP inRN (1.2)

to build up the approximate solutions of problem (1.1). The uniqueness and nondegeneracy
of the radial positive solution to problem (1.2) are established in [8].
Our result is based on the following growth assumptions for V(|z|) and Q(|z|) near infin-

ity:
(V): there exist constants a; € R, « > 1, and 6; > 0, such that V(r) = Vo + 7 + O(ﬁ) as
r — oo,

(Q): there exist constants a, € R, > 1, and 0, > 0, such that Q(r) = Qo + %% + O(rﬁ%gz) as
v — 00.

We assume throughout this paper that Vo =1 and Qp = 1.

Let ) ;
X — <rc052(1—k1)”,rsin2(]_k1)”,o>, i=1,...k

where 0 is the zero vector in RVN=2, r [rokﬁﬁrffr,;flkﬁ?fff} , T=min{a, B}, 0 < ry < r1, and
k is the number of the bumps of the solution.
Setz = (7/,7"),z € R?, 2" € RN=2 and define

H,s = {u:u € H5(RN),uis eveninz, h=2,...,N,

u(rcos®,rsing,z”) = u(rcos (9+ 2kn]>,rsin <9+ 2?),2”)} ,

where H*(RYN) represents the fractional Sobolev space

H(RN) := {u € L*(RN): w € L2(RN x IRN)}, 0<s<l1
[x —y|2*
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Let W be the unique nondegenerate radial positive solution of problem (1.2), Then the
result in [8] shows that there exist constants B; > B, > 0, such that

Bz Bl
< W,. <
T+ [z — x|V = x(2) < T+ [z —x,|N¥2

where Wy, (z) = W(z — xj).
Set

k
Uy (z) = Zij(Z)-
j=1
The main result of this paper establishes the following multiplicity property.

Theorem 1.1. Assume that V(r), Q(r) satisfy (V) and (Q), while a1, ay, a, B satisfy one of the
following conditions:

(i) a1 >0,a0=0,0a < N+2s, and a < f5;
(ii) a1 > 0,a2 >0, « < N+2s, and p > N + 2s;
(iii) a1 > 0,4, <0, « < N+2s, and « > f3;
(iv) a1 =0,a, <0, 0 > B, and p < N +2s;
(v) a1 <0,a2 <0, 0« > N+2s, and p < N + 2s.

Then there exists a positive integer ko such that for any k > ko, problem (1.1) has a solution Uy of the
form
U(z) = Uy, (z) + wy,

N+2s N+2s
where wy € Hys, 1 € [rokN2—7, rkNi%57 ], and as k — +oo,

/RN (1(=A) w2+ w?) — 0.

For some of the abstract methods used in this paper, we refer to the monographs by Molica
Bisci and Pucci [13] and Papageorgiou, Radulescu and Repovs [16].

2 Reduction

Let
Bij
]: ar 7 ]:1/' /k/
where ( ) ( )
j—1 L 2-1)m
Xj= (rcos X ,7sin r ,0], j=1,...k
and

res:=

(M2 o), (N2 ) sz;zST] |
T T

We have denoted 7 := min{w, B}, where a and B are the constants in the expansions of V and
Q, and € > 0 is a small constant.
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Define
H:= {M:ueHrs//]RNW}cjlpju:O’ ]Zl,,k}

The norm and the inner product in H*(RN) are defined as
lull = (uw),  we H(RY),
(u,v) = /]RN ((=A)2u(—=A)2v+ V(|z|)uv),  u,0€ H(RV).
We can easily check that
/IRN (=) su(—A)so+ V(jz)uo — pQ(lz)Uf 'uw),  uwveH

is a bounded bilinear functional in H. Thus, there exists a bounded linear operator M from H
to H satisfying

(Mu,v) = /

o (=A)2u(=A) 20 + V(|z|)uv — pQ(]z|)Uf_1uv), u,v € H. (2.1)

We now establish that M is invertible in H.
Lemma 2.1. There exists a constant p > 0, independent of k, such that for any r € S,
[Mul| = pllull,  ueH.

Proof. We argue by contradiction. If the thesis does not hold, then for any py = t(k — +00),
there exists 7, € S, uy € H, such that

| Mug || < pxl|ugl|-

It follows that
(| Mug|| = o(1)[[ug]]-

Then,
(Mug, @) = o(1) [[ucl/ll@ll, Vo € H. (2.2)

We can assume ||ux||? = k.

Let .
X
Qj=3z=(Z,7") e R*x RN "2: Z TN > cos 2L
12| |1 k

By symmetry and the definition of M, we conclude from (2.2) that for all ¢ € H,

s s _ 1 1
., (i) + V(=g — pQUDUE Mg) = (M, ) =0 (=) ol 23)
Particularly,
/Q (J(=A) 2> + V(|z))ui® — pQ(|z])Ufk71uk2) =0(1)
and

| (-85 + v(jzhu?) = 1 2.4
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Let iy (z) = ur(z + x1). Since

1

N + 25\ Ns=7

Xy — X1| = 2rsin i > 2rE > 128 kNvz=7 7,
k 2k 2T

it follows that for any R > 0, Bg(x1) C ;. Then from (2.4), we have for all R > 0,
[ (8 aE+v(Ehm) <1
Br(0)

So, we can assume that there exists u € H*(RN ), such that as k — +o0,

ﬁ;( —u il’l lsoc (]RN)I

and
i —u, in L3 _(RN).
Since i iseveninz,, h=2,....,N,thenuiseveninz,, h=2,...,N.
Besides, by

/]RN Wf;lPluk =0,
oW

Wpfli"' =0.

/]RN ax1 U 0

oW
P—-1 —
/RN %% e 0. (2.5)

we know that

So, u satisfies

We prove in what follows that u satisfies
(=A)u+u—pWPlu=0, in RN (2.6)
Define
H= {(p:(peHs(]RN), /RNWP_lgz(p:0}.

For any R > 0, let ¢ € C¥(Bgr(0)) N H be any function which is even in z,, h = 2,...,N.
Then ¢i(z) := ¢(z — x1) € C5(Br(x1)). Substituting ¢ in (2.3) with ¢, then by Lemma A.1,
we get

Nlw

u(—A)2g +ugp — pWPlug) =0. (2.7)

[ (=)

In addition, since u is even in z;, h = 2,..., N, relation (2.7) holds for any ¢ € CS"(]RN ),

which is odd in zy, h = 2,...,N. Thus, relation (2.7) is true for any ¢ € C{°(Br(0)) N H. By
the density of CP(RY) in H¥(RYN), we have

Jo (=2

Meanwhile, relation (2.8) holds for ¢ = gTV\lf. Therefore, (2.8) holds for any ¢ € H*(RYN).
Substituting ¢ in (2.8) with u yields (2.6).

Nlw

u(—=A)2p+up — pWPlug) =0, Vo € H (2.8)
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Since W is non-degenerate, we have u = C gTV‘ll because u is even in z,, h = 2,....,N. By
(2.5), we know that

u=20,

which implies
/ w? =o(1), VR > 0.
Br(x1)
Besides, it follows from Lemma A.1 that there exists C’ > 0 such that
Uy, (x) <C', forall x € ().
It follows that
o)) = [ (1(=8)3ui + V (Jz)? = pQU=NUL ' 1?)
1

= [ (=8) P+ v (zhmd) +o1) ~C [ w2

O
1 s
> 5 | ((=8)2u? + V(|zl)ue?) +o(1),
M
which contradicts (2.4). The proof is now complete. O
Define
_1 —A)iyl? 2\ _ 1 p+1
10) = 5 [, (P V() =g [ QU ul? 29)
Let
J(¢) = I(U; + ¢), ¢ € H.
Then
](0)=1 (\(—A)%Ur\z+V(IZ!)Ur2)—L Q(lz]) [P+,
2 p+1Jry
B 1 gt 1 pt1
2/ ur +2/ V(i) == oo QU - mut - [l

because Wy, solves (1.2).

Lemma 2.2. There exists a positive integer ko such that for each k > ko, there is a C' map from S to
Hys: ¢ = ¢i(r), v = |x1|, satisfying ¢ € H, and

J'(¢6)| =
Moreover, there exists a constant C > 0, independent of k, such that
C
el < I (2.10)

k  2(N+2s—1) +0

where 6 > 0 is a small constant.
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Proof. We expand J(¢y) as

() = JO) + 1) + 5 Mgy, @) + R(@y), ¢ € H,

where
i) = (I'(Ur), )
k
= [ - DU+ [ (}gw;—uf)¢k—AN<Q<|zr>—1>uf<pk.

M is the bounded linear map defined in (2.1) and

1

1 ]
1 o QUED (I Pt = Ur ™ = (- 1P = p - U ).

R(w) = —
Since I(¢x) is a bounded linear functional in H, there exists [, € H, such that

He) = (I P)-
Then, ¢, being a critical point of | is equivalent to
Ik + Mgy + R (¢r) = 0. (2.11)
Since M is invertible, we can infer from (2.11) that
¢ = T(¢r) = —M (I + R ().

Define

1
E= {4’k3¢k€H/ ¢l §<N+z><_1>+}

k 2(N+2s—1)
Next, we check that T is a contraction map from E to E.

Case 1: p < 2. It is easy to verify that

IR (i)l < Cligkll[P-

In fact,

(R (¢x), 0)| = ’ /IR QUIz)) (P~ pro + U0 — Uy + ¢[P~ (U + 9 )0)

N ’ /]RN QUlz))p(|Uy + 0P~ — UF v

<C [ 10U+ 097 =l ) gl o

p—1
<C [ 109" igul o
< Cllgel”llol

where 0 < 6 < 1.
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Then, by the boundedness of M and Lemma 2.3,

C C 1
HT((Pk) H (Hlk” + H4)k||p) —  (N42s)(t=1)+1 (N+2s)(t=1)+7 S (N+2s)(t=1)+71
k 2(N+25—1) k 2(N+2s—1) p k 2(N+25—1)

> (2.12)

which implies that T maps E to E.
In addition,

IR (@) || < CligillP~.

In fact,
R (o] = | [ QUED) (pUF "ol = plU; + 1P on)
= o] [ QU ol =t + i o

p—1
<c [ ool
< Cllgell" o) .

Thus, for ¢, ¢r, € E,
IT(¢x,) = T(i,) | = MR (¢,) = MR (¢, |
< [IMH IR (dr,) = R (i) | < IMTHIR (¢, + 0(dry — i) | 1k, — |
1
< Cllpr 177+ N 1P D N1k, — i [l < 5196 = ¢ |-

Note that the last inequality holds only when k is large enough, which implies the existence
of ko in Lemma 2.2. Therefore, T is a contraction map from E to E. Then the contraction
mapping theorem implies the existence of ¢ as a critical point of | restricted to H.

Case 2: p > 2.
Setting h(t) = |U, + t¢|P~ (U, + t¢r)v, then by Taylor’s formula,

[(R (), 0)| = /N Q) (pUf " gxo + Ul'o — [Uy + ¢~ (U + 1)0)

= | [, QU= 31 (®)

<c‘/ p—1)|U, + Oy

2 p
<C [ el + gel ") ol
< Cllgul?llel

p—2 U, + 0¢y
U, + O¢y

‘4)k

which implies that || R’ (¢)| < C|l¢x|l.
By the mean value theorem we obtain

R (ge)o ] = p| [ QUE) W ok~ [, + P o

[y QU= Us + 0]~ (Us + 00 o

=p(p—1)

-2 _
<c [ U +1gdr ) el ol
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where 0 < 6 < 1.
By Holder’s inequality,

fout il < c ([ ur)”

< Cligel[ o]l 2]

N

=

1

(/ |¢k|p+1)11 (/IRUUV’H) - </ Ih|n+1>11

P—“

and

p-1 1

/]RN 9" el 1] < (/]RN |4’k|p+1>p+1 (/IR IU\P+1) e </ |h|p+1>

< CligxlIP~ Mol 111l

L
+1

Therefore, ||[R"(¢x)[| < Cl|¢pxl|-
Arguing similarly as in case 1, we have,

1
TP < CUKI+ N9el?) <~ (2.13)

k 2(N+2s—7)

and T is a contraction map from E to E. The existence of ¢ follows from the contraction
mapping theorem, and (2.10) follows from (2.12) and (2.13).

Following the argument employed in [5] to prove Lemma 4.4, we conclude that ¢(r) is
continuously differentiable in r. O

Lemma 2.3. If T = min{a, B} < N + 2s, there exists a small constant § > 0 such that

C

Ll € ——7——+—.

Proof. We have
(I, ) = 1(¢x)
— ST —nuf 2.14
= [ W) -Dthge+ [ (;w U ) [, (QUEl - DU 219

By symmetry,

[ V=) - Dthge= [ (el - 1) (zwx,)

k
E/IRN (Iz]) = 1)Wx1¢k = k/ V(|z]) = 1)Wx, ¢ (2.15)

and

S VD = DW= [ (V) =Wt [ (VD) )W

; R¥\By (0)

N
For z € RY\B;(0),

a 1 C 24C
Viz)-1="L 10— )< — <2
(D =1=r&+ <|z|w+91) SR ST
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2¢C
V(lz]) — 1) Wy, i = —/ W
/. o VD = DW= o W

1 1
2*C 2 ! ,
5 ) ) ol o
- ‘rla </]RN\B£(O) xl) < ]RN\B%(O) (Pk ra H(PkH
% |
A <c/ / 2) <C
fro Vb -1msgese( [ W) ([, ) <C fmlo

2

Then we conclude that

[ (VD) = Wi < O Yl + Cgt il 216)

By the mean value theorem and Lemma A.1,

k k
N(zw;_uf>¢k :k‘/ﬂ (Zw;_uf>¢k
j=1 1 \j=1
1 k
gcz«’/ Wl <wa.>¢k
M =2 !

1
< CkWH‘PkH'

p—1

: NG ;
< Ok (fowe) " ([ )

(2.17)

By the boundedness of U, we have

[ @zl =nufec= [ (@l - 1u! gy

< c/ Q(lz] — DUy < Ck/ Q(lz] — 1) Wa,

1
< Ck <O <r/3> N+25> [ (2.18)

Combining relations (2.14)—(2.18), we obtain

k
(e fx) = /RN(VUZD _1>ur47k+/IRN <2ij —Uf> <Pk—/]RN(Q(|Z’ — DU ¢x

1 1 1 C
< k(O(ra) +o<rﬁ> e T o )N+zs) e

1 C C
: k<o (YT) + r%JrZs T (klr)N+25> H‘PkH (2~19)
it holds th knirew, —C 1
By r € S, it holds that r ~ k~N+z-7, T ~ O(ﬁ),
1 C
ko( ) < C S)T S s)(T— T 4
(B S | T

and kr%lm < M’ for T < N + 2s.

k 2(N+25-1)
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We conclude that if T < N + 2s, then

C

k| £ ——+——-—.
H kH — k(N;EIZ\;I;s_—?)+T+5

The proof is now complete. O

3 Proof of the main result

Define
G(r) = I(U; + ¢x), Vr e S,

where ¢ = ¢i(r) is the map obtained in Lemma 2.2.

According to Lemma 6.1 in [5], if  is a critical point of G(r), then U, + ¢ (r) is a solution
of (1.1).

From the energy expansion in the Appendix, we have

](O):I(ur>
_ A1 amA B 1 1 1
"‘(’” o ‘<k1r>N+25+O(ra+n>*O(rﬁ+f2)+0<ww>>'
Set ) s 5
a111 az /13
H(r) = ———p _(kflr)I\H'zs'

We prove in what follows that in any of the cases in Theorem 1.1, H(r) has a maximum
point 7y.
For case (i): if a1 > 0, a0 =0, « < N +2s, and a < 8 then

_am Ay | B(N 4 2s)kNt

/() —
H{(r) = ——5 PN+2511

and r satisfies
aa1A; B(N + 2s)kN*2s

a+1 N+2s+1
Tk Vk

Actually, calculating the maximum points in these cases can be summed up as

TC  C'(N +2s)kN*t%

T+1 N+2s+1 4
Tk Tk

where T = min{a, f}. Then H(r) has a maximum point

1
(N +25)C"\ V757 oo,
p— —_— k S—T ,
rk < TC N+2:

which is an interior point of S. Then, there exists a small constant ¢ such that

mAL 1Ay B 1
](O) = k<D + e - r‘B - (kflr)N-l-Zs + O( (N+25)r+5>> .

N+2s—71
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Consequently,

G(r) = I(W, + @) = I(W;) + 1(¢x) + 5 (M, pr) + R(x)

= J(0) + OUlLellllxll + llxll?)
1
=J(0) +O<<N+zm1+5)

kNFs—

aAy aAz B 1
=k(D — — .
( G P (k)N o < ksmw))

Since H(r) has a maximum point r, which is an interior point of S in any of the cases listed,
then G(r) has a critical point 7 in the interior of S. This means that the function

N[ —

Uz, + ¢ (7x)

is a solution of problem (1.1). The proof is now complete. 0

A Appendix. Energy expansions

In this section, we obtain some energy estimates for the approximate solutions. Recall that

! x 7-(
Q= R2x RN-2: (2 21 > cos
j { = (@2 eRox <rz'r w2y

Xj = (rcosz(]_kl)n,rsmwf()) j=1...k

1 1
N+2s—1 N+2s—1
(N+25 _€> e <N+2s +€> T kNIESzST],
T

1

_1 CANS 2 2y 4 p+1
1) = 5 fo (8 2P 4V (Iee) =g [ QU=
and
1) =5 [ (8P +vhu?) - [ oz
2 p+1
2/ urZWf] 2/ V(|z]) - DU,
1 +1 1 +1
— —nuy 4
i (@D DU -
Lemma A.1. For any z € )y, there exists C > 0, such that
k
C
Wi (z) <
]22 ]( ) (k_lr)N+25
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Proof. By the definition of (), for any z € (),

1 —1
|z —xj| > §|xj—x1\ :rsinu >0 (j>2).

k
Then
k k 1 k-1
Y Wy(z) <C) (1) \N+¥25 c Z it Nu2s
j=2 j=2 (rsin L7 i=1 (rsin 7% )
k-1
2Cy 2 ﬁ, k is odd,
. =1 (rsin &)
- k—2
1 1 .
2C< 2 o) + (rsin’;;f)N”S)’ k is even.
When k is even,
k=2
k - 1 1
YWy (z) <20 1 N+ —— )
j=2 i=1 (rsin iZ) (rsin 3F)

>
|
[N]

1 1
J)N"'ZS + yN+2s

IN
)
@)
Ngh

i=1 (T%(
1 21 1
<2C
- (k_lr)N+2 ; 1N+2S + rN+ZS>
C
- (k_lr)N+2s
since Y% -xLy converges.
The proof of the case where k is odd follows with similar arguments. O

Lemma A.2. We have

/]RN(V(\Z])—l)urz:k< I, w2+o<m)+o<<klr)lwm>)

where 71 > 0, and oy > 0 are small constants.

Proof. By symmetry,
k 2
/ V(jz]) = U2 _k/ (Iz)) = 1) <wxl+zwxj>
=2
k k 2
_k/ (I2]) — 1) <w§1+2wxlzwxj+ <2le.> ) (A1)

j=2 j=2

and

/Ql(V(\z|) — W2 = /Ql\BE(m(V(\z +/ _Onz. (Aa2)
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On the one hand,

2
1
V(z|])-1)W2 <C W2 <C <>
/. L R Ty AL T M (e
40 tN 1 400 1 1
, t2N+4sd t=C / tN+4s+1dt CVN+4s =0 yN+as |-
2 2

=C

On the other hand,
[ vz -m
B%(xl)

= =L — ) |w
By () (\zr“ +O(|z|w+91)> u

ai ai C C W2
- By (x1) (r‘" + r“+1o(‘z —xl)+ Fa+0; + ra+91+1o(|z x1|)) 1

_m 2 _m 2 1 1
_r—“ B%(X)W +O( a—}-Tl) _W/HQNW +O<ra¢+1’1) +O<rN+4S)’

where 71 = min{1, 6, }.

By (A.2)~(A4),
[ 0w = [ wero( kg ) +o( k)

k k
Lo =W S = [ (V) =)W YW
1 j=2 j=2

O1\By (x1)
k
[ Wl - oW,
By () j=2
By the boundedness of V(|z|) and Lemma A.1,
C

k
V(z) = )W W,gi/ W
/. 1y 0ED =D o LWy S G -

< C / 1 - C / gt
> (k*lr)NHs lz—x1|>4 ‘Z—X1|N+25 (kflr)N-i-Zs : tN+2s

. c 1 C 1
o ﬁ 25+1 t= (kflr)N-&-Zsﬁ

Similarly to (A.4),

C
/B (x1)(v(|z|) le ZW < (klr)NHS/B,( <|Z|"‘ ‘Z|IX+9 )

r
2

! 1
< 1,\N+2s pa =0 1, \N+2s+a J*
(ki)™ r (k=)

(A3)

(A.4)

(A.5)

(A.6)

(A7)

. C a
- (k 1r)N+25 ( ~/;)(X1) le +O< DC+1> +O(rlx+01>>
C

(A.8)
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By relations (A.6)—(A.8) we get

/Q (V(|2]) — )Wy, iwx/. - o(W) +O(W>, (A9)

1 =2

k 2 k
[ vtz -( ]zw) < i Ly e
C G _of 1
= e O ( (k- 1r) e ) (410

B a ) 1 1 1 1

- k(,wc IRNW +O<VN+4S) +O<rac+r1> +O<(k—lr>N+4S> +O<(k_1r)N+25+a

_ a1 > 1 1

_ k(ra | w2+ O<rm1> + O<(k1r)N+2s+al)>' (A11)

where 07 = min{2s,a}. The proof is now complete. O

Remark A.3. Arguing similarly as in Lemma A.2, we have

1 1
/IRN(QUZD -DUFtt = k(fé /IRN Wr O<rﬁ+rz> T O(W))’ (A12)

where T» > 0 and 0> > 0 are small constants.

Lemma A.4. There is a small constant § > 0, such that

aq ar B 1
u,) = k(D + FT‘Al — r?A2 - (k_lr)N+25 + O<k (N+2s5)7 +5>>,

(N+2s—71)

where

p—(i__1_ / Wr, A1:1/ W2, A= —— [ W,
2 p+1) /vy 2 JrRN p+1Jry

and B satisfies
Loy B

wr Wy = —————-.
2 0 X1 ]; Xj (k_lr)N+25

Proof. We first prove that there exists small constant ¢3 > 0 such that
1 / u i WP — 1 Pt
2 Jry rj:1 Xj p 1 r

1 1 1 k 1
=kl (z-— / Wp“—f/ Wl Y W, o<> . A13
<<2 p+ 1) RN 2Ja, ! ]; 5+ (k—l,,)N+25+‘73 ( )
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By symmetry,
k » k .
u,yY wt =k / u Yy wt
I8 LW =k [ YW
k k
_ k/ <wx1 + wal.) <w}§1 +y ij)
O i=2 j=2
k k
Wy Y w,ij.) . (A.14)
= j=2

k k
— k< / W+ WE Y Wy + Wa, YW+
J i=2 j=2 =2

By Lemma A.1,

k » k C p
W w.g/ W <>
‘/('_l1 xljZé X] Ql XI]-Z; |Z_x]‘N+zs
k

(ol s (ol
< / W - / W
o x1 ;2 (%’xj _ x1|)(N+25)p = (%’x]. — X1|)(N+25)p 0, x1
c’ 1
< - - = S —
T (k)R /n W O<(k1r)(N+zs)”) (A1)
and
/ iniiWﬁgCNHsi/ Wf.:O< 1\172 2)' (A.16)
M5 j=2 ! (k_li’) j=2 o (k_li’)( F2)p+2s
By Taylor’s formula,
p+1 p+1 P k
U —/ W —/ + W Wy,
Jo = WA = et

1 k P*l k 2
= 5plp+1) [ <Wx1+GZWx].> ( wx])

. k 2 k p+1
cof ((Em)  (£m) )
o j=2 i=2

]:

By Lemma A.1,
k 2
_ C 1 C
WP 1< W ) < 7/ W < — =
/01 = e s (T L
and
C C’

k p+1 C
. < - < .
/Ql (ZWXJ) — (kflr)(N—&-Zs)p 5 /Ql Wx] - (kflr)(N-ﬁ—Zs)P (k*lr)Zs

Therefore,
1 > . (A.17)

k
Ql u1/ - /(21 le + (p+1)Wx1 ];Wx] +O<(k_11")N+4S
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Thus, by (A.13)-(A.17), we conclude that

1 : p 1 p+1
Z/HQNUTj_X;WXj_P—Fl RNU’
1 k 1 .
—k f/u T A—— ui’*)
<2 M r; K p+1Jo '
1 1 11 k 1 1
—k (_)/ wrtt — L w,+o()+o<>
( 2 p—|—1 (o) n 2 o} xlj_zz Y (k_lr)(N+ZS)p (kflr)N+4s

1 1 1 k 1
k(- —— / W”“—f/ WY W, o<> A18
(<2 p+1> RY 2 Jo, ]:Zz BRNT=EEE -

where 03 = min{2s, (p — 1)(N + 2s)}.
Next, we claim that there exists a constant B > 0, such that

! | owt Y, - B
2 Ql X1 j:2 x]' - (k*lr)N""zs.

It is easy to verify that
L Wpfjv < B__
E O X1 = Xj = (k_lr)N-O—Zs'
Set Gy = {z € RN : |z — x1| < }|x; — x1|}. Then for a fixed R > 0, it follows that Bg(x;) C
Gy C 4. Then

1

P P P
E WX1 ZWXJ - 2/ WJC] ZWXJ - 2/ le Z x]’N+25

£ 1 £ 1
/ wr — ! w?t
>C / x Z 3. . (j—1)m|N+2s — c E 3. . (j-D= N+25/ X
G 22 |3rsin LT =2 |3rsin 7| Gk

>C’k L / e —
el = |%rsin W}I\H’ZS BR(O) — (kflr)NJrZs.

Combining this claim with Lemma A.2, Remark A.3, and (A.18), we obtain

1 1 1a1 1 an
) =k (- — / Wias 77/ w2 2 [y
(Ur) ((2 p+1> RN T2 Jpw p+1rf Jry

B 1 1 1
o (k—lr)N+25 +O< OH-Tl) +O< ,5+T2) +O<<k_1r)N+2$+a>> 4

where ¢ = min{oy, 03,03 }.

Denoting
1 1 1 1
D B 2 p+1 / WF"H, Al = 5 Wz/ AZ i Wp+1/
2 p+1) /ry 2 JrRN p+1Jry
and using the fact that r € S, we have
a a, B 1
IU)=k| D+ —-A; — ZA; — —|—O< — ) .
( 7‘) ( e rﬁ (kflr)I\H*Zs k(;ﬁ—;ﬁ—)f) +5

The proof is now complete. O
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