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POSITIVE BOUNDED SOLUTIONS FOR SEMILINEAR
ELLIPTIC SYSTEMS WITH INDEFINITE WEIGHTS IN THE

HALF-SPACE

RAMZI ALSAEDI, HABIB MÂAGLI, VICENŢIU RĂDULESCU, NOUREDDINE ZEDDINI

Abstract. In this article, we study the existence and nonexistence of positive

bounded solutions of the Dirichlet problem

−∆u = λp(x)f(u, v), in Rn
+,

−∆v = λq(x)g(u, v), in Rn
+,

u = v = 0 on ∂Rn
+,

lim
|x|→∞

u(x) = lim
|x|→∞

v(x) = 0,

where Rn
+ = {x = (x1, x2, . . . , xn) ∈ Rn : xn > 0} (n ≥ 3) is the upper

half-space and λ is a positive parameter. The potential functions p, q are not
necessarily bounded, they may change sign and the functions f, g : R2 → R are

continuous. By applying the Leray-Schauder fixed point theorem, we establish

the existence of positive solutions for λ sufficiently small when f(0, 0) > 0 and
g(0, 0) > 0. Some nonexistence results of positive bounded solutions are also

given either if λ is sufficiently small or if λ is large enough.

1. Introduction

This paper deals with the existence of positive continuous solutions (in the sense
of distributions) for the semilinear elliptic system

−∆u = λp(x)f(u, v), in Rn+,
−∆v = λq(x)g(u, v), in Rn+,

u = v = 0 on ∂Rn+,
lim
|x|→∞

u(x) = lim
|x|→∞

v(x) = 0,

(1.1)

where Rn+ = {x = (x1, x2, . . . , xn) ∈ Rn : xn > 0} (n ≥ 3) is the upper half-space.
We assume that the potentials p, q are sign-changing functions belonging to the
Kato class K∞(Rn+) introduced and studied in [1], and the functions f, g satisfy
the following hypothesis:

(H1) f, g : R2 → R are continuous with f(0, 0) > 0 and g(0, 0) > 0.
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In recent years, a good amount of research is established for reaction-diffusion
systems. Reaction-diffusions systems model many phenomena in biology, ecology,
combustion theory, chemical reactors, population dynamics etc. The case p(x) =
q(x) = 1 has been considered as a typical example in bounded regular domains in Rn
and many existence results where established by variational methods, topological
methods and the method of sub- and super-solutions (see [4, 7, 5, 6, 8]).

Recently, Chen [2] studied the existence of positive solutions for the system

−∆u = λp(x)f1(v), in D,

−∆v = λq(x)g1(v), in D,

u = v = 0 on ∂D,

(1.2)

where D is a bounded domain. He assumed that p, q are continuous in D and there
exist positive constants µ1, µ2 such that∫

D

GD(x, y)p+(y) dy > (1 + µ1)
∫
D

GD(x, y)p−(y) dy ∀x ∈ D,∫
D

GD(x, y)q+(y) dy > (1 + µ2)
∫
D

GD(x, y)q−(y) dy ∀x ∈ D,

where GD(x, y) is the Green’s function of the Dirichlet Laplacian in D. Here p+, q+

are the positive parts of p and q, while p−, q− are the negative ones. Chen [2] showed
that if f1, g1 : [0,∞) → R are continuous with f1(0) > 0, g1(0) > 0 and p, q are
nonzero continuous functions on D satisfying the above integral conditions, then
there exists a positive number λ? such that problem (1.2) has a positive solution
for small positive values of the parameter, namely if 0 < λ < λ?.

We note that when f1, g1 are nonnegative nondecreasing continuous functions,
p(x) ≤ 0 in Rn+ and q(x) ≤ 0 in Rn+, system (1.2) was studied in [10] in the half-space
Rn+ with nontrivial nonnegative boundary and infinity data. In this framework, the
existence of positive solutions for (1.2) is established for small perturbations, that
is, whenever λ is a small positive real number.

Our aim in this article is to study these systems in the case where the domain
is the half-space Rn+ and the functions p, q are not necessarily continuous in Rn+.
Indeed p, q may be singular on the boundary of Rn+. More precisely, we establish
the existence of a positive bounded solution for (1.1) in the case where f(0, 0) > 0,
g(0, 0) > 0 and the functions p, q belong to the Kato class introduced and studied
in [1] and satisfy the following hypothesis:

(H2) there exist positive numbers µ1, µ2 such that∫
Rn+
G(x, y)p+(y) dy > (1 + µ1)

∫
Rn+
G(x, y)p−(y) dy ∀x ∈ Rn+,∫

Rn+
G(x, y)q+(y) dy > (1 + µ2)

∫
Rn+
G(x, y)q−(y) dy ∀x ∈ Rn+,

where G(x, y) is the Green function of the Dirichlet Laplacian in the half space Rn+.
Two nonexistence results of positive bounded solutions will be established in this

paper. To this aim, we recall in the sequel some notations and properties of the
Kato class, cf. [1].
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Definition 1.1. A Borel measurable function k in Rn+ belongs to the Kato class
K∞(Rn+) if

lim
r→0

sup
x∈Rn+

∫
Rn+∩B(x,r)

yn
xn
G(x, y)|k(y)|dy = 0

and
lim
M→∞

sup
x∈Rn+

∫
Rn+∩{|y|≥M}

yn
xn
G(x, y)|k(y)|dy = 0 ,

where

G(x, y) =
Γ(n2 − 1)

4πn/2

[ 1
|x− y|n−2

− 1

(|x− y|2 + 4xnyn)
n−2

2

]
is the Green function of the Dirichlet Laplacian in Rn+.

Next, we give some examples of functions belonging to K∞(Rn+).

Example 1.2. Let λ, µ ∈ R and put q(y) = 1
(|y|+1)µ−λyλn

for y ∈ Rn+. Then

q ∈ K∞(Rn+) if and only if λ < 2 < µ.

For any nonnegative Borel measurable function ϕ in Rn+, we denote by V ϕ the
Green potential of ϕ:

V ϕ(x) =
∫

Rn+
G(x, y)ϕ(y)dy, ∀x ∈ Rn+.

Recall that if ϕ ∈ L1
loc(Rn+) and V ϕ ∈ L1

loc(Rn+), then we have in the distributional
sense (see [3, p. 52])

∆(V ϕ) = −ϕ in Rn+. (1.3)
The first result establishes the existence of bounded positive solutions in case of

small perturbations, that is, if λ is a small positive parameter.

Theorem 1.3. Let p, q be in the Kato class K∞(Rn+) and assume that (H1)–(H2)
are satisfied. Then there exists λ0 > 0 such that for each λ ∈ (0, λ0), problem (1.1)
has a positive continuous solution in Rn+.

The first nonexistence result of positive bounded solutions is in relationship with
the previous theorem and concerns a particular class of functions f and g with linear
growth and vanishing at the origin.

Theorem 1.4. Let p, q be nontrivial functions in the Kato class K∞(Rn+). Assume
that the functions f, g : R2 → R are measurable and there exists a positive constant
M such that for all u , v

|f(u, v)| ≤M(|u|+ |v|)
|g(u, v)| ≤M(|u|+ |v|).

Then there exists λ0 > 0 such that problem (1.1) has no positive bounded continuous
solution in Rn+ for each λ ∈ (0, λ0).

The second nonexistence result is established for λ sufficiently large.

Theorem 1.5. Let p, q ∈ K∞(Rn+) and let f(u, v) = f(v), g(u, v) = g(u). Assume
that the following hypotheses are fulfilled:

(H3) there exist an open ball B ⊂ Rn+ and a positive number ε such that

p(x), q(x) ≥ ε a.e. x ∈ B.
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(H4) f, g : [0,∞) → [0,∞) are continuous and there exists a positive number m
such that f(v) + g(u) ≥ m(u+ v) for all u, v > 0.

Then there exists a positive number λ0 such that problem (1.1) has no positive
bounded continuous solution in Rn+ for each λ > λ0.

Throughout this article, we denote by B(Rn+) the set of Borel measurable func-
tions in Rn+ and by C0(Rn+) the set of continuous functions satisfying

lim
x→∂Rn+

u(x) = lim
|x|→∞

u(x) = 0.

Finally, for a bounded real function ω defined on a set S we denote ‖ω‖∞ =
supx∈S |ω(x)|.

2. Proof of main results

We start this section with the following continuity property. We refer to [1] for
more details.

Proposition 2.1. Let ϕ be a nonnegative function in K∞(Rn+). Then the following
properties hold.

(i) The function y → yn
(1+|y|)nϕ(y) is in L1(Rn+), hence ϕ ∈ L1

loc(Rn+).
(ii) V ϕ ∈ C0(Rn+).

(iii) Let h0 be a positive harmonic function in Rn+ which is continuous and
bounded in Rn+. Then the family of functions{∫

Rn+
G(., y)h0(y)p(y)dy : |p| ≤ ϕ

}
is relatively compact in C0(Rn+).

Next, we recall the Leray-Schauder fixed point theorem.

Lemma 2.2. Let X be a Banach space with norm ‖ · ‖ and x0 be a point of X.
Suppose that T : X × [0, 1] → X is continuous and compact with T (x, 0) = x0 for
each x ∈ X, and that there exists a fixed constant M > 0 such that each solution
(x, σ) ∈ X × [0, 1] of the T (x, σ) = x satisfies ‖x‖ ≤ M . Then T (., 1) has a fixed
point.

Using this fixed point property, we obtain the following general existence result.

Lemma 2.3. Suppose that p and q are in the Kato class K(Rn+) and f, g are
continuous and bounded from R2 to R. Then for every λ ∈ (0,∞), problem (1.1)
has a solution (uλ, vλ) ∈ C0(Rn+)× C0(Rn+).

Proof. For λ ∈ R, we consider the operator

Tλ : C0(Rn+)× C0(Rn+)× [0, 1]→ C0(Rn+)× C0(Rn+)

defined by
Tλ((u, v), σ) = (σλV (pf(u, v)), σλV (qg(u, v))).

By Proposition 2.1, the operator Tλ is well defined, continuous, compact and

Tλ((u, v), 0) = (0, 0) := x0 ∈ C0(Rn+)× C0(Rn+).
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Let (u, v) ∈ C0(Rn+)×C0(Rn+) and σ ∈ [0, 1] such that Tλ((u, v), σ) = (u, v). Then,
since f, g are bounded and p, q are in K∞(Rn+) we deduce by using Proposition 2.1
that

max(‖u‖∞, ‖v‖∞) = σ λmax(‖V (pf(u, v))‖∞, ‖V (qg(u, v))‖∞)

≤ λmax(‖V p‖∞‖f‖∞, ‖V q‖∞‖g‖∞) = M.

Applying the Leray-Schauder fixed point theorem, the operator Tλ(., 1) has a fixed
point, hence there exists (u, v) ∈ C0(Rn+)× C0(Rn+) such that

(u, v) = (λV (p f(u, v)), λV (q g(u, v))).

So, using (1.3) and Proposition 2.1, we deduce that (u, v) is a solution of system
(1.1). �

Proof of Theorem 1.3. Fix a large number M > 0 and an infinitely continuously
differentiable function ψ with compact support on R2 such that ψ = 1 in the open
ball with center 0 and radius M and ψ = 0 on the exterior of the ball with center
0 and radius 2M .

Define the bounded functions f̃ , g̃ on R2 by

f̃(u, v) = ψ(u, v)f(u, v) and g̃(u, v) = ψ(u, v)g(u, v).

By Lemma 2.3, the Dirichlet problem

−∆u = λp(x)f̃(u, v), in Rn+,
−∆v = λq(x)g̃(u, v), in Rn+,

u = v = 0 on ∂Rn+,
lim
|x|→∞

u(x) = lim
|x|→∞

v(x) = 0,

(2.1)

has a solution (uλ, vλ) ∈ C0(Rn+)× C0(Rn+) satisfying

(uλ, vλ) = (λV (pf̃(uλ, vλ))λV (qg̃(uλ, vλ))).

Moreover, we have

max(‖uλ‖∞, ‖vλ‖∞) ≤ λmax(‖V p‖∞‖f̃‖∞, ‖V q‖∞‖g̃‖∞), (2.2)

Put µ = min(µ1, µ2) and consider γ ∈ (0, µ
2+µ ). Since f̃ and g̃ are continuous, then

there exists δ ∈ (0,M) such that if max(|ζ|, |ξ|) < δ, we have

f̃(0, 0)(1− γ) < f̃(ζ, ξ) < f̃(0, 0)(1 + γ),

g̃(0, 0)(1− γ) < g̃(ζ, ξ) < g̃(0, 0)(1 + γ).

Using relation (2.2), we deduce that there exists λ0 > 0 such that ‖uλ‖∞ < δ and
‖vλ‖∞ < δ for any λ ∈ (0, λ0). This together with the fact that 0 < δ < M implies
that for λ ∈ (0, λ0), we have f̃(uλ, vλ) = f(uλ, vλ) and g̃(uλ, vλ) = g(uλ, vλ). Now,
for each x ∈ D we have

uλ = λV (p+f̃(uλ, vλ))− λV (p−f̃(uλ, vλ))

> λf(0, 0)(1− γ)V (p+)− λf(0, 0)(1 + γ)V (p−)

> λf(0, 0)[(1− γ)(1 + µ1)− (1 + γ)]V (p−)

> λf(0, 0)(1− γ)
[
1 + µ1 −

1 + γ

1− γ
]
V (p−)
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> λf(0, 0)(1− γ)
[
1 + µ− 1 + γ

1− γ
]
V (p−).

Now, since γ ∈ (0, µ
2+µ ), then 1 + µ− 1+γ

1−γ > 0 and it follows that

λf(0, 0)(1− γ)
[
1 + µ− 1 + γ

1− γ
]
V (p−) ≥ 0.

Consequently, for each λ ∈ (0, λ0) and for each x ∈ Rn+ we have uλ(x) > 0.
Similarly, we obtain vλ(x) > 0 for each x ∈ Rn+. �

Proof of Theorem 1.4. Suppose that problem (1.1) has a bounded positive solution
(u, v) for all λ > 0. Then f(u, v) and g(u, v) are bounded. Put ũ = λV (p f(u, v))
and ṽ = λV (q g(u, v)). Since f(u, v) and g(u, v) are bounded, it follows that
ũ , ṽ ∈ C0(Rn+). The the functions z = u− ũ and ω = v− ṽ are harmonic in the dis-
tributional sense and continuous in Rn+, so they are harmonic in the classical sense.
Moreover, since u = ũ = v = ṽ = 0 on ∂Rn+ and lim|x|→∞ u(x) = lim|x|→∞ v(x) = 0,
then u = ũ and v = ṽ in Rn+. It follows that

‖u‖∞ ≤ λV (|p|f(u, v)) ≤ λM‖V (|p|)‖∞ (‖u‖∞ + ‖v‖∞) ,

‖v‖∞ ≤ λV (|q|g(u, v)) ≤ λM‖V (|q|)‖∞ (‖u‖∞ + ‖v‖∞).

By adding these inequalities, we obtain

(‖u‖∞ + ‖v‖∞) ≤ λM [‖V (|p|)‖∞ + ‖V (|q|)‖∞] (‖u‖∞ + ‖v‖∞).

This gives a contradiction if λM [‖V (|p|)‖∞ + ‖V (|q|)‖∞] < 1. �

Proof of Theorem 1.5. Without loss of generality, we assume that B ⊂ Ω. We first
note that the assumption (H4) implies that

f(v) ≥ mv for all v > 0

or
g(u) ≥ mu for all u > 0.

Suppose that f(v) ≥ mv for all v > 0. We distinguish the following situations.
Case 1. f(0) = 0. Then it follows from (H4) that

g(u) ≥ mu for u > 0.

Suppose that (u, v) is a positive solution of (1.1). It follows that

−∆u = λa(x)f(v) ≥ λεmv in B. (2.3)

Let λ̃1 be the first eigenvalue of −∆ in B with Dirichlet boundary conditions, and
φ1 be the corresponding normalized positive eigenfunction. Let δ > 0 be the largest
number so that

v ≥ δφ1 in B. (2.4)
Then we have from (2.3) and (2.4) that

−∆v ≥ λεmδφ1 in B,

and therefore by the weak comparison principle

u ≥ λεm

λ̃1

δφ1 in B. (2.5)

Therefore,

−∆v ≥ λεmu ≥ (λεm)2

λ̃1

δφ1 in B.
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Using by the weak comparison principle we obtain

v ≥
(λεm
λ̃1

)2

δφ1 in B.

This contradicts the maximality of δ for λ large enough.
Case 2. f(0) > 0. Then there exists δ0 > 0 such that

f(t) ≥ δ0 for all t ≥ 0.

Hence −∆u ≥ λεδ0 in B, from which it follows that

u ≥ (λεδ0)Φ̃ in B, (2.6)

where Φ̃ satisfies
−∆Φ̃ = 1 in B, Φ̃ = 0 on ∂B.

Let D be an open set such that D ⊂ B and let c > 0 such that

Φ̃ ≥ c in D. (2.7)

Suppose mλεδ0c > 2f(0). Relations (2.6) and (2.7) yield

mu ≥ mλεδ0c > 2f(0),

which implies
g(u) ≥ mu− f(0) ≥ m

2
u in D.

Using the same arguments as in Case 1 in D, we obtain a contradiction if λ is large
enough. The case when g(u) ≥ mu for all u > 0 is treated in a similar manner.
This completes the proof. �
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[6] A. Ghanmi, H. Mâagli, V. Rădulescu, N. Zeddini; Large and bounded solutions for a class of

nonlinear Schrödinger stationary systems, Anal. Appl. (Singap.) 7 (2009), no. 4, 391-404.
[7] D. Hulshof, R. van der Vorst; Differential systems with strongly indefinite variational struc-

ture, J. Funct. Anal. 114 (1993), 32-58.
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