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Abstract. — We provide a survey on the mountain pass theory, viewed as a central tool in
the modern nonlinear analysis. The abstract results are illustrated with relevant
applications to nonlinear partial differential equations.

1. — Introduction.

The mountain pass theorem of A. Ambrosetti and P. Rabinowitz [2] is a result
of great intuitive appeal which is very useful to find the critical points of func-
tionals, particularly those that occur in the theory of ordinary and partial dif-
ferential equations.

The original version of A. Ambrosetti and P. Rabinowitz corresponds to the
case of mountains of positive altitude. Their proof relies on some deep de-
formation techniques developed by R. Palais and S. Smale [25, 26], who put the
main ideas of the Morse theory into the framework of differential topology on
infinite dimensional manifolds. H. Brezis and L. Nirenberg provided in [5] a
simpler proof which combines two major tools: Ekeland’s variational principle
and the pseudogradient lemma. Ekeland’s variational principle is the nonlinear
version of the Bishop-Phelps theorem and it may be also viewed as a general-
ization of Fermat’s theorem. The case of mountains of zero altitude is due to
P. Pucci and J. Serrin [28, 29, 31].

In many nonlinear problems we are interested in finding solutions as stationary
points of some associated “energy” functionals. Often such a mapping is unbounded
from above and below, so that it has no maximum or minimum. This forces us tolook
for saddle points, which are obtained by minimax arguments. In such a case one
maximizes a functional f over a closed set A belonging to some family I” of sets (a
rigorous definition of this set of “paths” I" will be provided in relation (3)) and then
one minimizes with respect to the set A in the family. Thus, it is natural to define
(1) ¢ = inf supf(u).
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Under various hypotheses, one tries to prove that this number c is a critical value of
f, hence there is a point % such that f(u) = ¢ and f’(u) = 0. Indeed, it seems in-
tuitively obvious that ¢ defined in (1) is a critical value of . However, this is not true
in general, as showed by the following example in the plane: let f(x,y) =
22— (x — 1)3y2. Then (0, 0) is the only critical point of f but ¢ is not a critical value.
Indeed, looking for sets A lying in a small neighborhood of the origin, then ¢ > 0.
This example shows that the heart of the matter is to find appropriate conditions on
f and on the family 7.

One of the most important minimax results is the so-called mountain pass
theorem. In this result one considers a function f : X — R of class C', where X is
a real Banach space. It is assumed that f satisfies the following geometric con-
ditions:

(H1) there exist two numbers R > 0 and ¢y € R such that f(u) > cq for every
ueSg:={velX; ||v| =R}
(H2) f(0)<cy and f(e)<co for some e € X with |le| > R.

With an additional compactness condition of Palais-Smale type it then follows
that the function f has a critical point %, € X \ {0, e}. With critical value ¢ > c.
In essence, this critical value occurs because 0 and e are low points on either side
of the mountain Sg, so that between 0 and e there must be a lowest critical point,
or mountain pass. Condition (H2) signifies that the mountain should have po-
sitive altitude. P. Pucci and J. Serrin [28, 29] proved that the mountain pass
theorem continues to hold for a mountain of zero altitude, provided it also has
nonzero thickness. In addition, if ¢ = ¢y, then the “pass” itself occurs precisely on
the mountain. Roughly speaking, P. Pucci and J. Serrin showed that the
mountain pass theorem still remains true if (H1) is strengthened a little, to the
form

(H1) there exist real numbers cy, R, r such that 0<r<R and f(u) > ¢y for
every u € A = {v e X; r<|v| <R},

while hypothesis (H2) is weakened and replaced with
H2)Y £(0) < ¢p and f(e) < ¢y for some e € X with |e|| > R.

The geometrical interpretation will be roughly described in the sequel.
Denote by f the function which measures the altitude of a mountain terrain and
assume that there are two points in the horizontal plane L; and Ly, representing
the coordinates of two locations such that f(L1) and f(L2) are the deepest points
of two separated valleys. Roughly speaking, our aim is to walk along an optimal
path on the mountain from the point (,1,f(11)) to (Lg,f(L2)) spending the least
amount of energy by passing the mountain ridge between the two valleys.
Walking on a path (y,f(y)) from (I.1,f(L1)) to (Le,f(L2)) such that the maximal
altitude along y is the smallest among all such continuous paths connecting
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(L1,f(Ly)) and (Lg,f(Lsg)), we reach a point L on y passing the ridge of the
mountain which is called a mountain pass point. As pointed out by H. Brezis and
F. Browder [3], the mountain pass theorem “extends ideas already present in
Poincaré and Birkhoff.

We refer to the books by A. Ambrosetti and A. Malchiodi [1], M. Ghergu and
V. Radulescu [16], Y. Jabri [18], A. Kristaly, V. Radulescu, and Cs. Varga [21],
J. Mawhin and M. Willem [24], P. Rabinowitz [35], M. Schechter [39], M. Struwe
[41], M. Willem [42], and W. Zou [43] for relevant applications of the mountain
pass theory.

This survey paper is organized as follows. In the next section we prove the
mountain pass theorem with arguments relying on the deformation lemma.
Section 3 contains a proof of Ekeland’s variational principle, a central tool in a
more recent proof of the mountain pass theorem, which is due H. Brezis and
L. Nirenberg [5]. Section 4 is devoted to the mountain pass theorem in a non-
smooth setting. We start this section with some basic properties of locally
Lipschitz functionals, such as directional derivative and Clarke generalized
gradient. Next, we are concerned with the proofs of the mountain pass theorem
both for positive altitude and for mountains of zero altitude. In this respect we
deduce by means of variational arguments the Ambrozetti-Rabinowitz, the
Pucci-Serrin, and the Ghoussoub-Preiss theorems. Section 5 includes three re-
levant applications to PDEs of the mountain pass theorem: the subcritical Lane-
Emden equation, a perturbed Lane-Emden equation with sign-changing solu-
tion, and a bifurcation problem.

2. — A deformation approach of the mountain pass theorem.

We start with a simplified approach of the original setting of the mountain
pass theorem, as introduced by A. Ambrosetti and P. Rabinowitz [2]. It relies on
a version of the deformation lemma.

Let X be a real Banach space and assume that f : X — R is a function of
class C! satisfying the following assumption: there exists an open neighborhood
N of some ¢y € X and there are e; ¢ N and ¢y € R such that

2) max{f(ep), fle1)} <co < f(u) for all u € ON.

Next, we consider the family P of all continuous paths p : [0,1] — X joining e
and ey, that is, p(0) = ey and p(1) = e;. Denote

3) c:= Igrel?f) max f(p®).

Since each path p € P crosses the boundary of N, we have trr%gul(] f(p@®) > co,
€lo,

hence ¢ > ¢. In fact, in the original version of the mountain pass theorem it is
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assumed that the mountain has positive altitude, that is,

(4) ¢ > max{f(eo), f(e1)} .

The number ¢ defined by relation (3) is an “approximate critical value” of the
functional f. The sense of this notion appears in the following version of the
mountain pass theorem.

THEOREM 1. — Assume that f € CY(X, R) satisfies condition (4). There there
exists a sequence (u,) 1 X such that

(5) fu,) —c and ||f'(uy)|y- =0  asn — occ.

We refer to Figure 1 for a geometric illustration of Theorem 1.

A

\/

Fig. 1. — Mountain pass landscape between “villages” e, and e;.

In order to assert that c is really a critical value of f it has become very
standard to assume the following compactness condition, originally introduced
by R. Palais and S. Smale [26]: the function f is said to satisfy the Palais-Smale
condition (PS), at level a € R provided that

X*_)O

any sequence (u,) in X such that f(u,) — a and || f'(u,)]|
has a convergent subsequence.

If we now assume that Palais-Smale condition (PS), is fulfilled with ¢ defined
in relation (3), we obtain the following version of the mountain pass theorem with
compactness assumption.
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THEOREM 2. — Assume that f € C1(X, R) satisfies conditions (4) and (PS)..
There the number ¢ defined in (3) is a critical value of f.

The proof of Theorem 1 relies on a version of the deformation lemma, which is
obtained by applying the following pseudo-gradient lemma.

LEMMA 1. — Let M be a metric space and assume that @ : M — X*\ {0} isa
continuous function. Then, for any ¢ > 0, there exists a continuous function
v: M — X such that for all x € M,

(6) [v@)]| < A + &) || D)l
and
(M) (D), v(w)) > ||B@)[|* .

Proor. — Fix & € M. Then there exists z € M such that

2]l <@ + &) [[ @)

and
(D), 2) > ||D@)|*.

Now, for fixed z and using the continuity of &, we deduce that these relations
hold true for a whole open neighborhood N, of x. But M = |J N,. Thus, by

xeM
Theorem 5.3 in Dugundji [11], there exists a locally finite subcovering U; of M
with associated z;. Set p; := dist (w, M \ Uj). Then the mapping p; is continuous,
p;=0on M\ Uj, and (p)) is a partition of unity associated to the covering (Uj),
where

_ o /7]'(90)
KA sl
k

Then the mapping v : M — X defined by
v@) =Y gy
J
satisfies relations (6) and (7). O

If & : X — R is an arbitrary function and a € R, we set
D, ={ueX; du) <a}.

The key point in the proof of Theorem 1 is the following deformation lemma.
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LEMMA 2. — Let X be a real Banach space and assume that f : X — R is a
function of class C'. Assume that there exist ¢ € R, ¢ > 0, and 6 > 0 such that

(8) lf@)||>6  forall uc X with f(u) € [c —e ¢+ el
Then there exists a continuous deformation i : [0,1] x X — X such that

9) n0,u) =0  for every u € X;
(10)  #(t,u) = u for every (t,u) € [0,1] x X with f(u) & [c — ¢, ¢ + &]

(11) N, fores2) Cfess2 -
ProoF. — Set
M ={ueX; c—e<fluy<c+e}
and
My :={ueX; c—e/2<fu)<c+e¢/2}.
The continuous function % : X — [0, 1] defined by

hw) = dist (u, X \ M)
"= Jist (u, X \ M) + dist (w, Mo)

satisfies h =1 on My and 2 =0 on X \ M.
According to Lemma 1, there is a pseudo-gradient v : {u € X; f'(u) # 0} — X.
Define the vector field V : X — X by

v(u) )
h fueM
me:{ (mnmmw tue
0 it g M.

Then V locally Lipschitz on X and, for any » € X, |[V(w)|| < 1/6. Thus, for any
fixed u € X, the problem

7 (@) = V() ift>0

n0) =u
has a unique solution #(t) = 5(t,u), defined for all 0 <t<oo. Moreover,
n(t,u) =u for all t > 0 and every u € X \ M.

We can assume without loss of generality that e € (0,1/4). Then, for all
(t,u) €0,00) x X,

F0®) = (), Vb)) < —31 oy

The mapping # has all the required properties. O
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We now have all ingredients to prove Theorem 1. Arguing by contradiction,
we assume that there is no sequence (u,) in X satisfying (5). Thus, there exist
&> 0and ¢ > 0 such that

|f/@)|| >0 forall u € X with ¢ — e<f(u)<c +e.

We can assume without loss of generality that ¢ <1/4, f(ep)<c—¢, and
f(e1) <c — ¢. Using the definition of ¢ given in relation (2), we deduce that there is
a path p € P such that

flp@) <c+e/2 for all ¢ € [0, 1].

Thus, by Lemma 2, there is a continuous deformation # satisfying relations (9)-
(11). Define the path q(t) = (1, p()) for all £ € [0, 1]. Since q(0) = 5(1, ey) = ey,
q(1) = 5(1,e1) = e;, we deduce that ¢ € P. On the other hand, by Lemma 2,
q(t) € fo—yy2 for all ¢ € [0,1], which contradicts our basic assumption (4). This
concludes the proof of Theorem 1. d

A straightforward argument shows that the conclusions of Lemma 2 still
remain true provided that assumption (8) is replaced with the weaker hypothesis:
there exist ¢ > 0 and 6 > 0 such that

(12) A+l |lf'@] >0  forall w e X with f(u) € [c —&,¢+¢l.

This enables us to show that the conclusion (5) of Theorem 1 can be strengthened
to the following Cerami compactness condition (see [6])

(13) f(un) —c¢ and (1 + HunH) Hf/(un)HX* —0 as n — oQ.

More generally, the same conclusions remain true if (1 + ||u||) is replaced in
relations (12) and (13) with y(||lu|), where y : [0,00) — [1,00) is a continuous
function satisfying

3. — Ekeland’s variational principle.
The following basic theorem is due to I. Ekeland [12, 13].

THEOREM 3. — Let (M, d) be a complete metric space and y : M — ( — oo, o0,
w # oo, be a lower semicontinuous function which is bounded from below.
Then the following properties hold true: for every ¢ > 0 and for any zo € M
there exists z € M such that
@ y®@) <y —ed(z,20);
(i) w(x) > w(z) — ed(x,z), for any x € M.
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ProOOF. — We may assume without loss of generality that ¢ = 1. Define the
following binary relation on M:
y<x ifandonlyif  w(y) —w(x)+dx,y) <0.
We verify that “<” is an order relation, that is,

(a) © < a, for any x € M;
(b)if x <y and y < x then x = y;
(e)ifx <yandy <zthenx <z

For arbitrary x € M, set
S)={yeM; y<ax}.

Let (¢,) be a sequence of positive numbers such that ¢, — 0 and fix 2y € M. For
any n > 0, let 2,1 € S(z,,) be such that

W(zng1) < Inf w + ep41
S(zn)

The existence of z,,1 follows by the definition of the set S(x). We prove that the
sequence (z,,) converges to some element z which satisfies (¢) and (i7).

Let us first remark that S(y) C S(x), provided that y <ax. Hence,
S@y+1) C S(zy). It follows that, for any n > 0,

W@ni1) — w(Ry) + d@ny2041) <0,

which implies y(z,.1) < w(z,). Since y is bounded from below, it follows that the
sequence {w(z,)} converges.

We prove in what follows that (z,,) is a Cauchy sequence. Indeed, for any n and
p we have

(14) l//(szrp) — () + d(szrp, 2) <0.
Therefore
d(znﬂh Zn) < y(zy) — V/(znﬂo) —0, as n— oo,

which shows that (z,,) is a Cauchy sequence, so it converges to some z € M. Now,
taking n = 0 in (14), we find

w(zp) — w(20) + d(zp,20) < 0.

So, as p — oo, we get (4).
In order to prove (i7), let us choose an arbitrary & € M. We distinguish the
following situations.

CASE 1. — x € S(z,), for any n > 0. It follows that y(z,,11) < w(x) + &,,1 which
implies that y(z) < w(x).
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CASE 2. — There exists an integer N > 1 such that « ¢ S(z,,), for any n > N or,
equivalently,
w(@) — w(z,) + d(e,z,) >0, for every n > N .

Passing at the limit in this inequality as » — oo we find (i7). O

COROLLARY 1. — Assume the same hypotheses on M and w. Then, for any
e > 0, there exists z € M such that

< inf
w(z) infy +e

and
w(x) > w(z) — ed(x,?), forany xe M.

The conclusion follows directly from Theorem 3.

The following consequence of Ekeland’s variational principle is of particular
interest in our next arguments. Roughly speaking, this property establishes the
existence of almost critical points for bounded from below C!'—functionals de-
fined on Banach spaces. In order words, Ekeland’s variational principle can be
viewed as a generalization of the Fermat theorem which establishes that interior
extrema points of a smooth functional are, necessarily, critical points of this
functional.

COROLLARY 2. — Let E be a Banach space and let y : E — R be a C' function
which is bounded from below. Then, for any ¢ > 0, there exists z € E such that

w(z) < i%fy/+ e and W' @ <e.

Proor. — The first part of the conclusion follows directly from Theorem 3. For
the second part we have

g = sup (W' (2),u) .

[l =1

v/ ()

But

W (@),u) = })E%W
So, by Theorem 3,

W' (2),u) > —e.
Replacing now u by —u we find

W (@),u) <e,

which concludes our proof. O
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We point out that in the setting of Corollary 2, the Ekeland variational principle
can also be proved by using the deformation lemma, as in the Willem’s book [42].

We give in what follows a variant of Ekeland’s variational principle in the case
of finite dimensional Banach spaces. We also state an alternative proof, which
relies on elementary arguments.

THEOREM 4. — Let y : RY (— 00, 0] be a lower semicontinuous function,
v £ oo, bounded from below. Let x, € RY be such that

(15) infy <y(y) <infy +e.
Then, for every h > 0, there exists z, € RY such that
Q) wz) < wlxy);

) ||ze — x| < A .
(i) w(z:) < wlx) + ll2e — |, for every « € RY.

PROOF. — Given x, satisfying (15), let us consider ¢ : RY — (— 0o, 0o] defined
by
w(@) = y@) +4 C e — 2l

By our hypotheses on i it follows that ¢ is lower semicontinuous and bounded
from below. Moreover, () — oo as ||| — co. Therefore there exists z, € RY
which minimizes ¢ on R, that is, for every x € R”,

(16) w(z.) + ll2e — || < w(x) + [l — al| .
By letting x« = x, we find
w(z:) + l|2e — @] < i),

and (7) follows. Next, since y(x,) < infy + ¢ we deduce from the above inequality
that ||z, — x.|| < h, that is (i?) holds.
We infer from (16) that, for every x € RN

w(z:) < w(x) ‘|’ (||90 Tl = ||ze — |) < i) + [l — 2],

which is exactly the desired inequality (¢i7). O

The above result shows that, the closer to x, we desire z, to be, the larger the
perturbation of y that must be accepted. In practise, a good compromise is to
take h = /e

It is striking to remark that the Ekeland variational principle characterizes
the completeness of a metric space in a certain sense. More precisely, we have
the following property.
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THEOREM 5. — Let (M,d) be a metric space. Then M is complete if and
only if the following holds: for every lower semicontinuous function
w:M — (—o00,00], ¥ # oo, which is bounded from below and for every ¢ > 0,
there exists z, € M such that

@) wz) <infyy+e,
(i) w(@) > w(z,) — ed(z,2,), forany z € M\ {2,}.

Proor. — The “only if” part follows directly from Corollary 1.

For the converse, let us assume that M is an arbitrary metric space satisfying
the hypotheses. Let (v,,) C M be an arbitrary Cauchy sequence and consider the
function f : M — R defined by

fw) = lim d(u,v,).

The function f is continuous and inf f = 0, since (v,) is a Cauchy sequence. In
order to justify the completeness of M it is enough to find v € M such that
f@) = 0. For this aim, choose arbitrarily ¢ € (0,1). Now, from our hypotheses (2)
and (27), there exists v € M such that f(v) < ¢ and

fw) +ed(w,v) > f(v), for any we M\ {v}.

From the definition of f and the fact that (v,) is a Cauchy sequence we can take
w = v, for k large enough such that f(w) is arbitrarily small and d(w,v) < ¢+ 7,
for any 5 > 0, because f(v) < e. Using (ii) we obtain that, in fact, f(v) < &".
Repeating the argument we may conclude that f(v) < &", for all » > 1 and so
f() =0, as required. O

4. — Nonsmooth extensions of the mountain pass theorem.

We give in this section several generalizations of the mountain pass theorem
in the framework of locally Lipschitz functionals. We are concerned with many
nonsmooth extensions of this celebrated result, including in the cases of finite
and infinite dimensional linking, presence of symmetries, etc. Theorems 6, 7,
and 8 were proved in Radulescu [36].

We start by recalling some basie properties of locally Lipschitz functionals
defined on real Banach spaces.

4.1 — Basic properties of locally Lipschitz functionals.

Throughout this section, X denotes a real Banach space. Let X* be its dual
and, for every x € X and «* € X*, let (x*,x) be the duality pairing between X*
and X.



12 PATRIZIA PUCCI - VICENTIU RADULESCU

DEFINITION 1. — A functional f : X — R is said to be locally Lipschitz pro-
vided that, for every x € X, there exists a neighbourhood V of x and a positive
constant k = k(V) depending on V such that

@) —f@I <klly — =z,

foreach y,z € V.

The set of all locally Lipschitz mappings defined on X with real values is
denoted by Lip,,.(X, R).

DEFINITION 2. — Letf : X — R be a locally Lipschitz functional and x,v € X,
v # 0. We call the generalized directional derivative of f in x with respect to the
direction v the number
£, v) = lim sup W ]
Y-

h\0

We first observe that if f is a locally Lipschitz functional, then f°(x,v) is a
finite number and

(17) O, ] <kl
Moreover, if x € X is fixed, then the mapping v— f°(x,v) is positive homo-

geneous and subadditive, so it is convex continuous. By the Hahn-Banach the-
orem, there exists a linear map x* : X — R such that for every v € X,

') < fO,v).
The continuity of #* is an immediate consequence of the above inequality and
of (17).

DEFINITION 3. — Let f : X — R be a locally Lipschitz functional and x € X.
The generalized gradient (Clarke subdifferential) of f at the point x is the
nonempty subset of (x) of X* which is defined by

If @) = {a* € X*; fOa,v) > (x",v), forall veX}.

We point out that if f is convex then 9f () coincides with the subdifferential of
f in « in the sense of the convex analysis, that is

Of @) = {a € X*; fy) — @) > (", y — ), forall y e X},

We list in what follows the main properties of the Clarke gradient of a locally
Lipschitz functional. We refer to [7, 8, 10] for further details and proofs.

a) For every x € X, df (x) is a convex and o(X*, X)-compact set.
b) For every x,v € X, v # 0, the following holds

FOe,v) = max{{x",v); &* € If (x)}.



THE IMPACT OF THE MOUNTAIN PASS THEORY IN NONLINEAR ANALYSIS: ETC. 13

¢) The multivalued mapping x+— Jf(x) is upper semicontinuous, in the
sense that for every xy € X, ¢ > 0 and v € X, there exists ¢ > 0 such that, for
any & € Of () satisfying |lo — ao|| <, there is some xj € 9f(xy) satisfying
|(x* — a5, v)| <e.

d) The functional f°(-, -) is upper semicontinuous.

e) If x is an extremum point of f, then 0 € 9f (x).

f) The mapping

Ax) = min |x*|]
x*edf (x)

is well defined and lower semicontinuous.

g d(—fx) = —of ().

h) Lebourg’s mean value theorem (see [22]): if « and y are two distinct points
in X then there exists a point z situated on the open segment joining x and y such
that

fy) —f) e (0f ),y —x).

i) If f has a Gateaux derivative f’ which is continuous in a neighbourhood of «,
then 9f (x) = {f’(x)}. If X is finite dimensional, then 9f(x) reduces at one point if
and only if f is Fréchet-differentiable to .

DEFINITION 4. — A point x € X 1s said to be a critical point of the locally
Lipschitz functional f:X — R if 0€ of(x), that is fOx,v) >0, for every
v € X \ {0}. Anumber cis a critical value of f provided that there exists a critical
pownt x € X such that f(x) = c.

Note that any minimum point is a critical point. Indeed, if « is a local minimum
point, then for every v € X,

0 < limsup f—(ac +hv) — @

< fOx,v).
0 h !

We now introduce a compactness condition for locally Lipschitz functionals.
This condition was used for the first time, in the case of C!-functionals, by
H. Brezis, J.M. Coron and L. Nirenberg [4].

DEFINITION 5. — If f : X — R is a locally Lipschitz functional and c is a
real number, we say that f satisfies the Palais-Smale condition at the level c
(in short, (PS).) if any sequence (x,) in X, satisfying f(x,)—c and
Man) — 0, contains a convergent subsequence. The mapping f satisfies the
Palais-Smale condition (in short, (PS)) if every sequence (x,), which satisfies
(f(xy)) 1s bounded and A(x,) — 0, has a convergent subsequence.
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4.2 — Mountains of positive altitude.

Letf : X — R be a locally Lipschitz functional. Consider K a compact metric
space and K* a closed nonempty subset of K. If p* : K* — X is a continuous
mapping, set

P={peCE,X);, p=p" on K'}.

By a celebrated theorem of Dugundji [11], the set P is nonempty.
Define

(18) c= ;relgrltrle%{x f(p®).
Obviously, ¢ > max f(p*(t)).
teK*

THEOREM 6. — Assume that
(19) ¢ > maxf(p“(t)).
teK*

Then there exists a sequence (x,,) in X such that
1) th f(%n) =G

i)  lim A(x,) =0.

N—00

For the proof of this theorem we need the following auxiliary result.

LEMMA 3. — Let M be a compact metric space and let ¢ : M — 25" be an
upper semicontinuous mapping such that, for every t € M, the set p(t) is convex
and o(X*, X)-compact. For t € M, denote

7@ = mf{[|le"[}; @* €p®} and y=infy@).

Then, for every fixed e > 0, there exists a continuous mapping v: M — X
such that for every t € M and x* € ¢(1),

@] <1 and (x*,0@)) >7y—e.

PrOOF. — Assume, without loss of generality, that y > 0 and 0 <& <. Denoting
by B, the open ball in X* centered at the origin and with radius 7 then, for every
t € M we have

By—s/Z N (P(t) =0.
Since ¢(t) and B,_;/» are convex, disjoint and o(X*, X)-compact sets, it follows

from the separation theorem in locally convex spaces (Theorem 3.4 in W. Rudin
[38]), applied to the space (X*, a(X*, X)), and from the fact that the dual of this
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space is X, that: for every t € M, there exists v; € X such that
el =1 and (& vp) < (2",

for any ¢ € B,_, and for every x* € ¢(t).
Hence, for each a* € ¢(t),

(", v) > sup (& vy =p—¢/2.
CEB, 2

Since ¢ is upper semicontinuous, there exists an open neighbourhood V(¢) of ¢
such that for every t' € V(¢) and all * € o),

(", v) >y —e.

Therefore, since M is compact and M = |J,;, V (D), there exists an open
covering {Vy,...,V,} of M. Let vy, ..., v, be on the unit sphere of X such that
<90*,’l)i> >y =&
for every 1 <1 <m,t € V; and x* € ¢(t).

If p,(t) = dist(¢, 9V;), define

L) =L i@ and v(t)=ZCi(t)vi~

> pi® =1
=

A straightforward computation shows that v satisfies our conclusion. This
completes the proof of Lemma 3. O

Proor or THEOREM 6. — We apply Ekeland’s variational principle to the
functional
y(p) = maxf(p@®),
teK

defined on P, which is a complete metric space if it is endowed with the metric

d(p,q) = max lp@ — q@®|, for any p, ¢ € P.
The mapping v is continuous and bounded from below because, for every p € P,
w(p) = maxf(p*())
teK*

Since
c= }o‘éyg w(p),
it follows that for every ¢ > 0, there is some p € P such that

(20) w(q) — w(p)+ed(p,q) >0, forall qeP;
c<yp) <c+e.
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Set
B(p) = {t € K; f(p®)) = w(p)}.

For concluding the proof it is sufficient to show that there exists t' € B(p)

such that
Apt)) < 2.

Indeed the conclusion of the theorem follows then easily by choosing ¢ = 1/n
and x,, = p(t).

Applying Lemma 3 for M = B(p) and ¢(t) = 9f (p(t)), we obtain a continuous
map v : B(p) — X such that, for every t € B(p) and x* € 9f(p(t)), we have

lv@®| <1 and (x*,v@)) >7y—¢,

where
: — 'nf j, }O t .
telB(p) ( ( ))

It follows that for every ¢t € B(p),

Fp®), —v@®) = max{(x*, —v(@®); «* € of (p®)}
= —min{(x",v(t); " € I (p)} < —y+e.

By (19) we have B(p) N K* = (). So, there exists a continuous extension
w: K — X of v such that w = 0 on K* and, for every ¢t € K,

lw®)| < 1.
Choose in the place of g in (20) small perturbations g, of the path p:
qn() = pt) — haw(?),

where / > 0 is small enough.
We deduce from (20) that, for every A > 0,

w(qn) — w(p)
—

In what follows, ¢ > 0 will be fixed, while # — 0. Let ¢, € K be such that
f(qn@n) = w(gn). We may also assume that the sequence (¢, ) converges to some
to, which, obviously, is in B(p). Observe that

i) —yp) _y(p —hw) —y(p) _ fpty) — hwty)) — f(p(t)
h B h - h ’

It follows from this relation and from (21) that

S0 — ) — f(pt)
T = h
< f(py) — hw(to)) — f(ptr) . @) — hw@y)) — f(p) — hw(to))
- h h '

(21) —e< —¢gllwl, <
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Using the fact that f is a locally Lipschitz map and ¢, — %, we find that
lim J@tn,) = hatwtn,)) = f(pltn,) — uwto))

n—00 hy,

0.

Therefore
—¢ S lim sup f(p(tO) + 2n — hnw(t())) —f(P(to) + zn)’

Nn—0o0 hn

where z, = p(t;,) — p(to). Consequently,

—& < fUp(to), —w(ty)) = f(p(ty), —v(to)) < —y +&.
It follows that

y = inf{||lz*|; «* € If (p(t),t € B(p)} < 2e.

Taking into account the lower semicontinuity of 1, we deduce the existence of
some t' € B(p) such that

Ap(t)) = inf{[Ja*|; «* € I (PN} < 2e.

This concludes the proof. O

COROLLARY 3. — If f satisfies the condition (PS). and the hypotheses of
Theorem 6, then c is a critical value of f corresponding to a critical point which
s mot 1 p*(K*).

The proof of this result follows easily by applying Theorem 6 and the fact that
A is lower semicontinuous. O

The following result generalizes the classical mountain pass theorem of
A. Ambrosetti and P. Rabinowitz.

COROLLARY 4. — Let f : X — R be a locally Lipschitz functional such that
f(0) = 0 and there exists v € X \ {0} so that f(v) < 0. Set
P ={peC(0,1],X); p(0) =0 and pQ1)=v}

and

c= ;g; g;l[%f (p@)).

If ¢ > 0 and f satisfies the condition (PS)., then c ts a critical value of f.

For the proof of this result it is sufficient to apply Corollary 3 for K = [0, 1],
K* ={0,1}, p*(0) = 0 and p*(1) = ». O
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COROLLARY 5. — Let f : X — R be a locally Lipschitz mapping. Assume that
there exists a subset S of X such that, for every p € P,

PEINS #0.
If
inf f(x) > max f(p" @),

then the conclusion of Theorem 6 holds.

Proor. — It suffices to observe that

inf > inf @) .
inf Iggf (p®) > in Sf () > rtré?@(f (p*(®)
Then our conclusion follows directly. O

Using now Theorem 6 we may prove the following result, which is originally
due to H. Brezis, J.-M. Coron, and L. Nirenberg (see Theorem 2 in [4]):

COROLLARY 6. — Let f : X — R be a Gdteaux differentiable functional such
that f': (X, - |) — X*,0(X*, X)) is continuous. If f satisfies (19), then there
exists a sequence (x,) tn X such that

i) lim f(xn) =C;
NnN—0o0
i) Tim || /@) = 0.
Moreover, if f satisfies the condition (PS),, then there exists x € X such that
f@) =cand f'(x) =0.
ProOOF. — Observe first that f” is locally bounded. Indeed, if (x,) is a sequence
converging to xg, then

sup |<f/(xn); U>| <00,

for every v € X. Thus, by the Banach-Steinhaus theorem,

lim sup || f/ ()| <o

N—00

For & > 0 small enough and w € X sufficiently small we have
(22) | f(xo +w+ hv) — flxo +w)| = |h{f (@ +w+hOv),v)| < Ch|v|,

where 0 € (0,1). Therefore f € Lip,,.(X, R) and f%(xo,v) = (f'(x0),v), by the
continuity assumption on f”. In relation (22) the existence of C follows from the
local boundedness property of f”.



THE IMPACT OF THE MOUNTAIN PASS THEORY IN NONLINEAR ANALYSIS: ETC. 19

Since f? is linear in v, we obtain
Uf @) = {f'@)}.
To conclude the proof, it remains to apply Theorem 6 and Corollary 3. O

A very useful result in applications is the following variant of the saddle point
theorem of P. Rabinowitz.

COROLLARY 7. — Assume that X admits a decomposition of the form
X = X1 b Xo, where Xz is a finite dimensional subspace of X. For some fixed
z € X, suppose that there exists R > ||z|| such that

inf
xnglf (@ +2) > max f@),

where
K ={xeXy; |x| =R}.

Set
K = {r e Xy; ||z|| <R},
P={peCK,X); px)y=x if |x| =R}

If cis chosen as in (18) and f satisfies the condition (PS),, then c is a critical
value of f.

Proor. — Applying Corollary 5 for S = z + X;, we observe that it is sufficient
to prove that, for every p € P,

pE)NE+X1)#0.

If P:X — X, is the canonical projection, then the above condition is
equivalent to the fact that for every p € P, there exists « € K such that

P(p(r) —2) = P(p(x)) —2=0.

To prove this claim, we use an argument based on the topological degree
theory. Indeed, for every fixed p € P we have

Pop=1Id on K* =0K.
Hence
dPop—2zInt K,0)=d(Pop,Int K,z) =d(d,Int K,z) =1.

Now, by the existence property of the Brouwer degree, we may find « € Int K
such that

(Pop)x) —2z=0,

which concludes our proof. O
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4.3 — Mountains of zero altitude: the Pucci-Serrin theorem.

It is natural to ask us what happens if the condition (19) fails to be valid, more
precisely, if

¢ =max f(p"(t)).

The following example shows that in this case the conclusion of Theorem 6
does not hold.

ExampLE 1. — Let X = R?*, K =[0,1] x {0}, K* = {(0,0),(1,0)} and let p*
be the identic map of K*. As locally Lipschitz functional we choose

X =R, fly =yl
Then f satisfies the Palais-Smale condition and
¢ =maxf(p'(t) = 0.

However, f has no critical point.

In the smooth framework, the mountain pass theorem in the zero altitude
case was proved by P. Pucci and J. Serrin [29] for a functional J : X — R of class
(! satisfying the following geometric conditions:

(a) there exist real numbers a, v, R such that 0<r <R and J(u) > a for every
u € X with r<||u|| <R;
(b) J(0) < a and J(v) < a for some v € X with ||v] > R.

Under these hypotheses, combined with the standard Palais-Smale com-
pactness condition, P. Pucci and J. Serrin established the existence of a critical
point g € X \ {0,v} of J with corresponding critical value ¢ > a. Moreover, if
¢ = a then the critical point can be chosen with r < ||juy|| < E. Roughly speaking,
the mountain pass theorem continues to hold for a mountain of zero altitude,
provided it also has non-zero thickness; in addition, if ¢ = a, then the pass itself
occurs precisely on the mountain, in the sense that it satisfies » < |juy|| <R.

The following result gives a sufficient condition so that Theorem 6 holds even
if (19) fails.

THEOREM 7. — Assume that for every p € P there exists t € K \ K* such that
f(p@®) > c

Then there exists a sequence (x,) in X such that
i) lim f(x,) =c;
NnN—00

i) lim A(x,) =0.

Nn—00
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Moreover, if f satisfies the condition (PS)., then c is a critical value of f.
Furthermore, if (p,,) is an arbitrary sequence in P satisfying

lim max f(p,®)) = c,
n—oo teK
then there exists a sequence (t,) in K such that

whm f(on@n) =c and nhm Mpn(y) =0.

Proor. — For every ¢ > 0 we apply Ekeland’s variational principle to the
perturbed functional

v P =R y(p) = max(F(p(t) +ed(t),

where
d(t) = min{dist (¢, K*),1} .
If
6. = Inf y,(p),
then

c<c. <c+e.

Thus, by Ekeland’s variational principle, there exists a path p € P such that for
every q € P,

(23) (@) — w.(p) + ed(p,q) > 0,
c<c Syp) <c.+e<c+2.
Denoting
Bp) = {t € K; f(p(®) +ed®) = (D)},

it remains to show that there is some t' € B.(p) such that A(p(t')) < 2&. Indeed,
the conclusion of the first part of the theorem follows easily, by choosing ¢ = 1/n
and x,, = p(t).

Now, by Lemma 3 applied for M = B.(p) and ¢(t) = 9f (p(t)), we find a con-
tinuous mapping v : B.(p) — X such that, for everyt € B,(p) and all x* € 9f (p(t)),

lo@)|| <1 and (x*,01) > 7, —e,
where
Ve = teilg(fp) Mp@).
On the other hand, it follows by our hypothesis that
v.(p) > max f(p(®)).
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Hence
B.(p)nK*=10.

So, there exists a continuous extension w of v, defined on K and such that
w=0 on K* and |w®)| <1, forany tcK.
Choose as paths ¢ in relation (23) small variations of the path p:
qn(®) = p(&) — hw(?),

for i > 0 sufficiently small.
In what follows ¢ > 0 will be fixed, while # — 0.
Let t;, € B.(p) be such that

flq@) +edt) = w.(qu) -

There exists a sequence (k) converging to 0 and such that the corresponding
sequence (¥, ) converges to some tj, which, obviously, lies in B.(p). It follows that

w.(qn) —w.(p) _ f(qu(tn)) + ed(t) — w,(p)
h N h

< @) —f(pt) _ f(pn) — hwy)) — f(ptn)
- h B h '

—& < —¢fwll <

With the same arguments as in the proof of Theorem 6 we obtain the ex-
istence of some t' € B,(p) such that

Mp)) < 2e.
Furthermore, if f satisfies (PS). then c is a critical value of f, since 4 is lower
semicontinuous.
For the second part of the proof, applying again Ekeland’s variational prin-

ciple, we deduce the existence of a sequence of paths (g,,) in P such that, for every
qeP,

e (q) —wa(qn) + end(q,qn) > 0

and
Ve (QH) < l//gfl(pw) - Snd(pnv qn) ,

where (g,,) is a sequence of positive numbers converging to 0 and (p,,) are paths in
P such that

l//gé(pn) <c+ 28%1 .

Applying the same argument for ¢, instead of p, we find ¢,, € K such that

¢ — & <flgulty) < c+26
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and
Mgn(tn)) < 2ey .

We argue that this is the desired sequence (t,). Indeed, by the Palais-Smale
condition (PS),, there exists a subsequence of (¢,(t,)) which converges to a cri-
tical point. The corresponding subsequence of (p,(t,)) converges to the same
limit. A standard argument, based on the continuity of f and the lower semi-
continuity of /1 shows that for all the sequence we have

lim f(pu(t)) =c¢ and  lim A(py(t.)) = 0.

This concludes our proof. O

COROLLARY 8. — Let f:X — R be a locally Lipschitz functional which
satisfies the Palais-Smale condition.
If f has two different minimum points, then f possesses a third critical point.

Proor. — Let xy and x; be two different minimum points of f.

CasE 1. — f(x9) = f(x1) = a. Choose 0<R < % |1 — 20| such that f(x) > a,
for all x € B(xg, R) UB(x1,R). Set A = E(WO,R/Z) UE(xl,R/Z).

CASE 2. —  f(xg) > f(x1). Choose 0 <R < ||x1 — @] such that f(x) > f(xy), for
every x € B(xo, R). Put A = B(wxo, R/2) U {21}.

In both cases, fix p* € C([0,1],X) such that p*(0) = xy and p*(1) = x;. If
K* = (p*)fl(A) then, by Theorem 7, we obtain the existence of a critical point of
f, which is different from x, and x;, as we can easily deduce by examining the
proof of Theorem 7. O

With the same proof as in Corollary 6 one can deduce the following mountain
pass property which extends the Pucci-Serrin theorem [29, Theorem 1].

COROLLARY 9. — Let X be a Banach space and let f : X — R be a Gateaux-
differentiable functional such that the operator f : (X,| - ||) — X*, 0(X*, X)) is
continuous. Assume that for every p € P there exists t € K\ K* such that
f(p@®) > c

Then there exists a sequence (x,) in X so that
i) lim f(x,) =c;
n—oo

i Tim £ )] =0



24 PATRIZIA PUCCI - VICENTIU RADULESCU

If, furthermore, f satisfies (PS)., then there exists x € X such that f(x) = c
and f'(x) = 0.

4.4 — An extension due to Ghoussoub and Preiss.

We recall that if f : X — R is a locally Lipschitz functional, K is a compact
metric space, K* is a closed nonempty subset of K, p* : K* — X is a continuous
mapping, then

c:gg%%fwwy

We have defined
P={peCkK,X);, p=p" on K}.

The following result is a strengthened variant of Theorems 6 and 7. The
smooth case corresponding to C'-functionals is due to N. Ghoussoub and
D. Preiss [17].

THEOREM 8. — Let f : X — R be a locally Lipschitz functional and let F be a
closed subset of X, with no common point with p*(K*). Assume that

(24) f@) >c¢, forevery xeF,
and
(25) pK)YNF £, forall peP.

Then there exists a sequence (x,,) in X such that
i)  lim dist (x,, F) = 0;
ii) lim f(x,) = c;

i) lim A(x,) =0.

ProoF. — Fix ¢ > 0 such that
e< min{l1; dist(p"(K*),F)}.
Choose p € P so that
%%ﬂmm§c+§ﬂ.

The set
Ky ={t € K; dist(p(®),F) > ¢}
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is bounded and contains K*. Define
Po={qecCK,X); g=p on Ko}.
Set
n:X — R, nx)=max{0; & — ¢ dist(x, F)}.
Define y : Py — R by
w(g) = max (f +n)q®).

The functional y is continuous and bounded from below. By Ekeland’s variational
principle, there exists py € Py such that for every q € Py,

w(po) < wl(Q),

(26) d(p(]a Q) S 8/27
(27) w(po) < wlg) + ed(q,po)/2.
The set

B(po)={t€ K; (f +n(po®) = w(po)}

is closed. To conclude the proof, it is sufficient to show that there exists ¢ € B(py)
such that

(28) dist(po(®), F) < 3¢/2,
(29) ¢ < f(po(®) < ¢+ 5% /4,
(30) Apo@)) < be/2.

Indeed, it is enough to choose then e = 1/n and x,, = po(®).

Proor or (28). — It follows by the definition of P, and (25) that, for every
q € Py, we have

gE\K)NF #0.
Therefore, for any q € Py,

w(g) >c+é.
On the other hand,

w(p) < c+ /4 + & =c+ b /4.

(31) ¢+ & < w(po) < w(p) < ¢+ 5 /4.
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So, for each t € B(py),
¢+ & < y(po) = (f + M(pot)).
Moreover, if t € K, then
(f + M(po®) = (f + M(p®) =f(p®) < ¢ + /4.

This implies that
B(pg) C K\ K.

By the definition of K it follows that for every ¢ € B(py) we have
dist(p®), F) < e.
Now, the relation (26) yields

dist (po(®), ) < >

PrOOF OF (29). — For every t € B(pg) we have
w(po) = (f + n)(po®).
Using (31) and taking into account that
0<n<é,

it follows that
¢ <f(po®) < ¢+ 5e* /4.

ProOF OF (30). — Applying Lemma 3 for ¢(t) = 9f (po(t)), we find a continuous
mapping v : B(pg) — X such that for every t € B(py),

[o@®] < 1.
Moreover, for any t € B(po) and x* € 9f (po(t)),

(x*,v@)) >y—¢, where y= inf A(po@®)).
teB(po)

Hence for every t € B(py),
Fopot), —v(t) = max{(x*, —v(t)); 2" € If (po(t))}
= —min{{x*, v®)); 2* € If (P} < —y +e.

Since B(po) N Ky = 0, there exists a continuous extension w of v to the set K
such that w = 0 on K;, and ||w(®)|| <1, for all t € K.
Now, by relation (27), it follows that for every & > 0,

€ € w(po — hw) — w(po)
(32) ~3 < 3 lwll,, < 7 .
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For every n, there exists ¢, € K such that
w(po —w/n) = (f +n)(polt) —w(t,)/n).

Passing eventually to a subsequence, we may suppose that (¢,) converges to t,
which, clearly, lies in B(py). On the other hand, for every ¢ € K and & > (0 we have

F(po@®) — hw@®) < f(pot)) + he.
Hence

nfy(po — haw) = p(po)] < n | f(polt) = wit)/m) +— = F(polt,)]

Therefore, by (32), it follows that

=2 <l putta) — e /) — ool
< nfy(po(tn) — w(to)/n) — f(po(tn))]
+n[f(polts) — wtn)/n) — f(poltn) — wlto)/n].

Since f is locally Lipschitz and ¢, — ¢y, we deduce that

lim sup n[f (po(ts) — w(t,)/n) — f(pot,) — wity)/n)] = 0.

NnN—00

Therefore

—%SmemV@ww+%—w%Vm—ﬂm%me,

Nn—00

where z,, = po(t,) — po(to). Hence

3
fgéﬁWNM%MWSfMﬂ

So
y=1inf{||x*|; «* € 9f (po(t)),t € B(py)} < be/2.

Now, by the lower semicontinuity of 1, we find ¢ € B(py) such that

Mpo()) =  inf x| < 5e/2,
(o) = _inf ]| < 5e/

which concludes our proof. O
COROLLARY 10. — Assume that the hypotheses of Theorem 8 are fulfilled

and, moreover, f satisfies the Palais-Smale condition (PS).. Then c is a
critical value of f.
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REMARK 1. — If

xlglf (x+2) = gé%)gf (x),

then the conclusion of Corollary 7 remains valid, with an argument based on
Theorem 9.

COROLLARY 11 (Ghoussoub-Preiss Theorem). — Let f: X — R be a locally
Lipschitz  Gateaux-differentiable functional such that f':X,|-|)—
X*, 0(X*, X)) is continuous. Let ey and e; be in X and define

= i f
¢ = Inf max f(p@®)),

where P is the set of continuous paths p :[0,1] — X such that p(0) = ey and
p(1) = ey. Let F be a closed subset of X which does not contain ey and e; and
f(x) > ¢, for all x € F. Suppose, in addition that, for every p € P,

p(0,1DNF # 0.
Then there exists a sequence (x,) in X, such that
i) lim dist(x,,F) =0;

Nn—00
11) lim f(9€n) =C;
nN—0o0

iii) - lim || f/Ge,)] = 0.

Moreover, if f satisfies (PS),, then there exists © € F such that f(x) = c and
[ =0.

Proor. — Using the arguments in the proof of Corollary 6 we deduce that the
functional f is locally Lipschitz and

If () = {f'(x)}.

Applying Theorem 8 for K =[0,1], K* = {0,1}, p*(0) = ey, p*(1) = e1, our
conclusion follows.
The last part of the theorem follows from Corollary 10. O

5. — Applications of the mountain pass theorem.

We are concerned in what follows with some relevant applications of the
mountain pass theorem in the framework of nonlinear partial differential
equations. We mainly refer to the paper by Brezis and Nirenberg [5], which
develops pioneering directions for the qualitative analysis of nonlinear elliptic
equations by means of the mountain pass theorem. We also refer to the books by



THE IMPACT OF THE MOUNTAIN PASS THEORY IN NONLINEAR ANALYSIS: ETC. 29

Ambrosetti and Malchiodi [1], Ghergu and Radulescu [16], Schechter [39],
Struwe [41], and Willem [42] for related results and further extensions.

In this section p denotes a real exponent, with 1<p<(N +2)/(N —2), if
N >3,and 1<p<oo,if N =1,2.

5.1 — The subcritical Lane-E'mden equation.

Consider the nonlinear elliptic boundary value problem

—du =up | in Q
(33) u>0, in Q
u=0, on 0Q.

This equation was introduced by Emden [14] and Fowler [15]. Existence
results for problem (33) are related not only to the values of p, but also to the
geometry of Q. For instance, problem (33) has no solution if p > (N + 2)/(N — 2)
(if N > 3) and if Q is star-shaped with respect to some point (say, with respect to
the origin). This property was observed by Rellich [37] in 1940 and refound by
Pohozaev [27] in 1965, and its proof relies on the Rellich—Pohozaev identity.
More precisely, after multiplication by « - Vu in equation (33) and integration by
parts we find

N +1 _N*Z +1 _1 8_“ ? .
(34) {_2[ <p—+ T uP 5 uP >dm =5 0!; ( Bn) (- n)do(x).

Because Q is starshaped with respect to the origin, then the right-hand side of
(34) is positive; hence, problem (33) has no solutionif N/(p +1) — (N — 2)/2 < 0,
which is equivalent to p > (N 4+ 2)/(N — 2). We point out that a very general
variational identity was discovered in 1986 by P. Pucci and J. Serrin [30].

The situation is different if we are looking for entire solutions (that is, so-
lutions on the whole space) of the Emden-Fowler equation either in the critical or
in the supercritical case. For instance, the equation

My = uND/N2 i RN (N > 3),
admits the family of solutions

c m (N-2)/2
ucl) = | —s——5— )

C2 + |xf

for any C > 0.
If Qis not star-shaped, Kazdan and Warner [20] showed in 1975 that problem
(33) has a solution for any p > 1, provided 2 is an annulus in RY. We also point
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out that if @ ¢ RY is an arbitrary bounded domain with smooth boundary, then
the perturbed Emden—Fowler problem

—Au = |ul" " u+ Ju in Q,
uZ0 in Q,
u=0 on 0Q

has a solution, if 1 is an arbitrary real number and 1<p<(N +2)/(N — 2) if
N >3orl<p<ooif N € {1,2}. The proof combines the mountain pass theorem
(if A< 41) and the dual variational method Gf A > 11). We refer to the pioneering
paper by Clarke [9] for the dual action principle and its applications to the ex-
istence of periodic solutions to Hamilton’s equations. As usually, 4; denotes the
first eigenvalue of —4 in H}(<Q).

Our aim here is to prove the following result.

THEOREM 9. — There exists a solution of the problem (33), which is not ne-
cessarily unique. Furthermore, this solution is unstable and of class C*(Q).

ProoF. — We first establish the instability of an arbitrary solution u. So, in
order to argue that the first eigenvalue y of (— 4 — puP~1) is negative, let 9 > 0
be an eigenfunction corresponding to u;. We have

—dp —pu’ o= e,  in Q.
Integrating by parts this equality we find

(1—p)fup(ﬂ=ﬂ1f¢%7
Q Q

which implies 14 <0, since # > 0in 2 and p > 1.

Next, we prove the existence of a solution by using two different methods.
The first proof uses variational techniques, which are then replaced by tools
relying on the mountain pass theorem.

1. A VARIATIONAL PROOF. — Let
m = inf{f|V?}|2; v € Hy(Q) and ||v] ;1 = 1} .
Q

First step: m > 0 is achieved. Let (u,) C H (l)(Q) be a minimizing sequence.
Since p<(N +2)/(N —2) then HL(Q) is compactly embedded in LP1(Q). It
follows that

f|Vun|2—>m as n — oo
Q
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and, for all positive integer n,
%l ppir = 1.
So, up to a subsequence,
Uy — U, weakly in H(l)(.Q)
and

Uy — 0, strongly in LP*1(Q).

By the lower semicontinuity of the functional || - ||;» we find that
f IVol? < liminf f V2 = m
Nn—00
Q R

which implies [ |Vv[? = m. Since ||v]|;, = 1, it follows that m > 0 is achieved by v.
Q

We remark that we have even u,, — v, strongly in H}(€2). This follows by the
weak convergence of (u,,) in Hj(Q2) and by the fact that [|u,|| m = llvll -

Second step: v > 0 a.e. in Q. We may assume that v > 0 a.e. in Q. Indeed, if
not, we may replace v by |v|. This is possible since |v] € Hi() and so, by
Stampacchia’s theorem,

V|v| = (signv) Vo, ifo#£0.
Moreover, on the level set [v = 0] we have Vv =0, so
[V|v|| = |V, a.e. in Q.

Third step: v verifies —Av = m P in the weak sense. We have to prove that for
every w € H\(Q),

vaVw = mf vw.
o) Ie)
Put 2z = v + ew in the definition of m. It follows that
f|Vz\2 :f|Vu|2 +2erqu+82f|Vw|2 =m +28fVqu+ o(e)
o) 7] ?) o) o)

and

[+t = [p +ep+ D [ v+ ot
Q Q

Q
=1+s(p+1)f0”w+0(8)-
Q
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Therefore

2/(p+1)
2] = (1 +e(p + l)fu”w + 0(8)) =1+ 2ngPw +0(e).
Q

Q
Hence
m + Zerz)Vw + 0(e)
m:f\Vv|2§ Q =m + 2¢ fVqu—mfva + o(e),
Q 1+28f07’w+o(s) 2 )
Q

which implies

fVqu = mf vPw, for every w € H(l)(Q).
Q Q

Consequently, the function u = mv, where a = —1/(p — 1), is a weak solution of
the problem (33).

Fourth step: regularity of u. Until now we know only that w € H{(Q) C L* (Q).
In a general framework, assuming that u € L9(Q), it follows that u? € L7/7(Q),
that is, by the Schauder regularity and the Sobolev embeddings, u € W29/?(Q)
L5(Q), where 1/s =p/q —2/N. So, assuming that q; > (p — 1)N/2, we have
u € L%(Q), where 1/q2 = p/q1 — 2/N. In particular, ¢2 > ¢q;. Let (g,) be the in-
creasing sequence we construct in this manner and set ¢, = nh_r}rolc Q. Assuming,

by contradiction, that ¢, < Np/2 we obtain, passing at the limit as #» — oo, that
G~ = N(p — 1)2<qy, a contradiction. This shows that there exists » > N /2 such
that u € L"(Q) which implies u € W2"(Q) c L>*(Q). Therefore u € W"(Q) C
C*(Q), where k denotes the integer part of 2 — N/». Now, by the Holder con-
tinuity, u € C%(Q).

2. SECOND PROOF. — The below arguments rely upon the mountain pass the-
orem. Set

_1 2 1 +yp+1 1
f(u)§!|Vu| m!(%) , u e HyQ).

Standard arguments show that F is a C! functional and u is a critical point of
F if and only if % is a solution to the problem (33). We observe that
F'u) = —du — ()Y € H1(Q). So, if u is a critical point of F then —Au =
(u™)? > 0 in Q and hence, by the maximum principle, # > 0 in Q.
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We verify the hypotheses of the mountain pass theorem. Clearly, F(0) = 0.
On the other hand,

1 1
[y < [t =i < ol
Q Q

Therefore

1 2 C p+1
f(u) > é ||u||H(1) 7p7 ||7’L||H(1l zp> 07

provided that |ju]| = R is small enough.
Let us now prove the existence of some v, such that ||vy|| > R and F(v,) < 0.
For this aim, choose an arbitrary wy > 0, wy Z 0. We have

2 9 1 1
Fitwy) =5 [ 19 - [@iy™ <o,
29 p+19

for t > 0 large enough.

To complete the existence of a weak solution to problem (33), it remains to
argue that the associated energy functional F satisfies the Palais-Smale condi-
tion. For this purpose, let (u;) be a sequence in H}(2) such that

(35) sup |F(ug)| < + oo
k
and
(36) B 7 )10y = 0.

Relation (36) implies that for all p € H{(Q),

(37) fVuk -Vopdx zf(u,;*)p(ﬂdw +o) o] -
Q Q

Next, we apply this estimate to obtain a bound for ||uy||. Indeed, taking ¢ = wy, in
relation (37) we find

(38) f Vg die = f VP dze + 0(1) [ -
Q Q

Combining now relations (35) and (38) we deduce that

-1
”T f (i P dz = O(1) + (1) [Jue | -
Q

Using now again relation (35) and taking into account the expression of the
energy functional F, we conclude that (u;) is bounded in H (1)(52). This guarantees
that, up to a subsequence, (u;) is weakly convergent in H, (1)(9).
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Next, we claim that any bounded sequence (u;) in H, (1)([2) that satisfies relation
(37) has the remarkable property that contains a strongly convergent sequence
in Hé(.Q). By relation (37) and using the fact that (— N)7!is a linear and con-
tinuous operator from H~1(Q) into H, })(Q), it suffices to prove that a subsequence
of (u))’ converges in H ~1(Q). By Sobolev embeddings, this is achieved by
showing that a subsequence of ()’ converges in L?N/N+2(Q), which is the dual
space of L2N/N-2(Q). We first observe that, up to a subsequence, u;, converges
a.e. to u € L2N/V-2(Q). Applying Egorov’s theorem we find that for any J > 0,
there exists a subset A of Q with |A| < and such that u;, converges uniformly to
u in Q\ A. Thus, it is enough to prove that the quantity

f|(u;)p _ (u+)p|2N/(N+2) doe
A

can be made arbitrarily small. On the one hand, by Young’s inequality,

f‘(u+)P|2N/(N+2) de < Cf(‘(qu)PFN/(N*Z) +1)dz.
A A

Hence, by choosing 6 > 0 arbitrarily small, the right hand-side of the above
relation can be made as small as we desire. On the other hand, we have

f|(ul«€§»)p|2N/(N+2) dm S e ‘uk|2N/(N72) dﬁC—FCL |A| )
A A

Applying now the boundedness of (u;) in H}(€2) combined with Sobolev em-
beddings, we deduce that the right hand-side above is bounded by ¢C + C, |A],
which can be made arbitrarily small. This completes the proof of the Palais-
Smale property. O

Theorem 9 can be extended to the following more general class of Lane-
Emden equations. Consider the nonlinear problem

—Mu + ale)u = gle, u) , in Q
(39) w>0, in Q
u=0, on 0Q.

where g : Q x R — R is a smooth function satisfying the following hypotheses:
(40) lgCe, w)] < C A+ |ul") for all (x,u) € Q x [0, 00),
where as usual p<(N +2)/(N —2)if N >3 and p<o if N € {1, 2};

(41) 9(,0) = g,(x,0) = 0;
(42) 0<uG(x,u) < ugx,u) for u > 0 large enough and some u > 2,
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where G(x,u) := f g(x,t)dt. We point out that hypothesis (42) is frequently

0
referred as the Ambrosetti-Rabinowitz growth condition.
We also assume that a : 2 — R is a smooth funection and there exists C > 0
such that

(43) [ (1908 +a@n?) > Cllolfyg, — forallv e HYQ).
Q

We observe that condition (42) implies that the nonlinear term g has a su-
perlinear growth at infinity, in the sense that there are positive constants C; and
Cs such that for all (x,u) € Q x [0, c0),

glx,u) > Cy w = Cy.
We also remark that condition (43) means that the linear operator —4 + a(x)! is

coercive in Hj(<Q).
The counterpart of Theorem 9 in this general setting is the following.

THEOREM 10. — Assume conditions (40)-(43) are fulfilled. Then problem (39)
has at least one solution.

The proof relies on the same ideas as for Theorem 9.

5.2 — The dual variational method versus mountain pass.

We are now concerned with a linear perturbation of the Lane-Emden equa-
tion. Consider the problem

—du = (P + in Q
(44) w£0, in Q
u=0, on 0Q,

where 1<p<(N +2)/(N —2)if N >3 and l<p<oo if N € {1, 2}.

By Theorem 10, problem (44) has a positive solution, provided that 1< 41;,
where 4; > 0 denotes the first eigenvalue of —4in H, (1)(.(2). The basic assumption
A< is used to check the existence of the valley condition in the mountain pass
theorem. Next, we observe that problem (44) does not have any positive solution
if A > ;. This conclusion follows easily after multiplication with the first ei-
genfunction ¢, in (33) and integration over Q. Moreover, the assumption 1 > 4;
implies that problem (44) does not have a mountain pass geometry. This means
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that the associated energy functional

0= ()~ [
Q Ie)

does not fulfill the valley condition of the mountain pass theorem near the origin.
The next result shows that problem (44) has a nontrivial solution, which, in view
of these remarks, changes sign.

THEOREM 11. — Assume that A > A1. Then problem (44) has at least one so-
lution.

PrOOF. — The case where 1 is an eigenvalue is more difficult to handle. That is
why, for simplicity, we assume that A is not an eigenvalue of the Laplace operator.

The proof combines the dual variational method with the mountain pass
theorem. This is not applied to the original energy £ (we have already observed
that this does not satisfy the mountain pass theorem). For this purpose we first
introduce a new unknown v, defined by v = |u[’‘u. Thus, u = |[v|* 'v with
q = 1/p<1. Problem (44) becomes

(45) u = Kv,

where K denotes the linear operator K = (— 4 — Al )L, We observe that K is
well-defined, since A is not an eigenvalue of —A. Problem (45) can be rewritten as

(46) i = Kv.

Thus, any solution of problem (44) is also a solution of problem (46) and con-
versely.
All solutions of problem (46) are critical points of the functional

1 1
- q+1__
.ﬂW—q+1!v| 2!mm.

We prove the following basie properties of F:

(i) F is well-defined and of class C! on L¢"1(Q). Indeed, the operator K
maps LIT1(Q) into W29H(Q) C LP1(Q), since p<(N +2)/(N — 2).
(ii) F satisfies the assumptions of the mountain pass theorem. Indeed, since

q + 1<2 then the dominant term of F near the origin is (g + 1) | |v|q+1. Next,
Q
assuming that v, is an eigenfunction of —A associated with an eigenvalue larger

than /, then [voKvy > 0, which shows that F(tvg) <0, provided that t > 0 is large
enough.

(iii) F satisfies the Palais-Smale condition. Indeed, let us assume that the
sequence (v,) C Li71(Q) verifies

47) sup | F(vy)| < oo
n
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and

(48) Fw,)—0 in (LTN(Q) = LrQ).
Thus, by relation (48),

(49) [va|" 0, — Kv, — 0 in LPTH(Q).

Now, multiplying relation (49) with v,,, integrating, and comparing with (48), we
deduce that the sequence (v,,) is bounded in L¢*1(Q). Thus, up to a subsequence,

Vy — U weakly in LIT(Q).

Since K :LI9*YQ) — LP*1(Q) is a compact operator and the embedding
W24tH(Q) c LPT1(Q) is compact, we conclude that Kv, — Kv in LPT1(Q), hence
v, — v in LITHQ).

Using (i), (ii), (iii), and applying the mountain pass theorem, we deduce that F
has a critical point vy and, moreover, F(vy) > 0. This concludes the proof of
Theorem 11. O

5.3 — A bifurcation problem.

Let us consider a C' convex function f: R — R such that f(0) >0 and
f'(0) > 0. We assume that f has a suberitical growth, that is, there exists
1<p<(N +2)/(N —2) such that for all u € R,

1f@)] < CA + ).

We also suppose that there exist 4 > 2 and A > 0 such that
7 f fdt < uf(u), for every u > A.
0

A standard example of function satisfying these conditions is f(u) = (1 +u)’.
Consider the bifurcation problem

—Au = Af(u), in Q
(50) u >0, in Q
u=0, on 0Q.

The implicit function theorem implies that there exists A* > 0 such that for
every 1< 1%, there exists a minimal and stable solution % to the problem (50).

THEOREM 12. — Under the above hypotheses on f, for every A € (0, 1), there
exists a second solution u > u and, furthermore, u is unstable.
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SKETCH OF THE PROOF. — We find a solution « of the form 4 = w + v with v > 0.
It follows that v satisfies

—v = Af(u+v) - fw], in Q
(51) v>0, in Q
v=0, on 0Q.

Hence v fulfills an equation of the form

—Mv + alx)y = glx,v), in Q,
where a(x) = —Af"(u) and
g(@,v) = Af (@) +v) — f@@)] - Af' (w@)v.
We verify easily the following properties:

(i) g,0) = g,(x,0) =0;
(i) |gGe,v)| < CA + |[vP);

v
(i) u [ gle,t)dt < vg(x,v), for every v > A large enough;
0

(iv) the operator —A4 — Af'(u) is coercive, since A;( — 4 — Af'(w)) > 0, for every
A< AN,

So, by the mountain pass theorem, the problem (50) has a solution which is, a
fortiori, unstable. O
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