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PAIRS OF POSITIVE SOLUTIONS FOR RESONANT SINGULAR
EQUATIONS WITH THE p-LAPLACIAN
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ABSTRACT. We consider a nonlinear elliptic equation driven by the Dirichlet
p-Laplacian with a singular term and a (p — 1)-linear perturbation which is
resonant at +oo with respect to the principal eigenvalue. Using variational
tools, together with suitable truncation and comparison techniques, we show
the existence of at least two positive smooth solutions.

1. INTRODUCTION

Let © C RY be a bounded domain with a C%-boundary 9. In this paper, we
study the following nonlinear elliptic problem with singular reaction

—Apu(z) =u(z) ™" + f(z,u(z)) inQ,

1.1
ulgo =0, ©u>0, 1<p<oo, 0<pu<l. (1.1)

In this problem, A, denotes the p-Laplacian differential operator defined by
Ayu = div (|[DuP™2Du)  for all u € WHP(Q), 1 < p < oo.

In the reaction term, v # (with 0 < u < 1) is the singular part and f: Q@ xR — R
is a Carathéodory perturbation (that is, for all x € R the mapping z — f(z, )
is measurable and for almost all z € Q the map x — f(z,2) is continuous) which
exhibits (p — 1)-linear growth near +oo.

Using variational tools, together with suitable truncation and comparison tech-
niques, we prove a multiplicity theorem establishing the existence of two positive
smooth solutions. Such multiplicity theorems for singular problems were proved
by Hirano, Saccon and Shioji [7], Papageorgiou and Radulescu [12], Sun, Wu and
Long [16] (semilinear problems driven by the Laplacian) and Giacomoni and Saudi
[], Giacomoni, Schindler and Takac [5], Kyritsi and Papageorgoiu [6], Papageor-
giou and Smyrlis [I3] [14], Perera and Zhang [15] (nonlinear problems). In all these
papers the reaction term is parametric. The presence of the parameter permits a
more precise control of the nonlinearity as the positive parameter A\ becomes small.

A complete overview of the theory of singular elliptic equations can be found in
the book by Ghergu and Radulescu [3].
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2. MATHEMATICAL BACKGROUND AND HYPOTHESES

Let X be a Banach space and X* its topological dual. By (:,-) we denote the
duality brackets for the pair (X*, X). Given ¢ € C*(X,R), we say that ¢ satisfies
the “Cerami condition” (the “C-condition” for short), if the following property
holds:

Every sequence {uy, }n>1 C X such that {¢(u,) }nen C Ris bounded
and (14 ||up|)¢’(un) — 0in X* as n — oo, admits a strongly con-
vergent subsequence.

This is a compactness-type condition on the functional . It leads to a deforma-
tion theorem from which we can deduce the minimax theory of the critical values of
. One of the main results of this theory is the so-called “mountain pass theorem”,
which we recall here.

Theorem 2.1. Assume that ¢ € CY(X,R) satisfies the C-condition, 0 < p <

l[uo — ual],
max{p(uo), p(u1)} < inf{p(u) : [[u—wuoll = p} = m,
and
c= inf max o(v(t)),
where

I'={y e C([0,1], X) : 7(0) = uo, (1) = w1 }.
Then ¢ > m, and c is a critical value of ¢ (that is, there exists uy € X such that
o(ug) = ¢ and ' (ug) =0).
In the analysis of problem (L.1)) we will use the Sobolev space W, **(2) and the
Banach space C}(Q) = {u € C1(Q) : u|pq = 0}. In what follows, we denote by || - ||

the norm of the Sobolev space WO1 P(Q). On account of the Poincaré inequality, we
have

|ul = ||Dull, for all u e W, ().
The Banach space C¢(€2) is an ordered Banach space with positive (order) cone
given by
C.(Q)=Cy ={uecCi(Q):u(z) >0 for all z € Q}.
This cone has a nonempty interior

intCy = {ueCy:u(z) >0 for allzeQ,@

O <0}

Here, g—z = (Du,n)g~y with n(-) being the outward unit normal on 0.
Let A: Wy P(Q) — WL (Q) = W, P(Q)* (with % + 1% = 1) be the nonlinear
map defined by

(A(u),h) = /Q |DuP~2(Du, Dh)gndz  for all u,h € WyP(Q).

This map has the following properties (see, for example, Motreanu, Motreanu and
Papageorgiou [I1] p. 40]).
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Proposition 2.2. The map A : WP (Q) — W12 (Q) is bounded (that is, maps
bounded sets to bounded sets), continuous, strictly monotone (hence mazimal mono-
tone, too) and of type (S)4, that is,

Un 5w in WyP(Q) and limsup(A(u,), tn, —u) < 0= u, — u in Wy P(Q).

n—oo

We will also need some facts about the spectrum of the Dirichlet p-Laplacian.
So, we consider the following nonlinear eigenvalue problem

—Apu(z) = Am(2)|u(2)[P2u(z) in Q,  ulsq = 0.

Here, m € L*>°(Q), m > 0,m # 0. We say that A is an “eigenvalue”, if the above
problem admits a nontrivial solution @ known as an “eigenfunction” corresponding
to the eigenvalue A\. The nonlinear regularity theory (seE for example, Gasinski and
Papageorgiou [2, pp. 737-738]), implies that & € C3(Q). There exists a smallest
eigenvalue A;(m) such that:

e A\ (m) > 0 and is isolated in the spectrum &(p) of (=A,, Wy (Q),m) (that
is, there exists € > 0 such that (A1(m), A1(m) +¢€)Né&(p) = 0);
e A\ (m) > 0 is simple in the sense that if 4,7 are two eigenfunctions corre-
sponding to A1(m) > 0, then @ = &0 for some £ € R\{0};
[ ]
[ Dy !
e WHP(Q),u £ 0. 2.1

The infimum in (2.1)) is realized on the one-dimensional eigenspace corresponding
to A1(m). From the above properties it follows that the elements of this eigenspace
have constant sign. We denote by 11 (m) the LP-normalized (that is, |41 (m)]||, = 1)

A1 (m) = inf [

positive eigenfunction for the eigenvalue M (m). As we have already mentioned,
41(m) € Cy. In fact, the nonlinear maximum principle (see, for example, Gasinski
and Papageorgiou [2], p. 738]) implies that @, (m) € int Cy. If m = 1, then we write

5\1(1) = 5\1 >0 and 111(].) =1y € int C+.
The map m +— 5\1(m) exhibits the following strict monotonicity property.

Proposition 2.3. If mi,mz € L*(02), 0 < my(z) < ma(z) for almost all z €
and my # 0,ma # mq, then A\j(ma) < A1(my).

We mention that every eigenfunction 4 corresponding to an eigenvalue A #*
A1(m), is necessarily nodal (that is, sign changing). For details on the spectrum of
(—=A,, WP (), m) we refer to [2, T1].

For € R we define ¥ = max{+z,0}. Then, given u € WP (Q), we set
u®(-) = u(-)*. We have

ut e W), u=ut —u”, |ul =ut +u".
Given a measurable function g : 2 xR — R (for example, a Carathéodory function),
we denote by Ny (-) the Nemitsky (superposition) operator corresponding to g, that
is,
Ny(u)(-) = g(-,u(-)) for all u € W, *(Q).
We know that z — Ny(u)(z) = g(z,u(z)) is measurable.
The hypotheses on the perturbation term f(z,x) are the following:
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(H1): f: Q xR — R is a Carathéodory function such that f(z,0) = 0 for almost
all z € Q2 and

(i) for every p > 0, there exists a, € L>(§) such that
|f(z,2)] <a,(z) foralmostall zeQ, al0 <z <p
and there exists w € C1(£2) such that
w(z)>é>0forall z€ Qand — Ayw > 0in Wy P(Q)* = Wt (Q)
and for every compact K C ) we can find cx > 0 such that
w(z) " + f(z,w(z)) < —ckx <0 for almost all z € K;
(i) if F(z,2) = [y f(2,s)ds, then there exists n € L>() such that

3\1 < lim inf < lim sup
T— 400 ;ppfl Z—400 xP

< n(z) uniformly for almost all z € Q,

f(z,z)x — pF(z,2) — —o0 as & — +oo uniformly for almost all z € Q;
(iii) there exists ¢ € (0, ¢) such that for all compact K C Q we have
f(z,2) > éx >0 for almost all z € K, all 0 < z < §;

(iv) for every p > 0, there exists £, > 0 such that for almost all z € © the
mapping
x— f(z,7) +épxp*1
is nondecreasing on [0, p].
Remark 2.4. Since we are looking for positive solutions and all the above hy-

potheses concern the positive semiaxis Ry = [0, +00), we may assume without any
loss of generality that

f(z,2) =0 for almost all z € 2, all z <0. (2.2)
Hypothesis (H1)(ii) permits resonance with respect to the principal eigenvalue
A1 > 0. The second convergence condition in (H1)(ii) implies that the resonance

at 400 with respect to Ay > 0, is from the right of the principle eigenvalue in the
sense that

APt —pF(z,2) — —o0 as & — +o00o uniformly for almost all z € Q

(see the proof of Proposition . This makes the problem noncoercive and so the
direct method of the calculus of variations is not applicable.

Hypothesis (H1)(iv) is satisfied if for example f(z,-) is differentiable and the
derivative f7(z,-) satisfies for some p > 0

fi(z,x) > —prp_2 for almost all z € Q, for all 0 < z < p and some ¢, > 0.

Example 2.5. The following function satisfies hypotheses (H1). For the sake of
simplicity we drop the z-dependence:

aP~l — Qg fo<z<l1
fz) = -1 r—1 -1
nzP~t + 277t — (24 n)a? if 1 <,

withnZﬂland1<7, g<p<r<oo.
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3. PAIR OF POSITIVE SOLUTIONS

In this section we prove the existence of two positive smooth solutions for problem
(1.1). We start by considering the auxiliary singular Dirichlet problem

—Apu(z) =u(z) " in Q, ulpg =0, u > 0. (3.1)

By Papageorgiou and Smyrlis [I4, Proposition 5 ], we know that problem (3.1)) has
a unique positive solution 4 € int Cy.
Let § > 0 be as postulated by hypothesis (H1)(iii) and let

0<t< min{l,in T' }.
We set u = tu. Then u € int C; and we have
—Apu(z) = tPH=Apa(z)] = 77 a(z)
< g(z) o (since 0 <t <1) (3.2)

<wu(z)™* + f(z,u(z)) for almost all z € Q

(see [14], note that u(z) € (0,d] for all z €  and see hypothesis (H1)(iii)). Also
note that u < w.
We introduce the following truncation of the reaction term in (1.1f):

u(z)7" + f(z,u(z) iz <u(z)
Fera) = { o + f(a) i u(z) < o < w() (33)
w(z)™* + f(z,w(2)) ifw(z)<z.

This is a Caratheodory function. We set F (2, ) fo z s)ds and consider the
functional ¢ : W, ?(Q) — R defined by

1 .
Slu) = ]—JHDqu — /QF(z,u)dz for all u € Wy* ().

By Papageorgiou and Smyrlis [14] Proposition 3] we have ¢ € C*(W, ?(R)).
In what follows, we denote by [u,w] the order interval
[w, w] = {u € Wy P(Q) : u(z) < u(z) < w(z) for almost all z € Q}.
Also, we denote by intea g [u, w] the interior in the C&(Q)-norm topology of [u, w]N
C ().
In the next proposition we produce a positive smooth solution located in the
above order interval.

Proposition 3.1. If hypotheses (H1) hold, then problem has a positive solu-
tion ug € intea q) [u, w].
Proof. We know that u € int C;. So, using Marano and Papageorgiou [10, Propo-
sition 2.1] we can find ¢y > 0 such that

ﬂ}/p/ <cou = uM< cga;“/”/.
Hence using the lemma of Lazer and McKenna [9], we have that

u e LV (Q).
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Therefore by (3.2)) we see that ¢(+) is coercive. Also, using the Sobolev embedding
theorem, we see that ¢ is sequentially weakly lower semicontinuous. So, by the
Weierstrass-Tonelli theorem, we can find ug € VVO1 P(Q) such that

P(uo) = inflp(u) : w € Wy P ()],
= ¢'(u0) =0, (3.4)
= (A(ug),h) = /Qf(z,uo)hdz for all h € W, ().

In (3-4) we first choose h = (u — ug)t € W, P(£2). Then

(A(uo), (w—uo)*) = /Q (W™ + f(z,0)](u—u)tdz (see (B.3))

> (A(w), (u—uo)™)  (see 3.2))
which implies
(A(w) = Aluo), (u —ug) ™) <0,
and this implies u < ug.
Next, in we choose h = (ug —w)T € Wy P(Q) (see hypothesis (H1)(i)).
Then

(Aol o =) = [ 77+ w0 — )z

< (A(w), (ug —w) ™) (see hypothesis (H1)(i)),
which implies
(A(uo) — A(w), (uo —w)™) <0,

and this implies uy < w. So, we have proved that

ug € [u, w] = {u € WyP(Q) : u(z) < up(z) <w(z) for almost all z € Q}. (3.5)

Clearly, ug # w (see hypothesis (H1)(iii)) and uy # w (see hypothesis (H1)(i)).
From (3.3)), (3.4), (3.5, we have

(A(ug), h) = / [ug " + f(z,up)lhdz, 0<ug" <u™" e LP(Q)
Q

which implies
— Apup(z) = up(2) ™" + f(z,uo(2)) for a.a. z € Q, uglag =0, (3.6)
see [14].
Also, by Gilbarg and Trudinger [6] Lemma 14.16 p. 355] we know that there
exists small §p > 0 such that, if Qs, = {z € Q: d(z,00) < dp}, then

d € int C+(§50),
where d(-) = d(-,09). Let D* = Q\Qs,. Setting C(D*)y = {h € C(D*) : h(z) >

0 for all z € D*}, we have d € int C(D*); C int Cy(D*). Then as before, via
Marano and Papageorgiou [I0, Proposition 2.1 | we find 0 < ¢; < ¢g such that

c1d < u < eod. (3.7)

Then by (3.6), (3.7), hypotheses (H1)(i), (H1)(iv) and Giacomoni and Saudi [4]
Theorem B.1], we have
ug € int .
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Now let p = ||w||o and let €, > 0 be as postulated by hypothesis (H1)(iv). We
have

— Apuo(2) = uo(z) " + &yuo(2)P !

= f(z,u0(2)) + Epuo(2)P " (see (B))

> f(z,u(2) + Eu(z)P~t (see and hypothesis (H1)(iv))

> Eu(z)P~! (see hypothesis(H1)(ii))

> —Aju(z) —u(z) 4 Eu(z)P7h (see ([3-2)) for almost all z € Q.

Hence, invoking Proposition of Papageorgiou and Smyrlis [14], we have
up —u € int Cy..
From the hypothesis on the function w(-) (see (H1)(i)), we see that
Dy ={z € Q:up(z) =w(z)} is compact in Q.
Then we can find an open set U C  with Lipschitz boundary, such that
Dy CUCUCQand d(z,Dy) <8 for all z €U, with §; > 0.
Let € > 0 be such that
uo(z) + € < w(z) for all z € OU (3.8)

(such an € > 0 exists since 99 is compact and w — ug € C(12)).
Exploiting the uniform continuity of the map z +— 2P~! on [0, p] we can find
d2 > 0 such that

ElaP~t — P <e forall z,ve [I%inuo,maaxw], |z —v| < 0. (3.9

Similarly, the uniform continuity of  — x~* on any compact subset of (0, +00),
implies that we can find d3 € (0, d2] such that

e —v | < e forall z,v e [; [ wllso], |2 =] < 6. (3.10)

Then choosing d; € (0,d3) small enough and 6 € (0,48;) we have
— Ay(uto +8)(=) + €0 + 8)(2)7
< =Apug(2) + Euo(2)P " + e (see (B))
=uo(z) " + f(z,up(2)) + fpuo(z)p_l +e (see (3.6)) (3.11)
< W)+ f(zw(=) + L) 42 (see (BI0), (), (H1)(v))
< —cp+2e+ £,w(2)P~! for almost all z € @ (see (H1)(i)).
Choosing € € (0, ¢;7/2) and using once more hypothesis (H1)(i), we deduce from
that
— Ap(uo+08)+&,(ug+0)P"t < —Ayw+EuwP ™ in WiP(Q)* = WP (Q). (3.12)
From , and the weak comparison principle of Tolksdorf [I7, Lemma 3.1],
we have B -
(ug +9)(2) < w(z) for all z € Y.
But Dy C U. Therefore Dy = () and so

0 < (w —up)(2) for all z € Q.
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We conclude that
uo € intea ) [u, w].
The proof is now complete. |

Next we produce a second positive smooth solution for problem (|1.1)).

Proposition 3.2. If hypotheses (H1) hold, then (1.1)) has a second positive solution
U € int C+ .

Proof. Consider the following truncation of the reaction term in (1.1)):

_Ju@) "+ f(zu(z) ifu<u(z)
9(.7) = {x_” + f(z,2) if u(z) < @. (3.13)

This is a Carathéodory function. We set G(z,x) = fOT g(z,s)ds and consider the
functional o : Wy (Q) — R defined by

1
wolu) = Z;||Du||§ - /QG(z,u)dz for all u € W, * ().

As before, Papageorgiou and Smyrlis [I4, Proposition 3] implies that
po € C' (W™ ().

Claim. ¢ satisfies the C-condition.
We consider a sequence {up }n>1 C Wol’p(Q) such that

loo(un)| < My for some My > 0 and for all n € N, (3.14)
(1 + [Jun|)gh(un) — 0 in WP (Q) as n — . (3.15)
From ((3.14) we have

enl[P]l
Auy), h —/gz,un hdz| < ———— 3.16)
(A ) = [ g < T2 (
for all h € Wy'() with e, — 0F.
In (B.16) we choose h = —u;; € W, ?(Q). Then
| Du, |5 — / [u™ + f(z,w)](—u, )dz < ¢, forallneN, (see (3.13))
Q
which implies
lu, |I” < esllu, || for some cg > 0 and for all n € N,
(3.17)

= {uy; }n>1 € Wy P(Q) is bounded.

Suppose that {u}},>1 € WyP(Q) is unbounded. By passing to a subsequence if
necessary, we may assume that
lul || — oo (3.18)
Let y,, = HZ—;IH, n € N. Then |ly,|| = 1, y, > 0 for all n € N. So, we may assume
that
Yn Sy in WeP(Q) and y, — y in LP(Q), y > 0. (3.19)
From and we have

[(A(u)), h) — /Qg(z,u;f)hdz| < ¢y||h|| for some cs >0 and all n € N

n



EJDE-2017/249 POSITIVE SOLUTIONS OF RESONANT SINGULAR EQUATIONS 9

which implies

Ny (usy) callhl]
[(A(yn), h) — /Q thz| < W for all n € N. (3.20)

Hypotheses (H1)(i) and (H1)(i)(ii) imply that there exists ¢5 > 0 such that
|f(z,2)] < es(14+2P71)  for almost all z € Q and all > 0.
From this growth estimate and (3.13)), it follows that

{ Ny(uyh)

uf -1 }n>1 cr” (Q) is bounded.

So, by passing to a suitable sequence if necessary and using hypothesis (H1)(ii) we

have .
N /
M ZA(z)yP™t in LP(Q) as n — oo, (3.21)
[
with Ay < 7j(2) < 5(z) for almost all z € Q, see Aizicovici, Papageorgiou and Staicu
[1, proof of Proposition 16)].
Recall that uw=* € LP' (Q). Therefore

|/ u™"hdz| < cgl|h|| for some g > 0 and all h € WP (Q)
Q

which implies
1
st [P

/ u Phdz — 0 asn — oo, (see (3.18]). (3.22)
Q
If in (820) we choose h = y,, —y € W, () and pass to the limit as n — oo, then
using (3.19), (3.21), (3.22) we have lim,, oo (A(yn), yn — y) = 0 which implies

Yo — y in WP (Q), lyl =1, y > 0 (see Proposition 2.2). (3.23)

So, if in (3.20) we pass to the limit as n — oo and use (3.21)), (3.22), (3.23)) to
obtain

(A(y),h) = /Qﬁ(z)yp_lhdz for all h € WP ()
which implies

— Apy(z) = 7(2)y(2)P~"  for almost all z € Q,  y|asn = 0. (3.24)
Recall that
M < 7i(z) <n(z) for almost all z € Q (see (3:21)).
We first assume that A # 7. Then using Proposition we have
AL() < A(Ap) = 1.

Also, from (3.24) and since ||y|| = 1 (hence y # 0, see (3.23)), we infer that y(-)
must be nodal, a contradiction to (3.19)).
Next, we assume that 7(z) = Ay for almost all z € Q. Tt follows from ([3.24]) that

y =014 with 9 > 0, see (3.23).
Then y € int C and so y(z) > 0 for all z € Q. Therefore
+

Up,

(2) > +oo forall z € @ asn — oo, (3.25)
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which implies
flzyusy (2))ush (2) = pF (2, uy (2)) — —o0

for almost all z €  as n — oo, see hypothesis (H1)(ii). This in turn implies
/Q[f(z,uz)u:[ —pF(z,u})]dz — —oco  (by Fatou’s lemma). (3.26)
From with h = u; € Wy (), we have
— [|Dwf |5 + /Qg(z,u:[)u;fdz > —¢, forallneN. (3.27)

On the other hand, from (3.14) and (3.17)), we have

| Dut |k — /QpG(z,ui)dz > —M, for some My >0 and all n € N. (3.28)

Adding (3.27) and (3.28)), we obtain
/[g(z,uf{)ui{ —pG(z,uf)]dz > —Ms for some M3 >0 and all n € N
Q

which implies
/[f(z,ui)uj; —pF(z,uf)]dz > —M, (3.29)
Q

for some My > 0 and all n € N (see (3.13)) and (3.25))).
Comparing (3.26]) and (3.29)), we have a contradiction. This proves that

{u; Y1 © WP (Q) is bounded,
= {un}n>1 € Wy (Q) is bounded (see (3.17)).

So, we assume that

Uy, 5w in WyP(Q) and  w, — uin LP(Q).

Then we obtain

g(z,up)(un, —u)dz — 0 asn — oo. (3.30)
Q

If in (3.16) we choose h = u,, —u € Wy*(2), then
lim (A(up), un —u) =0,

n—oo

= u, —u in WyP(Q) (see Proposition 2.2).

This proves the claim.
Note that

Pl ) = <po|[w] (see (3.3) and (3.13))). (3.31)

From the proof of Propositionwe know that ug € int oy [, w] is a minimizer of

$. Hence it follows from (3.31)) that ug is a local Cg(2)-minimizer of ¢g. Invoking
Giacomoni and Saudi [4, Theorem 1.1], we can say that ug is a local Wy (€)-
minimizer of pg. Using (3.13]) we can easily see that

Ky = {u € WyP(Q) : py(u) = 0} C [u) NCy
={u € CHQ) : u(z) < u(z) for all z € Q}.
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So, we may assume that K, is finite or otherwise we already have an infinity of
positive smooth solutions of (|1.1)). Since ug is a local minimizer of ¢y we can find
p € (0,1) small such that

po(uo) < inflpo(u) : [lu —uol| = p] = m, (3.32)

(see Aizicovici, Papageorgiou and Staicu [I, proof of Proposition 29]).
Hypothesis (H1)(ii) implies that given any £ > 0, we can find M5 = M5(£) > 0
such that

f(z,x)r — pF(z,z) < —¢ for almost all z € Q and all z > Ms;. (3.33)
We have
i(F(z,x)> B f(z,2)2?" — paP~ F(z, )
dzr P o 2P
_ Sz x)x — pF(z )
- ij"rl
RS
- xp"rl

for almost all z €  and all x > Ms, see (3.33]). This implies

F F 1 1
xP yl’ D xP yp
for almost all z € Q, for all z > y > Ms5.
Hypothesis (H1)(iii) implies
. F I3
A1 < liminf pF(zz) < limsup pF(zz) < n(z) (3.35)

x—+00 xP z—+00 P

uniformly for almost all z € Q.
In (3.34) we pass to the limit as x — 400 and use (3.35). We obtain that
MyP — pF(z,y) < =€ for almost all z €  and all y > Ms. This implies

MyP — pF(z,y) — —00  as y — 4oco uniformly for a.a .z € (. (3.36)
For t > 0 big (so that ti; > u, recall that 4y € int C), we have

(7N
wo(tiy) < —A1 — / F(z,tly)dz 4+ ¢7  for some ¢7 > 0, see (3.13)
p Q

which implies
peoltin) < [ (altin)? — pr (s, tin)Jdz + per
which in turn implies !
po(tiy) — —oo  (see and use Fatou’s lemma). (3.37)

Then (3.32)), (3.37) and the claim permit the use of Theorem (the mountain
pass theorem) and so we can find @ € Wy ?(Q) such that

G e Ky, and m, < @o(h). (3.38)
It follows from (3.32)) and (3.38)) that @ # ug, @ € [u) NCy and so @ € int C is the
second positive smooth solution of problem (|1.1)). |

So, we can state the following multiplicity theorem for problem (|1.1)
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Theorem 3.3. If hypotheses (H1) hold, then problem (1.1)) has at least two positive
smooth solutions ug and 4 in int C .
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