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a b s t r a c t

In this paper, we are concerned with the existence of nonnegative solutions for a
p-Kirchhoff type problem driven by a non-local integro-differential operator with
homogeneousDirichlet boundary data. As a particular case,we study the followingproblem

M

x, [u]ps,p


(−∆)spu = f


x, u, [u]ps,p


in Ω,

u = 0 in RN
\ Ω, [u]ps,p =


R2N

|u(x) − u(y)|p

|x − y|N+ps
dx dy,

where (−∆)sp is a fractional p-Laplace operator, Ω is an open bounded subset of RN with
Lipschitz boundary,M : Ω×R+

0 → R+ is a continuous function and f : Ω×R×R+

0 → R is
a continuous function satisfying the Ambrosetti–Rabinowitz type condition. The existence
of nonnegative solutions is obtained by using the Mountain Pass Theorem and an iterative
scheme. Themain feature of this paper lies in the fact that the Kirchhoff functionM depends
on x ∈ Ω and the nonlinearity f depends on the energy of solutions.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction and main results

In recent years, a great deal of attention has been paid to the study of problems involving fractional and nonlocal
operators, both in the pure mathematical research and in the concrete real-world applications, such as, optimization,
finance, continuummechanics, phase transition phenomena, population dynamics, and game theory, as they are the typical
outcome of stochastically stabilization of Lévy processes, see [1,2] and references therein. Especially, the fractional Laplacian
operators of the form (−∆)s can be viewed as the infinitesimal generators of stable Lévy processes, see for instance [3]. Some
interesting topics concerning the fractional Laplacian, such as, the nonlinear fractional Schrödinger equation (see [2,4,5]),
the fractional porous medium equation (see [6,7]) and so on, have attracted considerable attention. There is no doubt that
the literature on fractional and nonlocal operators is quite large, here we would like to mention a few, see for example
[8,1,9]. For the basic properties of fractional Sobolev spaces, we refer the reader to [10] and references therein.
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In this paper we are interested in the existence of solutions for the following problem
M

x, [u]ps,p,K


LKu = f


x, u, [u]ps,p,K


in Ω,

u = 0 in RN
\ Ω,

(1.1)

where N > ps with s ∈ (0, 1), [u]ps,p,K =


R2N |u(x) − u(y)|pK(x − y)dx dy, Ω ⊂ RN is an open bounded set with Lipschitz
boundary ∂Ω , M : Ω × R+

0 → R+ is a continuous function, f : Ω × R × R+

0 → R is a Carathéodory function and L
p
K is a

nonlocal operator defined as

L
p
Kϕ(x) = lim

ε→0+
2


RN\Bε(x)
|ϕ(x) − ϕ(y)|p−2(ϕ(x) − ϕ(y))K(x − y) dy, x ∈ RN ,

along any ϕ ∈ C∞

0 (RN), where 1 < p < ∞, Bε(x) denotes the ball in RN of radius ε > 0 at the center x ∈ RN and
K : RN

\ {0} → R+ is a measurable function with the following property
γK ∈ L1(RN), where γ (x) = min{|x|p, 1};
there exists K0 > 0 such that K(x) ≥ K0 |x|−(N+ps) for any x ∈ RN

\ {0} .
(1.2)

A typical example for K is given by singular kernel K(x) = |x|−(N+ps). In this case, problem (1.1) becomes
M

x, [u]ps,p


(−∆)spu = f


x, u, [u]ps,p


in Ω,

u = 0 in RN
\ Ω,

(1.3)

where [u]ps,p =


R2N |u(x)−u(y)|p |x − y|−(N+ps) dx dy, (−∆)sp is the fractional p-Laplace operator, for example, see [11–13]
for more details. When p = 2, M = 1 and f depend only on x and u, problem (1.3) reduces to the fractional Laplacian
problem

(−∆)su = f (x, u) in Ω,

u = 0 in RN
\ Ω.

(1.4)

A distinguished characterization of the fractional operator (−∆)s in (1.4) is the nonlocality, in the sense that this operator
takes care of the behavior of the solution in the whole space. This is in contrast with the usual elliptic partial differential
equations, which are governed by local differential operators like the Laplace operator. Of course, there are the other
explanations for this feature, see for example [14,15]. The functional space that takes into account this boundary condition
was introduced in [16]. In [17], the authors get the existence of nontrivial weak solutions of problem (1.4) by using the
Mountain Pass Theorem. See also [15,16] for the related discussions.

Recently, Fiscella and Valdinoci in [18] first provided a detailed discussion about the physical meaning underlying the
fractional Kirchhoff model. Under some suitable conditions, the authors obtained the existence of nontrivial solutions by
using the Mountain Pass Theorem and a truncation argument on M . In this paper, the conditions imposed on the Kirchhoff
function M : R+

0 → R+

0 are that M is an increasing and continuous function and there exists m0 > 0 such that M(t) ≥

m0 = M(0) for any t ≥ 0, see also [19] and references therein. However, the increasing condition rules out the non-
monotone case, for example,

M(t) = (1 + t)k + (1 + t)−1 with 0 < k < 1 for all t ≥ 0. (1.5)

For this purpose, Xiang et al. in [13] studied the existence of solutions to a class of fractional p-Kirchhoff equations, where
the Kirchhoff functionM is positive and continuous and satisfies the condition: there exists θ > 0 such that θM (t) ≥ M(t)t
for all t ≥ 0, where M (t) =

 t
0 M(τ )dτ . Obviously, the Kirchhoff function M satisfies (1.5). See also [20–22,11,12,23–25]

for some recent results in this direction.
In the present paper, motivated by the above papers, we study the existence of weak solutions for a Kirchhoff type

problem (1.1) involving nonlocal fractional operator. It isworth noticing that there are a fewof authors dedicated to studying
the Kirchhoff problems in which kirchhoff function M depends on x ∈ Ω . Especially, Corrêa and Figueiredo in [26] first
considered a problem whose equation is of the form

−M

x,


Ω

|∇u|2dx


1u = f (x, u) in Ω,

u = 0 on ∂Ω,
u > 0 in Ω.

(1.6)

They proved the existence of positive solutions by using an iterative device introduced in De Figueiredo et al. [27]. Note that
for M nonhomogeneous we lose the variational structure and hence variational techniques cannot be used, at least in a
direct way. Very recently, Chung [28] studied the existence of positive solutions for a nonlocal problem with dependence
on the gradient in the Laplacian setting, in which the Kirchhoff functionM depends on x ∈ Ω . To our best knowledge, there
is no result exploring the Kirchhoff problems, in which the Kirchhoff function may depend on x ∈ Ω and the nonlinearity
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may depend on the energy of solutions, in the setting of fractional Laplacian. It is worthy pointing out that problem like
(1.6) arises in various situations. For example, u could describe the density of a population (bacteria, for instance) subject to
spreading. In addition, the diffusion coefficientM is supposed to depend on the entire population in the domain Ω , instead
of the local density.

In this spirit, we suppose thatM : Ω × R+

0 → R+ is a continuous function satisfying the following conditions:

(M1) There exist m0,m1 > 0 such thatm0 ≤ M(x, t) ≤ m1 for all x ∈ Ω and t ∈ R+

0 ;
(M2) There exist constants R1 > 0 and L1 = L1(R1) > 0 such that

|M(x, tp1 ) − M(x, tp2 )| ≤ L1|t1 − t2|d, ∀x ∈ Ω and t1, t2 ∈ [0, R1],

where

d =


p − 1 if p ≥ 2,
1 if max{1, 2N/(N + 2s)} < p < 2.

As p = 2, a typical example for M is given by

M(x, t) =


a(x) + b(x)tm if t ∈ [0, 1],
a(x) + b(x) if t ∈ [1, ∞),

with m > 0, a, b ∈ C(Ω), infx∈Ω a(x) > 0 and b(x) ≥ 0 for all x ∈ Ω .
Also, we assume that f : Ω × R × R+

0 → R is a continuous function satisfying:

(f1) f (x, ξ , η) ≥ 0 for all ξ ≥ 0, η ∈ R+

0 and x ∈ Ω; f (x, ξ , η) = 0 for all ξ < 0, η ∈ R+

0 and x ∈ Ω .
(f2) limξ→0

f (x,ξ ,η)

|ξ |p−1 = 0 uniformly for all η ∈ R+

0 and x ∈ Ω .
(f3) There exists q ∈ (p,Np/(N − sp)) such that

lim
ξ→+∞

f (x, ξ , η)

|ξ |q−1
= 0 uniformly for all η ∈ R+

0 and x ∈ Ω.

(f4) There exists µ > p such that for all ξ , η ∈ R+

0 and a.e. x ∈ Ω ,

0 < µF(x, ξ , η) := µ

 ξ

0
f (x, τ , η)dτ ≤ ξ f (x, ξ , η).

(f5) There exist positive constants A1, A2 such that

F(x, ξ , η) ≥ A1ξ
µ

− A2 for all ξ, η ∈ R+

0 and x ∈ Ω.

A simple example of f is given by f (x, ξ , η) = g(η)ξ l−1
+ for all (x, ξ , η) ∈ Ω × R × R+

0 , where p < l < q, ξ+ := max{ξ, 0},
and g ∈ L∞(Ω) such that 0 < c ≤ g(η) for some constant c .

In order to perform theMountain Pass Theorem, herewe take advantage of thewell-known Ambrosetti–Rabinowitz type
condition (f4). Because of the dependence of the function M on x, we have to add the condition (f5) in order to justify the
geometrical conditions of the Mountain Pass Theorem. Moreover, we have to ‘‘freeze’’ the term containing the energy of
solutions in the Kirchhoff function M and also in the nonlinearity f , then an iterative scheme where any ‘‘approximated’’
problem has a nontrivial nonnegative Mountain Pass solution is applied to obtain the desired solution after the verification
of boundedness. Indeed, the idea is borrowed from [27], we also refer to the subsequent literature, for example, [29–32] for
its applications to semilinear and quasilinear elliptic problems in the Laplacian setting. More precisely, we first consider the
following problem:LKu =

f (x, u, ∥ω∥
p
W0

)

M(x, ∥ω∥
p
W0

)
in Ω,

u = 0 in RN
\ Ω,

(1.7)

for each ω ∈ W0. Obviously, problem (1.7) is variational and can be treated by variational methods. Here we say that a
function u ∈ W0 is called to be a (weak) solution of problem (1.7) if

R2N
|u(x) − u(y)|p−2(u(x) − u(y))(ϕ(x) − ϕ(y))K(x − y)dxdy =


Ω

f (x, u(x), ∥ω∥
p
W0

)ϕ(x)

M

x, ∥ω∥

p
W0

 dx, (1.8)

for any ϕ ∈ W0, where the spaceW0 will be introduced in Section 2. Now we are ready to give the preliminary result of our
paper:

Theorem 1.1. Let ω ∈ W0 and K : RN
\{0} → R+ be a function satisfying (1.2). Assume that the hypotheses (M1)–(M2) and

(f1)–(f5) are satisfied. Then there exist positive constants K1, K2, K3, K4 independent of ω such that problem (1.7) has a solution
uω satisfying K1 ≤ ∥uω∥W0 ≤ K2, ∥uω∥Lq(Ω) ≤ K3 and ∥uω∥∞ ≤ K4, which is positive a.e. in Ω and uω = 0 a.e. in RN

\Ω .
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Remark 1.1. For each ω ∈ W0, by (f2), (f3) and ∥uω∥∞ ≤ K4 there exists a constant C∗ > 0 independent of ω such that
Ω

f (x, uω, ∥ω∥
p
W0

)

p/(p−1)
dx
(p−1)/p

≤ C∗. (1.9)

The main result will be established by an iterative method which depends on the solvability of problem (1.7). Especially,
themain result involves the positive number Cp, which appears in the followingwell-known vector inequalities: there exists
Cp > 0 such that

Cp

|ξ |

p−2ξ − |η|
p−2η


· (ξ − η) ≥


|ξ − η|

p if p ≥ 2,
|ξ − η|

2(|ξ |
p
+ |η|

p)(p−2)/p if 1 < p < 2, (1.10)

for all ξ, η ∈ RN . To get the main result, we also need the following technical assumption:

(f6) There exist constants R2 > 0, L2 = L2(R1, R2) > 0 and L3 = L3(R1, R2) > 0 such that

|f (x, ξ1, ηp) − f (x, ξ2, ηp)| ≤ L2|ξ1 − ξ2|
d,

for all x ∈ Ω , η ∈ [0, R1], ξ1 ∈ [0, R2], ξ2 ∈ [0, R2], and

|f (x, ξ , η
p
1) − f (x, ξ , η

p
2)| ≤ L3|η1 − η2|

d,

for all x ∈ Ω , η1 ∈ [0, R1], η2 ∈ [0, R1], ξ ∈ [0, R2], where d comes from assumption (M2).

Now we are in a position to state the main result as follows:

Theorem 1.2. Let K : RN
\{0} → R+ be a function satisfying (1.2). Suppose that M satisfies (M1)–(M2) and f satisfies (f1)–(f6).

If one of the following conditions holds:

0 <
Cpm022/pK 2−p

2
C

m0 − L2CpK
2−p
2 (2C∗)2/p

< 1, if 1 < p < 2; 0 <
Cpm0C

m0 − L2CpC∗

< 1, if p ≥ 2,

where C∗ > 0 is the number given in Lemma 2.1,C =


L3|Ω|

(p−1)/pm0C
1/p
∗ + L1C∗C1/p

∗


/m2

0, then problem (1.1) has a solution

u ∈ W0


L∞(Ω), which is positive a.e. in Ω and u = 0 a.e. in RN
\Ω .

This paper is organized as follows. In Section 2, we give some related definitions and results in fractional Sobolev space
W0. In Section 3, using the Mountain Pass Theorem and an iterative scheme, we give the proof of the main result.

2. Preliminaries

In this section, we first recall some basic results, which will be used in the next section. Let 0 < s < 1 < p < ∞ be real
numbers and the fractional critical exponent p∗

s be defined as

p∗

s =


Np

N − sp
if sp < N,

∞ if sp ≥ N.

In the following, we denote Q = R2N
\O, where

O = C(Ω) × C(Ω) ⊂ R2N ,

and C(Ω) = RN
\Ω . W is a linear space of Lebesgue measurable functions from RN to R such that the restriction to Ω of

any function u in W belongs to Lp(Ω) and
Q

|u(x) − u(y)|pK(x − y)dxdy < ∞.

The spaceW is equipped with the norm

∥u∥W = ∥u∥Lp(Ω) +


Q

|u(x) − u(y)|pK(x − y)dxdy
1/p

.

It is easy to prove that ∥ · ∥W is a norm onW . We shall work in the closed linear subspace

W0 =

u ∈ W : u(x) = 0 a.e. in RN

\Ω

,
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endowed with the norm

∥u∥W0 := [u]s,p,K =


Q

|u(x) − u(y)|pK(x − y)dxdy
1/p

.

Then (W0, ∥ · ∥W0) is a uniformly convex Banach space, see [13]. Moreover, C∞

0 (Ω) is dense inW0, see [33] for more details.

Lemma 2.1 (See [13, Lemma 2.3]). Let K : RN
\{0} → R+ satisfy assumption (1.2). Then there exists a positive constant

C0 = C0(N, p, s) such that for any v ∈ W0 and 1 ≤ q ≤ p∗
s

∥v∥
p
Lq(Ω) ≤ C0


Ω


Ω

|v(x) − v(y)|p

|x − y|N+ps
dxdy

≤
C0

K0


Q

|v(x) − v(y)|pK(x − y)dxdy

:= C∗


Q

|v(x) − v(y)|pK(x − y)dxdy.

Lemma 2.2 (See [13, Lemma 2.5]). Let K : RN
\{0} → R+ satisfy (1.2) and let vj be a bounded sequence inW0. Then, there exists

v ∈ Lν(RN) with v = 0 a.e. in RN
\Ω such that up to a subsequence,

vj → v strongly in Lν(Ω) as j → ∞,

for any ν ∈ [1, p∗
s ).

The following strong maximum principle will be used to obtain the positivity of solutions in the proof of our results:

Lemma 2.3 (See [14, Proposition 2.2]). If u ∈ W0\{0} is such that u(x) ≥ 0 a.e. in Ω and

⟨L(u), ϕ⟩ :=


Q

|u(x) − u(y)|p−2(u(x) − u(y))(ϕ(x) − ϕ(y))K(x − y)dxdy ≥ 0

for each ϕ ∈ W0, ϕ(x) ≥ 0 a.e. in Ω , then u(x) > 0 a.e. in Ω .

3. Proof of Theorems 1.1 and 1.2

As usual, a weak solution of problem (1.7) is obtained as a critical point of the associated functional Iω : W0 → R given
by

Iω(u) =
1
p


Q

|u(x) − u(y)|pK(x − y)dxdy −


Ω

F(x, u, ∥ω∥
p
W0

)

M(x, ∥ω∥
p
W0

)
dx, (3.1)

where F(x, u, ∥ω∥
p
W0

) =
 u
0 f (x, ξ , ∥ω∥

p
W0

)dξ and u ∈ W0. Obviously, the energy functional I : W0 → R associated with
problem (1.7) is well defined. A similar discussion as in [13] gives that Iω is of class C1 onW0 and its derivative is given by

⟨I ′ω(u), v⟩ =


Q

|u(x) − u(y)|p−2(u(x) − u(y))(v(x) − v(y))K(x − y)dxdy −


Ω

f (x, u, ∥ω∥
p
W0

)

M(x, ∥ω∥
p
W0

)
dx, ∀v ∈ W0.

The proof of Theorem1.1 is divided into several lemmas.We show that the functional Iω has the geometry of themountain
pass theorem, that it satisfies the Palais–Smale condition and finally that the obtained solutions have the uniform bounds.

Lemma 3.1. Fix ω ∈ W0. Let K : RN
\{0} → R+ be a function satisfying (1.2) and suppose that M satisfies (M1) and (M2) and

f satisfies (f1)–(f3). Then there exist ρ > 0 and α > 0 such that

Iω(u) ≥ α > 0,

for any u ∈ W0 with ∥u∥W0 = ρ .

Proof. By (f2) and (f3), for any ε > 0 there exists C(ε) > 0 such that for any ξ ∈ R and a.e. x ∈ Ω , we have

|f (x, ξ , ∥ω∥
p
W0

)| ≤ pε|ξ |
p−1

+ qC(ε)|ξ |
q−1. (3.2)

It follows from (3.2) that

|F(x, ξ , ∥ω∥
p
W0

)| ≤ ε|ξ |
p
+ C(ε)|ξ |

q. (3.3)
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Let u ∈ W0. By (3.3), (M1) and Lemma 2.1, we obtain

Iω(u) =
1
p


Q

|u(x) − u(y)|pK(x − y)dxdy −


Ω

F(x, u, ∥ω∥
p
W0

)

M(x, ∥ω∥
p
W0

)
dx

≥
1
p


Q

|u(x) − u(y)|pK(x − y)dxdy −
1
m0


Ω

ε|u(x)|p + C(ε)|u(x)|qdx

≥
1
p
∥u∥p

W0
−

C0ε

m0
∥u∥p

W0
−

C(ε)

m0


C0

k0

q/p

∥u∥q
W0

. (3.4)

Choosing ε = m0/(2pC0), we have by (3.4) that

Iω(u) ≥
1
2p

∥u∥p
W0

− C∥u∥q
W0

≥ ∥u∥p
W0


1
2p

− C∥u∥q−p
W0


,

where C is a constant only depending on N, s, p,m0, k0. Now, let ∥u∥W0 = ρ > 0. Since q > p, we can choose ρ sufficiently
small such thatm0/(2p) − Cρq−p > 0, so that

Iω(u) ≥ ρp


1
2p

− Cρq−p


=: α > 0.

Thus, the proof is complete. �

Lemma 3.2. Fix ω ∈ W0. Let K : RN
\{0} → R+ be a function satisfying (1.2) and suppose that M satisfies (M1) and (M2) and

f satisfies (f1)–(f3). Then there exists e ∈ C∞

0 (Ω) such that ∥e∥W0 ≥ ρ and Iω(e) < α, where ρ and α are given in Lemma 3.1.

Proof. From (f5) and (M2), we have

Iω(tu0) =
1
p
∥tu0∥

p
W0

−


Ω

F(x, tu0(x), ∥ω∥
p
W0

)dx

≤
1
p
tp −

A1tµ

m1


Ω

|u0(x)|µdx −
A2

m1
|Ω|,

where u0 ∈ W0 satisfying ∥u0∥W0 = 1, |Ω| is the Lebesgue measure of Ω in RN . Since µ > p by assumption (f4), passing
to the limit as t → ∞, we obtain that I(tu0) → −∞. Thus, the assertion follows by taking e = Tu0 with T sufficiently
large. �

Definition 3.1. We say that I satisfies (PS) condition in W0, if for any sequence {un}n ⊂ W0 such that I(un) is bounded and
I ′(un) → 0 as n → ∞, there exists a convergent subsequence of {un}n.

Lemma 3.3. Fix ω ∈ W0. Let K : RN
\{0} → R+ be a function satisfying (1.2) and suppose that M satisfies (M1) and (M2) and

f satisfies (f1)–(f7). Then the functional Iω satisfies (PS) condition.

Proof. For any sequence {un}n ⊂ W0 such that Iω(un) is bounded and I ′ω(un) → 0 as n → ∞, there exists C > 0 such that
|⟨I ′ω(un), un⟩| ≤ C∥un∥W0 and |Iω(un)| ≤ C . Thus, by (M1), (M2) and (f2), we get

C + C∥un∥W0 ≥ Iω(un) −
1
µ

⟨I ′ω(un), un⟩

=
1
p
∥un∥

p
W0

−
1
µ

∥un∥
p
W0

−
1
µ


Ω

(µF(x, un, ∥ω∥
p
W0

) − f (x, un, ∥ω∥
p
W0

)un)dx

≥


1
p

−
1
µ


∥un∥

p
W0

,

where C denotes various positive constants. Hence, {un}n is bounded inW0.
For simplicity, we first introduce a notation. Let ϕ ∈ W0 be fixed and denote by Bϕ the linear functional on W0 defined

by

Bϕ(v) =


Q

|ϕ(x) − ϕ(y)|p−2(ϕ(x) − ϕ(y))(v(x) − v(y))K(x − y)dxdy

for all v ∈ W0. Clearly, by the Hölder inequality, Bϕ is also continuous, being

|Bϕ(v)| ≤ ∥ϕ∥
p−1
W0

∥v∥W0 for all v ∈ W0.
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Since W0 is a reflexive Banach space, up to a subsequence, still denoted by {un}n such that un ⇀ uω weakly in W0 as
n → ∞. Then ⟨I ′ω(un), un − uω⟩ → 0, that is,

⟨I ′ω(un), un − uω⟩ = Bun(un − uω) −


Ω

f (x, un, ∥ω∥
p
W0

)(un − uω)

M(x, ∥ω∥
p
W0

)
dx

−→ 0 as n → ∞. (3.5)

Moreover, by Lemma 2.2, up to a subsequence,

un → u strongly in Lq(Ω) and a.e. in Ω.

Using (f3) and the Hölder inequality, we obtain


Ω

f (x, un, ∥ω∥
p
W0

)(un − uω)

M(x, ∥ω∥
p
W0

)
dx

 ≤
C
m0


Ω

(1 + |un|
q−1)|un − uω|dx

≤
C
m0


|Ω|

(q−1)/q
+ ∥un∥

q−1
Lq(Ω)


∥un − uω∥Lq(Ω)

−→ 0 as n → ∞, (3.6)

where C > 0 is a constant. Inserting (3.6) into (3.5), we get

lim
n→∞

Bun(un − uω) = 0.

Furthermore, by the weak convergence of {un}n in W0 we get

Bun(un − uω) − Buω (un − uω) → 0 as n → ∞.

Using the well-known vector inequalities (1.10), we obtain for p > 2

∥un − uω∥
p
W0

≤ Cp [Bun(un − uω) − Buω (un − uω)] = o(1), (3.7)

and for 1 < p < 2

∥un − uω∥
p
W0

≤ Cp/2
p [Bun(un − uω) − Buω (un − uω)]p/2


∥un∥

p
W0

+ ∥uω∥
p
W0

(2−p)/2

≤ Cp/2
p [Bun(un − u) − Buω (un − u)]p/2


∥un∥

p(2−p)/2
W0

+ ∥uω∥
p(2−p)/2
W0


≤ C[Bun(un − uω) − Buω (un − uω)]p/2 = o(1), (3.8)

where C > 0 is a constant. Combining (3.7) with (3.8), we get that un → u strongly in W0 as n → ∞. Therefore, I satisfies
(PS) condition. �

Since Lemmas 3.1–3.2 hold, the Mountain Pass Theorem [34, Theorem 6.1] gives that problem (3.1) has a nonnegative
solution uw satisfying

I ′ω(uω) = 0, cω = Iω(uω) = inf
γ∈Γ

max
t∈[0,1]

Iω(γ (t)) > I(0) = 0, (3.9)

where Γ = {γ ∈ C([0, 1],W0) : γ (0) = 0, γ (1) = e} and e from Lemma 3.2. Thus, uω ≢ 0. Moreover, uω ≥ 0 a.e. in RN .
Indeed,

⟨I ′ω(uω), u−

ω ⟩ = Buω (u−

ω ) −


Ω

f (x, uω, ∥ω∥
p
W0

)u−
ω

M(x, ∥ω∥
p
W0

)
dx = 0,

where u−
ω = max{−uω, 0} ∈ W0. Combining this with (f1), we have
Q

|uω(x) − uω(y)|p−2(uω(x) − uω(y))(u−

ω (x) − u−

ω (y))K(x − y)dxdy = 0.

From which together with the following fact:

(uω(x) − uω(y))(u−

ω (x) − u−

ω (y)) ≤ −
u−

ω (x) − u−

ω (y)
2 , a.e. x, y ∈ RN ,

we get that (uω)−(x) = (uω)−(y) for a.e. (x, y) ∈ RN
× RN . Since (uω)−(x) = 0 a.e. in RN

\Ω , we obtain that (uω)−(x) = 0
a.e. in RN , that is, uω ≥ 0 a.e. in RN . Notice that (f1) implies

⟨LK (uω), v⟩ =


Ω

f (x, uω, ∥ω∥
p
W0

)

M(x, ∥ω∥
p
W0

)
vdx ≥ 0,

for each v ∈ W0, v(x) ≥ 0 a.e. in Ω . Then Lemma 2.3 means the positivity of uω a.e. in Ω with u = 0 in RN
\Ω .
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Lemma 3.4. Let ω ∈ W0. There exists K1 > 0 independent of ω such that ∥uω∥W0 ≥ K1.

Proof. Using uω as a test function in (1.8), we obtain by (f2) and (f3) that
Q

|uω(x) − uω(y)|pK(x − y)dxdy =


Ω

f (x, uω, ∥ω∥
p
W0

)

M(x, ∥ω∥
p
W0

)
dx

≤
ε

m0


Ω

|uω|
pdx +

Cε

m0


Ω

|uε|
qdx

≤
εC∗

m0
∥uω∥

p
W0

+
Cε

m0
Cq/p

∗
∥uω∥

q
W0

,

for any ε > 0. Then
1 −

εC∗

m0


∥uω∥

p
W0

≤
Cε

m0
Cq/p

∗
∥uω∥

q
W0

.

From this and q > p, by taking ε > 0 small enough, we get

∥u∥W0 ≥


m0

Cε

Cq/p
∗


1 −

εC0

m0K0

1/(q−p)

:= K1 > 0.

So the assertion follows. �

Lemma 3.5. Let ω ∈ W0. Then there exists K2 > 0 independent of ω such that ∥uω∥W0 ≤ K2.

Proof. Taking a special pass γ (t) = te and using the definition of cω in (3.9), we obtain

cω = Iω(uω) ≤ max
0≤t≤1

Iω(γ (t)) ≤ max
t≥0

Iω(te), (3.10)

where e chosen in Lemma 3.2. By (f5), we have

Iω(te) ≤
tp

p
−

A1

m1
tµ


Ω

|e|µdx +
A2|Ω|

m1
:= h(t),

whose maximum is achieved at somet0 > 0 and the value h(t0) can be taken as C > 0. Clearly it is independent of ω. Using
(f4), we have

C ≥ cω = Iω(uω) −
1
µ

⟨I ′ω(uω), uω⟩ ≥


1
p

−
1
µ


∥uω∥

p
W0

. (3.11)

Then (3.10) together with (3.11) implies that there exists K2 := (µpC/(µ − p))1/p > 0 independent of ω such that
∥uω∥W0 ≤ K2. �

By Lemmas 3.5 and 2.2, there exists K3 > 0 independent ofω such that ∥u∥q ≤ K3. Without loss of generality, we assume
that K3 ≥ 1.

Lemma 3.6. There exists K4 > 0 independent of ω such that for every weak solution uω ∈ W0 of problem (1.7), there holds

∥uω∥∞ ≤ K4.

To prove Lemma 3.6, we need the following lemma (see [35, Lemma 4.1]):

Lemma 3.7. Let {Yn}, n = 0, 1, 2, . . . , be a sequence of positive numbers satisfying the recursive inequalities

Yn+1 ≤ CbnY 1+α
n ,

where b > 1 and C, α > 0 are given numbers. If

Y0 ≤ C−1/αb−1/α2
,

then {Yn} converges to zero as n → ∞.

Proof of Lemma 3.6. Fix a nonnegative solution uω ∈ W0 of (1.7) and set v = K−1
3 uω . Then v is a non-negative solution of

the following problemLKv =
K 1−p
3 f (x, K3v, ∥ω∥

p
W0

)

M(x, ∥ω∥
p
W0

)
in Ω,

v = 0 in RN
\ Ω.

(3.12)
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For all n ∈ N, we set vn = (v − l + l2−n)+, where l ≥ 1 is a constant to be determined later. So vn ∈ W0, ∥vn∥q ≤ 1,
v0 = v+

= v and for all n ∈ N we have 0 ≤ vn+1(x) ≤ vn(x) and vn(x) → (v(x) − l)+ a.e. in Ω as n → ∞. Moreover, the
following inclusion holds (up to a Lebesgue null set)

{x ∈ Ω : vn+1(x) > 0} ⊂

x ∈ Ω : 0 < v(x) < (2n+1

− 1)vn(x)


x ∈ Ω : vn(x) > 2−n−1l

. (3.13)

For all n ∈ N we set Rn = ∥vn∥
q
q, then R0 = ∥v∥

q
q and {Rn}n is a non-increasing sequence on [0, 1]. Next we prove that

Rn → 0 as n → ∞. By the Hölder inequality, the fractional Sobolev inequality (see [10, Theorem 6.5]), (3.13) and Chebyshev
inequality (see [36, p. 52]), we have for all n ∈ N

Rn+1 ≤ |{x ∈ Ω : vn+1 > 0}|1−q/p∗
s ∥vn+1∥

q
p∗
s

≤ C
{x ∈ Ω : vn > 2−(n+1)l}

1−q/p∗
s
∥vn+1∥

q
W0

≤ C

2n+1/l

q−q2/p∗
s R1−q/p∗

s
n ∥vn+1∥

q
W0

. (3.14)

It follows from (f2) and (f3) that there exists a constant C > 0 such that for a.e. x ∈ Ω and all (ξ , η) ∈ R × R+

0

f (x, ξ , η) ≤ C(|ξ |
p−1

+ |ξ |
q−1). (3.15)

Then using the following inequality

|ξ+
− η+

|
p

≤ |ξ − η|
p−2(ξ − η)(ξ+

− η+) for all ξ, η ∈ R,

and testing (3.12) with vn+1, together with (3.13), (M1) and the Hölder inequality, we have

∥vn+1∥
p
W0

≤ Bv(vn+1) =


Ω

1
M(x, ∥ω∥

p
W0

)
f (x, K3v, ∥ω∥

p
W0

)vn+1(x)dx

≤ C


{x∈Ω:vn+1>0}


|v(x)|p−1

+ |v(x)|q−1 vn+1(x)dx

≤ C


{x∈Ω:vn+1>0}


(2n+1

− 1)p−1vp
n + (2n+1

− 1)q−1vq
n


dx

≤ C2(n+1)(q−1)(Rp/q
n + Rn)

≤ C2(n+1)(q−1)Rp/q
n ,

where C denotes various positive constants independent of n, ω. Hence we deduce from (3.14) that

Rn+1 ≤ Clq
2/p∗

s −q2(q−q2/p∗
s +q2/p−q/p)(n+1)R2−q/p∗

s
n := Clq

2/p∗
s −q2λnR1+β

n , (3.16)

where C = 2λC > 0 is a constant independent of n and ω, λ := q − q2/p∗
s + q2/p − q/p > 0 and 0 < β := 1 − q/p∗

s < 1.
Now we choose l ≥ 1 such that

R0 =


Ω

v(x)qdx ≤ (Clq
2/p∗

s −q)−1/β2−λ/β2
.

By Lemma 3.7, we obtain that Rn → 0 as n → ∞, so that v(x) ≤ l a.e. inΩ . Hence, we have uω ∈ L∞(Ω) and ∥uω∥∞ ≤ K3l. It
follows from the choice of l and Lemma 3.5 that there exists K4 > 0 independent ofω such that ∥uω∥∞ ≤ K4. This completes
the proof. �

Proof of Theorem 1.2. By Theorem 1.1, we can construct a sequence {un}n of nonnegative solutions asLKun =
f (x, un, ∥un−1∥

p
W0

)

M(x, ∥un−1∥
p
W0

)
in Ω

un = 0 in RN
\ Ω,

(En)

obtained by the Mountain Pass Theorem, starting with an arbitrary u0 ∈ W0


L∞(Ω). By Lemmas 3.5 and 3.6, we obtain
that ∥un∥W0 ≤ K2 and ∥un∥∞ ≤ K4. Using (En) and (En+1), we get

Bun (un+1(x) − un(x)) =


Ω

f (x, un(x), ∥un−1∥
p
W0

)(un+1 − un)

M

x, ∥un−1∥

p
W0

 dx (3.17)

and

Bun+1 (un+1(x) − un(x)) =


Ω

f (x, un+1(x), ∥un∥
p
W0

)(un+1 − un)

M

x, ∥un∥

p
W0

 dx. (3.18)



264 M. Xiang et al. / Computers and Mathematics with Applications 71 (2016) 255–266

It follows from (3.17) and (3.18) that

Bun+1 (un+1(x) − un(x)) − Bun (un+1(x) − un(x))

=


Ω

f (x, un+1, ∥un∥
p
W0

)(un+1 − un)

M(x, ∥un∥
p
W0

)
−

f (x, un, ∥un−1∥
p
W0

)(un+1 − un)

M(x, ∥un−1∥
p
W0

)
dx

=
1

M(x, ∥un∥
p
W0

)


Ω

f (x, un+1, ∥un∥
p
W0

) − f (x, un, ∥un−1∥
p
W0

)(un+1 − un)dx

+


Ω

f (x, un, ∥un−1∥
p
W0

)


1

M(x, ∥un∥
p
W0

)
−

1
M(x, ∥un−1∥

p
W0

)


(un+1 − un)dx. (3.19)

We first consider the case p ≥ 2. Applying the Hölder inequality, the fractional Sobolev embedding, (M1) and (f7), we obtain

1
M(x, ∥un∥

p
W0

)


Ω

f (x, un+1, ∥un∥
p
W0

) − f (x, un, ∥un−1∥
p
W0

)(un+1 − un)dx


≤
1
m0


Ω

f (x, un+1, ∥un∥
p
W0

) − f (x, un, ∥un−1∥
p
W0

)

 |un+1 − un|dx

≤
1
m0


Ω

f (x, un+1, ∥un∥
p
W0

) − f (x, un, ∥un∥
p
W0

)

 |un+1 − un|dx

+
1
m0


Ω

f (x, un, ∥un∥
p
W0

) − f (x, un, ∥un−1∥
p
W0

)

 |un+1 − un|dx

≤
L2
m0


Ω

|un+1 − un|
pdx +

L3
m0


Ω

∥un − un−1∥
p−1
W0

|un+1 − un|dx

≤
L2C∗

m0
∥un+1 − un∥

p
W0

+
L3|Ω|

(p−1)/pC1/p
∗

m0
∥un − un−1∥

p−1
W0

∥un+1 − un∥W0 , (3.20)

where L2 = L2(K2, K4) > 0 and L3 = L3(K2, K4) > 0. Furthermore, we deduce from (M2), (f7) and (1.9) that


Ω

f (x, un, ∥un−1∥
p
W0

)


1

M(x, ∥un∥
p
W0

)
−

1
M(x, ∥un−1∥

p
W0

)


(un+1 − un)dx


≤

1
m2

0


Ω

f (x, un, ∥un−1∥
p
W0

)

 M(x, ∥un∥
p
W0

) − M(x, ∥un−1∥
p
W0

)
 |un+1 − un|dx

≤
L1
m2

0
∥un − un−1∥

p−1
W0


Ω

f (x, un, ∥un−1∥
p
W0

)

 |un+1 − un|dx

≤
L1
m2

0
∥un − un−1∥

p−1
W0

∥f (x, un, ∥un−1 ∥
p
W0

)∥p/(p−1)∥un+1 − un∥p

≤
L1C∗C1/p

∗

m2
0

∥un − un−1∥
p−1
W0

∥un+1 − un∥W0 , (3.21)

where L1 = L1(K2) > 0. Inserting (3.20) and (3.21) into (3.19), we get

Bun+1 (un+1(x) − un(x)) − Bun (un+1(x) − un(x))

≤
L2C∗

m0
∥un+1 − un∥

p
W0

+
L3|Ω|

(p−1)/pC1/p
∗

m0
∥un − un−1∥

p−1
W0

∥un+1 − un∥W0

+
L1C∗C1/p

∗

m2
0

∥un − un−1∥
p−1
W0

∥un+1 − un∥W0 . (3.22)

Since p ≥ 2, we deduce from (1.10) that

1
Cp

∥un+1 − un∥
p
W0

≤
L2C∗

m0
∥un+1 − un∥

p
W0

+C∥un − un−1∥
p−1
W0

∥un+1 − un∥W0 , (3.23)

where

C =
L3|Ω|

(p−1)/pm0C
1/p
∗ + L1C∗C1/p

∗

m2
0

.
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It follows from (3.23) that

∥un+1 − un∥W0 ≤ κ∥un − un−1∥W0 , (3.24)

where κ =

Cpm0C/


m0 − L2C∗Cp

1/(p−1)
. Since 0 < κ < 1, we conclude from (3.24) that the sequence {un}n converges

strongly in W0 to some u ∈ W0, which is the solution of problem (1.1). By un is positive a.e. in Ω and ∥un∥W0 ≥ K1 and
∥un∥∞ ≤ K3 for all n ∈ N, we get that u > 0 a.e. in Ω and u ∈ L∞(Ω).

It remains to consider the case 1 < p < 2. By (1.10), we have

∥un+1 − un∥
p
W0

≤ Cp/2
p [Bun+1(un+1 − un) − Bun(un+1 − un)]

p/2
∥un+1∥

p
W0

+ ∥un∥
p
W0

(2−p)/2

≤ Cp/2
p [Bun+1(un+1 − un) − Bun(un+1 − un)]

p/2
∥un+1∥

p(2−p)/2
W0

+ ∥un∥
p(2−p)/2
W0


≤ 2Cp/2

p K p(2−p)/2
2 [Bun+1(un+1 − un) − Bun(un+1 − un)]

p/2. (3.25)

A similar discussion as (3.20) and (3.21) gives that

Bun+1 (un+1(x) − un(x)) − Bun (un+1(x) − un(x))

≤
L2C

2/p
∗

m0
∥un+1 − un∥

2
W0

+
L3|Ω|

(p−1)/pC1/p
∗

m0
∥un − un−1∥W0∥un+1 − un∥W0

+
L1C∗C1/p

∗

m2
0

∥un − un−1∥W0∥un+1 − un∥W0 . (3.26)

It follows from (3.25) and (3.26) that

∥un+1 − un∥
2
W0

≤ Cp22/pK 2−p
2


L2C

2/p
∗

m0
∥un+1 − un∥

2
W0

+C∥un − un−1∥W0∥un+1 − un∥W0


,

which implies that

∥un+1 − un∥W0 ≤ Cp22/pK 2−p
2


L2C

2/p
∗

m0
∥un+1 − un∥W0 +C∥un − un−1∥W0


. (3.27)

Therefore, we get

∥un+1 − un∥W0 ≤κ∥un − un−1∥W0 ,

where

κ =
Cp22/pK 2−p

2
C

1 −


CpK

2−p
2 (2C∗)2/pL2


/m0

.

Since 0 < κ < 1, we obtain that {un}n is a Cauchy sequence in W0. Hence the sequence {un}n converges strongly in W0 to
some u ∈ W0, which is a nonnegative solution of problem (1.1). �

Remark 3.1. (a) It is easy to see from the proof of Theorem 1.1 that the nonnegativity of solutions in Ω to problem (1.7)
can be obtained immediately if (f1) is replaced with weaker assumption (f ′

1): f (x, ξ , η) = 0 for all ξ < 0, η ∈ [0, ∞)
and a.e. x ∈ Ω .

(b) Evidently, Theorems 1.1–1.2 still hold if f (x, ξ , η) is independent of η. Furthermore, we can remove condition (f5) since
(f4) implies (f5) if f (x, ξ) ∈ C(Ω × R).
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