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POSITIVE BOUNDED SOLUTIONS FOR SEMILINEAR
ELLIPTIC SYSTEMS WITH INDEFINITE WEIGHTS IN THE
HALF-SPACE

RAMZI ALSAEDI, HABIB MAAGLI, VICENTIU RADULESCU, NOUREDDINE ZEDDINI

ABSTRACT. In this article, we study the existence and nonexistence of positive
bounded solutions of the Dirichlet problem

—Au=Mp(@)f(u,v), in R,

~Av = Ag(2)g(u,v), in R,

u=v=0 ondRY,
lim u(z) = lim wv(z)=0,

where R? = {z = (z1,22,...,2n) € R™ : 5 > 0} (n > 3) is the upper
half-space and A is a positive parameter. The potential functions p, g are not
necessarily bounded, they may change sign and the functions f, g : R? — R are
continuous. By applying the Leray-Schauder fixed point theorem, we establish
the existence of positive solutions for A sufficiently small when f(0,0) > 0 and
¢(0,0) > 0. Some nonexistence results of positive bounded solutions are also
given either if X is sufficiently small or if X is large enough.

1. INTRODUCTION

This paper deals with the existence of positive continuous solutions (in the sense
of distributions) for the semilinear elliptic system

—Au = )\p(x)f(u,v), in R17
—Av = \g(z)g(u,v), inRY,

u=v=0 ondRY, (1.1)
‘ llim u(z) = ‘ llim v(z) =0,

where R = {z = (z1,22,...,2,) € R": z, > 0} (n > 3) is the upper half-space.
We assume that the potentials p,q are sign-changing functions belonging to the
Kato class K*°(R’) introduced and studied in [I], and the functions f,g satisfy
the following hypothesis:

(H1) f,g:R? — R are continuous with f(0,0) > 0 and g(0,0) > 0.
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In recent years, a good amount of research is established for reaction-diffusion
systems. Reaction-diffusions systems model many phenomena in biology, ecology,
combustion theory, chemical reactors, population dynamics etc. The case p(z) =
q(z) = 1 has been considered as a typical example in bounded regular domains in R™
and many existence results where established by variational methods, topological
methods and the method of sub- and super-solutions (see [4}, [7, 5] 6] [§]).

Recently, Chen [2] studied the existence of positive solutions for the system

—Au = Ap(z)fi(v), in D,
—Av = M(z)g1(v), in D, (1.2)
u=v=0 ondD,

where D is a bounded domain. He assumed that p, ¢ are continuous in D and there
exist positive constants 1, o such that

/ G (. y)p+ (v) dy > (1 + u1) / Gp(x,y)p—(y)dy Yz e D,
D D
/ Gz, )as(y) dy > (1 + o) / Go(r.y)a-(y)dy Vo €D,
D D

where Gp(z,y) is the Green’s function of the Dirichlet Laplacian in D. Here p*, ¢*
are the positive parts of p and ¢, while p_, ¢_ are the negative ones. Chen [2] showed
that if f1,¢1 : [0,00) — R are continuous with f1(0) > 0, g1(0) > 0 and p, q are
nonzero continuous functions on D satisfying the above integral conditions, then
there exists a positive number A* such that problem has a positive solution
for small positive values of the parameter, namely if 0 < A < \*.

We note that when fi,g; are nonnegative nondecreasing continuous functions,
p(xz) <0inR%} and ¢(x) < 0in R, system was studied in [I0] in the half-space
R? with nontrivial nonnegative boundary and infinity data. In this framework, the
existence of positive solutions for is established for small perturbations, that
is, whenever X is a small positive real number.

Our aim in this article is to study these systems in the case where the domain
is the half-space R’} and the functions p, q are not necessarily continuous in @
Indeed p,q may be singular on the boundary of R’}. More precisely, we establish
the existence of a positive bounded solution for in the case where f(0,0) > 0,
¢(0,0) > 0 and the functions p, ¢ belong to the Kato class introduced and studied
in [I] and satisfy the following hypothesis:

(H2) there exist positive numbers g1, uo such that

Gz, y)p+(y)dy > (L +pm) | G,y)p-(y)dy Yz eRY,

R? R?

Glz,y)gs () dy > 1+ p2) | Gla,y)g-(y)dy Ve eRY,
R R%
where G(z,y) is the Green function of the Dirichlet Laplacian in the half space R’}
Two nonexistence results of positive bounded solutions will be established in this
paper. To this aim, we recall in the sequel some notations and properties of the
Kato class, cf. [I].
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Definition 1.1. A Borel measurable function £ in R’} belongs to the Kato class
K>(R7) if

Jim sup / I G, ) k(y)|dy = 0
R NB(

r—0 xEJRi z,r) Tn
and
lim sup / y—"G(x,y)|k(y)|dy=0,
M=cozery JRyN(ly|2M} Tn
where r( 1)
no_ 1 1
_+\3
Glay) = = [\x g2 > —}
(|37 - y‘ + 4xnyn)

is the Green function of the Dirichlet Laplacian in R’ .
Next, we give some examples of functions belonging to K> (R").

Example 1.2. Let A\, 1 € R and put ¢(y) for y € R"t. Then

_ 1
= (yl+DE Ay
g € K*(R") if and only if A < 2 < p.

For any nonnegative Borel measurable function ¢ in R”}, we denote by V¢ the
Green potential of ¢:

V(z) = . G(z,y)p(y)dy, VYxeRY.
¥

Recall that if ¢ € L{ (R7) and Vi € Ll (R%), then we have in the distributional

loc loc

sense (see [3, p. 52])
A(Vy) = —¢ inRY. (1.3)
The first result establishes the existence of bounded positive solutions in case of
small perturbations, that is, if A is a small positive parameter.

Theorem 1.3. Let p, q be in the Kato class K (R ) and assume that (H1)-(H2)
are satisfied. Then there exists \g > 0 such that for each A € (0, \o), problem (1.1])
has a positive continuous solution in R .

The first nonexistence result of positive bounded solutions is in relationship with
the previous theorem and concerns a particular class of functions f and g with linear
growth and vanishing at the origin.

Theorem 1.4. Let p,q be nontrivial functions in the Kato class K*°(R"). Assume
that the functions f, g : R2 — R are measurable and there exists a positive constant
M such that for all u, v

|/ (u, 0)| < M(Ju| + |v])
lg(u, v)| < M (Jul + [v]).

Then there exists Ag > 0 such that problem (1.1)) has no positive bounded continuous
solution in R’ for each X € (0, o).

The second nonexistence result is established for A sufficiently large.

Theorem 1.5. Let p,q € K> (R%) and let f(u,v) = f(v), g(u,v) = g(u). Assume
that the following hypotheses are fulfilled:

(H3) there exist an open ball B C R’} and a positive number € such that
p(x),q(x) > e a.e x € B.
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(H4) f,g:1]0,00) — [0,00) are continuous and there exists a positive number m
such that f(v) + g(u) > m(u+v) for all u,v > 0.

Then there exists a positive number Ao such that problem (L.1) has no positive
bounded continuous solution in R} for each A > X.

Throughout this article, we denote by B(R"}) the set of Borel measurable func-
tions in R’} and by Co(R"}) the set of continuous functions satisfying

lim wu(z)= lim wu(x)=0.
Jlim ) = lim_u(a)
Finally, for a bounded real function w defined on a set S we denote |w| =
Supges [w(@)|-

2. PROOF OF MAIN RESULTS

We start this section with the following continuity property. We refer to [I] for
more details.

Proposition 2.1. Let ¢ be a nonnegative function in K (R’ ). Then the following
properties hold.
(i) The function y —
(i) Ve Co(RY).
(ili) Let ho be a positive harmonic function in R} which is continuous and
bounded in M Then the family of functions

aiemme(y) is in LY(R'L), hence ¢ € Ly, (R%).

{ [ clympydy: ol <o}
R}

is relatively compact in Co(R7}).
Next, we recall the Leray-Schauder fixed point theorem.

Lemma 2.2. Let X be a Banach space with norm || - || and xo be a point of X.
Suppose that T : X x [0,1] — X is continuous and compact with T(x,0) = xo for
each © € X, and that there exists a fixed constant M > 0 such that each solution
(x,0) € X x[0,1] of the T(x,0) = x satisfies ||z|| < M. Then T(.,1) has a fized
point.

Using this fixed point property, we obtain the following general existence result.

Lemma 2.3. Suppose that p and q are in the Kato class K(R') and f,g are
continuous and bounded from R? to R. Then for every A € (0,00), problem (1.1)
has a solution (ux,vy) € Co(R%) x Co(R7).

Proof. For A € R, we consider the operator
T)\ : Co(Ri) X C()(Ri) X [0, ].] — Co(]Ri) X Co(Ri)
defined by

TA((“? U)a U) = (U)\V(pf(u, U)), O—AV(qg(uv ’U)))
By Proposition the operator T) is well defined, continuous, compact and

Tx((u,v),0) = (0,0) := zo € Co(RY}) x Co(RE).
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Let (u,v) € Co(R%) x Co(R") and o € [0, 1] such that T((u,v),0) = (u,v). Then,
since f, g are bounded and p, ¢ are in K*°(R’} ) we deduce by using Proposition
that

max (|[ulloo, [|v]loc) = o Amax([|V (pf (u, v))llso, [V (g9(u, v))]lo0)
S Amax([[Vpllo [ flloe; [Vallsollglloc) = M.
Applying the Leray-Schauder fixed point theorem, the operator T)(., 1) has a fixed
point, hence there exists (u,v) € Co(R"}) x Co(R’}) such that
(u,v) = (AV(p f(u,v)), AV (g g(u, v))).
So, using and Proposition we deduce that (u,v) is a solution of system
(). 0

Proof of Theorem[I.3 Fix a large number M > 0 and an infinitely continuously
differentiable function v with compact support on R? such that ¢ = 1 in the open
ball with center 0 and radius M and ¢ = 0 on the exterior of the ball with center
0 and radius 2M. _

Define the bounded functions f, g on R? by

flu,v) =¢(u,v) f(u,v) and  g(u,v) = ¥(u,v)g(u,v).
By Lemma the Dirichlet problem
—Au = Ap(z) f(u,v), in R,
—Av = \g(z)g(u,v), inRY,

u=v=0 ondRY, (2.1)
‘ llim u(z) = ‘ llim v(z) =0,
has a solution (ux,vy) € Co(R%) x Co(R") satisfying
(ur,v2) = AV (S (ur, v2))AV (qg(un, v2))).-
Moreover, we have
max(|[ua oo, [[valloc) < Amax([|Vplloo || flloo: IV alloollglloo), (2.2)

Put 4 = min(uq, p2) and consider v € (0, ﬁ) Since fand g are continuous, then
there exists 0 € (0, M) such that if max(|C|, |£]) < d, we have

9(0,0)(1 =) <g(¢,€) <g(0,0)(1 +).

Using relation (2.2]), we deduce that there exists Ag > 0 such that |Juy||c < ¢ and
[[ualloo < & for any A € (0, Ag). This together with the fact that 0 < § < M implies

that for A € (0, A\g), we have f(ux,vx) = f(ux,vy) and g(ux,va) = g(ux,vr). Now,
for each € D we have

ux = AV (py f(ux,vr)) — AV (p_ f(ux,vr))
> Af(0,0)(1 =)V (p+) — Af(0,0)(1 + )V (p-)
> Af(0,0)[(1 =)+ 1) = (T +)]V(p-)

> AF0.0(1 =1+~ T2V ()
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> AF0.0(1=)[1+ 1= T2V (o).

Now, since v € (0, 5£-), then 1 + p — =2 > 0 and it follows that

P 24p 11—~
1+~
AF(0,0)(1 =) [1+p— G}V(Pf) > 0.
Consequently, for each A € (0,)¢) and for each z € R’} we have uy(xz) > 0.
Similarly, we obtain vy(x) > 0 for each z € R"}. O

Proof of Theorem[I.]] Suppose that problem (I.1)) has a bounded positive solution
(u,v) for all A > 0. Then f(u,v) and g(u,v) are bounded. Put @ = AV (p f(u,v))
and v = AV(gg(u,v)). Since f(u,v) and g(u,v) are bounded, it follows that
u, v € Co(RY). The the functions z = u —u and w = v — v are harmonic in the dis-
tributional sense and continuous in R”, so they are harmonic in the classical sense.
Moreover, since u = u = v = v = 0 on IR’} and lim|g|_,oc u(x) = lim|z o v(z) = 0,
then v = @ and v = v in R?}. It follows that

[ulloe < AV (Iplf (u,v)) < AMV (|p])l[oo (ulloc + llv]ls0) ,

[0lloe < AV (lglg(u, v)) < AM |V ([g])lloc (I[tlloc + [[0]loc)-

By adding these inequalities, we obtain

(lulloo + llvlloc) < AM IV (IpD oo + IV (IgDlloc] (lullo + llvllso)-

This gives a contradiction if AM[||V(|p|)|lec + IV (l4])]lco] < 1. O
Proof of Theorem[I.5. Without loss of generality, we assume that B C Q. We first
note that the assumption (H4) implies that

f(w)>mv forallv>0
or

g(u) > mu for all u > 0.
Suppose that f(v) > muo for all v > 0. We distinguish the following situations.
Case 1. f(0) = 0. Then it follows from (H4) that

g(u) > mu for u > 0.
Suppose that (u,v) is a positive solution of . It follows that
— Au = Aa(z)f(v) > Aemv in B. (2.3)

Let A1 be the first eigenvalue of —A in B with Dirichlet boundary conditions, and
¢1 be the corresponding normalized positive eigenfunction. Let § > 0 be the largest

number so that
v>4d0¢; in B. (2.4)
Then we have from and that
—Av > Xemd¢; in B,
and therefore by the weak comparison principle

Aem
u >

d¢1 in B. (2.5)
1

Therefore,

2
—Av > demu > ()\;m) 6¢1 in B.
1
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Using by the weak comparison principle we obtain

v > (@)2&%)1 in B.
A
This contradicts the maximality of § for A large enough.
Case 2. f(0) > 0. Then there exists dp > 0 such that

f(t) > 69 forallt>0.
Hence —Au > Aedg in B, from which it follows that

u> (\edp)® in B, (2.6)
where @ satisfies N N
—-AP=1 inB, ®=0 onJB.
Let D be an open set such that D C B and let ¢ > 0 such that
) >¢ in D.

Suppose mAedgc > 2f(0). Relations and yield

mu > mAedoe > 2£(0),

(2.7)

which implies
g(u) > mu — f(0) > %u in D.

Using the same arguments as in Case 1 in D, we obtain a contradiction if A is large
enough. The case when g(u) > mu for all uw > 0 is treated in a similar manner.
This completes the proof. (I
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