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1. Introduction

Let 2 C RY be a bounded domain with C?-boundary 942. Let a : RY — R be a continuous strictly
monotone map. Let du/dn, denote the conormal derivative defined by du/0n, = (a(Du), n)g~, where n(z)
is the outward unit normal at z € 9{2.

In this paper we study the following nonlinear Robin problem:

—diva(Du(z)) = f(z,u(z),A) in £,
D)+ AU =0 o, (P)
u >aO, 1<p<oo.

The reaction f(z,x, ) is a parametric function with A > 0 being the parameter and (z,z) — f(z,z, \)
is a Carathéodory function. We assume that f(z,-, A) exhibits competing nonlinearities, namely near the
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origin it has a “concave” term (that is, a strictly (p — 1)-sublinear term), while near +oo the reaction is a
“convex” term (that is, x — f(z, 2z, A) is (p — 1)-superlinear). A special case of our reaction is the function
flz,2, ) = f(z,\) = Ax?= L + 271 for all x > 0 with

l<g<p<r<p* =< N-p
400 if N <p.

The first work concerning positive solutions for problems with concave and convex nonlinearities, was that
of Ambrosetti, Brezis and Cerami [1]. They studied semilinear equations driven by the Dirichlet Laplacian
and with a reaction of the form (1). Their work was extended to equations driven by the Dirichlet p-Laplacian
by Garcia Azorero, Manfredi and Peral Alonso [2] and by Guo and Zhang [3]. We also refer to the contribu-
tions of de Figueiredo, Gossez and Ubilla [4,5] to concave—convex type problems and general nonlinearities
for the Laplacian, resp. p-Laplacian case. Extensions to equations involving more general reactions were
obtained by Gasinski and Papageorgiou [6], Hu and Papageorgiou [7] and Ridulescu and Repovs [8].

Let n € C*(0,00) and assume that

tn' (¢

0<oc )
n(t)

The hypotheses on the map a(-) are the following:

H(a): a(y) = ao(|y|)y for all y € RN, with ag(t) > 0 for all t > 0 and

<co and ctP™t <n(t) < ep(1+tP7Y) forallt > 0 with ¢j,c0 >0, 1 <p<oo. (1)

(i) ag € C1(0,00), t — ag(t)t is strictly increasing on (0, 0), ag(t)t — 0
ast — 07 and

ag ()t

> —1;
t—0+ ao(t)

)

(i) [Va(y)| < "(‘Lyll) for some c3 > 0, all y € RV\{0};

(iif) 20 |§|2 (Va(y)é, &)pw for all y € RN\{0}, all € € RY;

(iv) 1f Go fo ao(s)sds for all t > 0, then pGo(t) — ao(t)t* > —é
for all t 0, some 5 > 0;

(v) there exists 7 € (1, p) such that t — Go(t/7) is convex on (0, c0),
limy o+ 28 = 0 and

ao(t)t? — 7Go(t) = &P for some & > 0, all t > 0.

According to the above conditions, the potential function G(-) is strictly convex and strictly increasing.
We set G(y) = Go(|y|) for all y € RY. Then the function y — G(y) is convex and differentiable on RV\{0}.
We have

VG(y) = Ga<|y|>% — ag(lyl)y = a(y) for all y € RN\{0}, VG(0) =

So, G(+) is the primitive of the map a(-). Because G(0) = 0 and y — G(y) is convex, from the properties
of convex functions, we have G(y) < (a(y), y)r~ for all y € RY.
The following properties follow by straightforward arguments.

Lemma 1. Assume that hypotheses H(a) (i)—(iii) hold. Then

(a) the mapping y — a(y) is continuous and strictly monotone, hence maximal monotone too;
(b) la(y)| < ca(1+ |y[P~1) for some ¢y > 0, all y € RY;
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(c) (a(y), ey = ;25
(d) for all y € RN we have s WP < Gy) < es(1+[ylP) with ¢; > 0.

The hypotheses on the boundary weight map §(-) are the following:

H(B): B € CH*(002) with o € (0,1) and 3(z) > 0 for all z € 9.

Throughout this paper we assume that the reaction f satisfies the following hypotheses.

H(f): f:92 xR x(0,00) — R is a function such that for a.a. z € £2 and all A > 0f(z,0,\) =0 and

(i) for all (z,\) € R x (0,00), z — f(z,2,\) is measurable, while for a.a. z € 2, (z,\) — f(z,2,\) is
continuous;
(i) |f(z,2,0)| < ax(2)(1 +2"71) for a.a. z € 2, all x > 0, all A > 0, with ay € L®(2), A — [lar]l~
bounded on bounded sets in (0,00) and p < r < p*;
(ili) if F(z,2,A) = [y f(z,8,A)ds, then limy_ ;o Bzed) — 4 o uniformly for a.a. z € 2;

xP

(iv) there exists ¥ = 3(\) € ((7‘ — p) max {%, 1} ,p*) such that

0 < v < liminf f(@ Az = pF(z,2,A)

3 uniformly for a.a. z € {2;
r——+0o0 T

(v) thereexist 1 < p = u(X) < ¢ =q(A\) < 7 (see hypothesis H(a) (v)) and v = y(A) > u, do = Jo(N) € (0,1)
such that

cer? < fz,2,N)x < qF (z,2,\) < &\(2)z" + 727 fora.a. z€ 2, all 0 <z < &y

with ¢g = ¢cg(A) > 0, cg(A) — +00 as A — +oo, € = ¢(A) > 0, {&, € L®(2)4+ with ||€x]|ec — O as
A— 07

(vi) for every p > 0, there exists £, = £,(A) > 0 such that for a.a. 2 € 2, x +— f(z,2,\) + P! is
nondecreasing on [0, pl;

(vii) for every interval K = [z, #] with z9 > 0 and every A > A" > 0, there exists dg (zo, A) nondecreasing
in A with dg (29, \) — 400 as A — 400 and dK(x07)\,)\ ) such that

f(z,2,\) 2 drg(x0,\) foraa. ze 2 allz e K
flz, 2, N) = f(z,2,N) = dg (w0, N\, N) foraa. z € 2, all z € K.

The following functions satisfy hypotheses H(f). For the sake of simplicity, we drop the z-dependence:

filz, ) =Xxt 42"t forallz >0, withl <g<p<r<p"
Axd—t — gt if z € [0, 1]
T,A) = 1 1
fa@ ) P! <lnx+) + ()\—) /7t ifr>1
p p
with ¢,v € (1,p) and n > p
gt if x € [0, p(N)]
fa(z,A) = r—1 .
7 +n(\)  ifz>p(N)
with 1 < g <p<r<p*, n\) =pN)?"" = pA) "
and p(A\) — 0" as A — 0.
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Since we are interested to find positive solutions and the above hypotheses concern the positive semiaxis
Ry = [0, +00), without any loss of generality we may assume that f(z,2,A) =0 for a.a. z € 2, all . < 0
and all A > 0. Note that hypotheses H(f) (ii), (iii) imply that
f(Z, ) /\)

lim T

= 400 uniformly for a.a. z € £2.

r—+00 xrP—
Thus f(z,-,A) is (p— 1)-superlinear near +oo. However, we do not employ the Ambrosetti-Rabinowitz (AR)
condition (unllateral version) (Cf. [9]). We say that f(z,-, A) satisfies the (unilateral) (AR)-condition, if there

exist n = n(A) > p and M = M(X) > 0 such that
(a) 0 <' nF(z,z,\) < f(z,2,\)z foraa.ze€ 2, allz > M, @)
(b) essinfg, F(-,M,\) > 0.
Integrating (2)a and using (2)b, we obtain a weaker condition, namely that
crx < F(z,z,A) for a.a. z € 2, all z > M and some c7 > 0. (3)
Evidently (3) implies the much weaker hypothesis H(f) (iii). In (2) we may assume that n > (r — p)
L

max , } Then we have

f(Z,LE,)\)I’*pF(Z,IE, )‘) _ f(Z,%)\)SC*UF(%Ia)\) (nfp)F(Zaxa A)
x B x + all
> (n—p)ey foraa.ze 2, allz > M (see (2)a and (3)).

So, we see that the (AR)-condition implies hypothesis H; (iv). This weaker “superlinearity” condition
incorporates in our setting (p — 1)-superlinear nonlinearities with “slower” growth near +oo, which fail to
satisfy the (AR)-condition (see the function fo(-; \) defined above). Finally note that hypothesis H(f) (v)
implies the presence of a concave nonlinearity near zero.

The main result of this paper establishes the following bifurcation property.

Theorem 2. Assume that hypotheses H(a), H(B) and H(f) hold. Then there exists \* > 0 such that

(a) for all A € (0,X\*), problem (Py) has at least two positive solutions
ug, 4 € int Cy, ug < U, ug # U3

(b) for A = X* problem (Px~) has at least one positive solution u, € int Cy;

(c) for all X > X* problem (Py) has no positive solution.

Sketch of the Proof. We introduce the following Carathéodory function

fzx,0) = f(z,2, ) + (F)PL for all (z,2,)) € 2 x R x (0, +00).
Let F (z,2, ) fo z s,\)ds and consider the C'-functional ¢y : WP(2) — R defined by

@,\(u):/ﬂG(Du)dz—i—Z;Hqu / e pda—/ﬂﬁ(z,u,/\)dz.

We split the proof into several steps.
Step 1. For all A > 0, the energy functional ¢, satisfies the Cerami compactness condition.

Step 2. There is some Ay > 0 such that for all A € (0, A;) there exists py > 0 for which we have
inf {@x(u) : [Jull = pr} = x> 0= 4r(0).

Step 3. If A >0 and u € int Cy = {v € CH(2) : v(z) > 0 for all z € N}, then P, (tu) — —oo as t — oo.
This property is a direct consequence of hypothesis H(f) (iii).
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Next, we consider the following sets:

S ={A > 0: problem (P,) admits a positive solution},
S(A) = the set of positive solutions of (Py).

Step 4. We have S # () and for every A € S we have ) # S(\) C int Cy.
Step 5. If A € S, then (0,A] C S.
Step 6. Set A* = supS. We have \* < oo.

Step 7. For all n € (0, \*), problem (P,)) admits at least two distinct positive solutions ug, @ € int C;. with
Uup < [

Next we examine what happens in the critical case A = A*. To this end, note that hypotheses H(f) (ii),
(v) imply that we can find c¢g = cg(A) > 0 such that

flzy2,\) = o9t — g™ ! for a.a. z € 2, all z > 0. (4)

This unilateral growth estimate on the reaction f(z,-, A) leads to the following auxiliary Robin problem:

—diva(Du(z)) = ceu(2)? — cgu(z)"" 1 in £,

D)+ B =0 on 92, (%)
0
u >0 in £2.

Step 8. Problem (5) admits a unique positive solution w € int C .
Step 9. If A € S, then u < u for all u € S(A).
Step 10. We have A* € S and so S = (0, A*].

We refer to [10] for detailed arguments of the proof, as well as for related results on Neumann problems
with competing nonlinearities.
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