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a b s t r a c t

We consider a semilinear Robin problem driven by the Laplacian plus an indefinite
potential and with a Carathéodory reaction f(z, x) with no growth restriction on
the x-variable. We only assume that f(z, ·) is odd and superlinear near zero. Using
a variant of the symmetric mountain pass theorem, we show that the problem has
a whole sequence of distinct smooth nodal solutions converging to the trivial one.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Let Ω ⊆ RN be a bounded domain with a C2-boundary ∂Ω . In this paper, we study the following
semilinear Robin problem: {−∆u(z) + ξ(z)u(z) = f(z, u(z)) in Ω ,

∂u

∂n
+ β(z)u = 0 in ∂Ω .

}
(1)

In this problem, ξ ∈ Ls(Ω) (s > N) is an indefinite (that is, sign-changing) potential function and the
reaction term f(z, x) is a Carathéodory function (that is, for all x ∈ R, z ↦→ f(z, x) is measurable and for
almost all z ∈ Ω , x ↦→ f(z, x) is continuous). No global growth condition is imposed on f(z, ·), which can
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be arbitrary near ±∞. The only conditions on f(z, ·) concern its behavior near zero and we require that it
is superlinear there. In the boundary condition, ∂u

∂n is the usual normal derivative defined by extension of
the linear map

u ↦→ ∂u

∂n
= (Du, n)RN for all u ∈ C1(Ω),

with n(·) being the outward unit normal on ∂Ω . The boundary coefficient β(·) belongs to W 1,∞(∂Ω) and
we assume that β(z) ⩾ 0 for all z ∈ ∂Ω .

We are looking for nodal (that is, sign-changing) solutions of problem (1). Using an abstract multiplicity
result of Heinz [1], Wang [2] and Kajikiya [3], we show that problem (1) admits a whole sequence
{un}n⩾1 ⊆ H1(Ω) of distinct nodal solutions such that

un ∈ C1(Ω) for all n ∈ N and un → 0 in C1(Ω).

Recently multiplicity results for semilinear elliptic problems with indefinite linear part were proved by
Castro, Cossio and Vélez [4], Papageorgiou and Papalini [5], Qin, Tang and Tang [6], Wu and An [7],
Zhang and Liu [8], Zhang, Tang and Zhang [9] (Dirichlet problems), Papageorgiou and Rădulescu [10,11]
(Neumann problems) and Papageorgiou and Rădulescu [12] (Robin problems). None of the aforementioned
works produces a whole sequence of nodal solutions and all impose a subcritical growth condition on the
reaction term f(z, ·). We mention also the very recent work of Papageorgiou and Rădulescu [13], which deals
with nonlinear nonhomogeneous Robin problems with no potential term (that is, ξ ≡ 0) and a reaction term
f(z, x) of arbitrary growth in x ∈ R. The authors of [13] produce a sequence of nodal solutions but under
more restrictive conditions on f(z, ·).

2. Mathematical background

Let X be a Banach space. By X∗ we denote its topological dual and by ⟨·, ·⟩ we denote the duality
brackets for the pair (X∗, X). Given φ ∈ C1(X,R), we say that φ satisfies the “Palais–Smale condition”
(the “PS-condition” for short), if the following property holds:

“Every sequence {un}n⩾1 ⊆ X such that {φ(un)}n⩾1 ⊆ R is bounded and

φ′(un) → 0 in X∗ as n → ∞,

admits a strongly convergent subsequence”.
As we already mentioned, our main tool is the following abstract multiplicity theorem of Heinz [1],

Wang [2] and Kajikiya [3]. The result is a variant of the classical symmetric mountain pass theorem (see,
for example, Gasinski and Papageorgiou [14, p. 688]).

Theorem 1. Assume that X is a Banach space, φ ∈ C1(X,R) satisfies the PS-condition, it is even, bounded
below, φ(0) = 0 and for every n ∈ N, there exist an n-dimensional subspace Vn ⊆ X and ρn > 0 such that

sup[φ(u) : u ∈ Vn, ∥u∥ = ρn] < 0 for all n ∈ N.

Then we can find a sequence {un}n⩾1 ⊆ X such that

φ′(un) = 0 for all n ∈ N and un → 0 in X.

The analysis of problem (1) involves the Sobolev space H1(Ω), the Banach space C1(Ω) and the Lebesgue
“boundary” spaces Lp(∂Ω) (1 ⩽ p ⩽ ∞).
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The Sobolev space H1(Ω) is a Hilbert space with inner product

(u, v)H1(Ω) =
∫
Ω

uvdz +
∫
Ω

(Du, Dv)RN dz for all u, v ∈ H1(Ω)

and corresponding norm

∥u∥ = [∥u∥2
2 + ∥Du∥2

2]1/2 for all u ∈ H1(Ω).

The Banach space C1(Ω) is an ordered Banach space with positive cone

C+ = {u ∈ C1(Ω) : u(z) ⩾ 0 for all z ∈ Ω}.

This cone has a nonempty interior given by

D+ = {u ∈ C+ : u(z) > 0 for all z ∈ Ω}.

On ∂Ω we consider the (N − 1)-dimensional Hausdorff (surface) measure σ(·). Using this measure, we
can define in the usual way the Lebesgue spaces Lp(∂Ω) (1 ⩽ p ⩽ ∞). From the theory of Sobolev spaces,
we know that there exists a unique continuous linear map γ0 : H1(Ω) → L2(∂Ω) known as “trace map”,
such that

γ0(u) = u|∂Ω for all u ∈ H1(Ω) ∩ C(Ω).

We know that

im γ0 = H
1
2 ,2(∂Ω) and ker γ0 = H1

0 (Ω).

Moreover, the trace map γ0 is compact into Lp(∂Ω) for all p ∈
[
1, 2N−2

N−2

)
if N ⩾ 3 and into

Lp(∂Ω) for all p ⩾ 1 if N = 1, 2. In the sequel for notational economy, we drop the use of the trace
map γ0. All restrictions of Sobolev functions on ∂Ω are understood in the sense of traces.

Consider the following linear eigenvalue problem⎧⎨⎩−∆u(z) + ξ(z)u(z) = λ̂u(z) in Ω ,
∂u

∂n
+ β(z)u = 0 on ∂Ω .

⎫⎬⎭ (2)

We assume that

• ξ ∈ L
N
2 (Ω) if N ⩾ 3, ξ ∈ Lp(Ω) with p ∈ (1, +∞) if N = 2 and ξ ∈ L1(Ω) if N = 1;

• β ∈ W 1,∞(∂Ω) and β(z) ⩾ 0 for all z ∈ ∂Ω .

Let γ : H1(Ω) → R be the C1-functional defined by

γ(u) = ∥Du∥2
2 +

∫
Ω

ξ(z)u2dz +
∫

∂Ω

β(z)u2dσ for all u ∈ H1(Ω).

From Papageorgiou and Rădulescu [10,12], we know that there exists µ > 0 such that

γ(u) + µ∥u∥2 ⩾ c0 ∥u∥2
2 for all u ∈ H1(Ω), some c0 > 0. (3)

Using (3) and the spectral theorem for compact self-adjoint operators on a Hilbert space, we produce
the spectrum of (2) which consists of a sequence {λ̂k}k⩾1 of distinct eigenvalues such that λ̂k → +∞. By
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E(λ̂k) (k ∈ N) we denote the corresponding eigenspace and we have the following orthogonal direct sum
decomposition

H1(Ω) = ⊕
k⩾1

E(λ̂k).

Concerning the first eigenvalue λ̂1, we have

• λ̂1, is simple (that is, dim E(λ̂1) = 1);

• λ̂1 = inf
[

γ(u)
∥u∥2

2
: u ∈ H1(Ω), u ̸= 0

]
. (4)

The infimum in (4) is realized on E(λ̂1). From the above properties, it is clear that the elements of E(λ̂1) do
not change sign. Let û1 denote the L2-normalized (that is, ∥û1∥2 = 1) positive eigenfunction corresponding
to λ̂1. If ξ ∈ Ls(Ω) with s > N , then the regularity theory of Wang [15] implies that û1 ∈ C+ \ {0}. In fact,
if ξ+ ∈ L∞(Ω) then the strong maximum principle implies that û1 ∈ D+. We mention that λ̂1 is the only
eigenvalue with eigenfunctions of constant sign. All the other eigenvalues have nodal (that is, sign-changing)
eigenfunctions.

We conclude this section, by introducing some notation which we will use in sequel.
By A ∈ L(H1(Ω), H1(Ω)∗) we denote the linear operator defined by

⟨A(u), h⟩ =
∫
Ω

(Du, Dh)RN dz for all u, h ∈ H1(Ω).

For x ∈ R, we set x± = max{±x, 0}. Then for u ∈ H1(Ω) we define

u±(·) = v(·)±.

We know that

u± ∈ H1(Ω), |u| = u+ + u−, u = u+ − u−.

3. Nodal solutions

The hypotheses on the data of problem (1), are the following:
H(ξ): ξ ∈ Ls(Ω) with s > N and ξ+ ∈ L∞(Ω).
H(β): β ∈ W 1,∞(∂Ω) and β(z) ⩾ 0 for all z ∈ ∂Ω .

Remark 1. When β = 0, we recover the Neumann problem.

H(f): f : Ω×R → R is a Carathéodory function such that for almost all z ∈ Ω , f(z, 0) = 0, f(z, ·) is odd
on [−c, c] with c > 0 and

(i) for every M > 0, there exists aM ∈ L∞(Ω) such that

|f(z, x)| ⩽ aM (z) for almost all z ∈ Ω , all |x| ⩽ M ;

(ii) limx→0
f(z,x)

x = +∞ uniformly for almost all z ∈ Ω .

Remark 2. We stress that no global growth condition is imposed on f(z, ·). Also note that f(z, ·) is
superlinear near zero (presence of a concave term near zero). Note that the function f(x) = x(1 − ln |x|) for
|x| ⩽ c satisfies hypotheses H(f), but does not fit in the framework of Papageorgiou and Rădulescu [16].
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Hypothesis H(f) (ii) implies that given η > |λ̂1|, we can find c0 ∈ (0, c] such that

f(z, x)x ⩾ ηx2 for almost all z ∈ Ω , all |x| ⩽ c0. (5)

Recall that û1 ∈ D+. Hence we can find t > 0 such that tû1 ⩽ c0. Let τ > 0 be the maximum such
positive real. Let µ̂ > max{∥ξ+∥∞, µ} (see hypothesis H(ξ) and (3)). We introduce the Carathéodory
function f̂ : Ω×R → R defined by

f̂(z, x) =

⎧⎨⎩f(z, −τ û1(z)) − µ̂(τ û1(z)) if x < τû1(z)
f(z, x) + µ̂x if |x| ⩽ τ û1(z)
f(z, τ û1(z)) + µ̂(τ û1(z)) if τ û1(z) < x.

(6)

We set F̂ (z, x) =
∫ x

0 f̂(z, s)ds and consider the C1-functional φ̂ : H1(Ω) → R defined by

φ̂(u) = 1
2γ(u) + µ̂

2 ∥u∥2
2 −

∫
Ω

F̂ (z, u)dz for all u ∈ H1(Ω).

From hypothesis H(f), the choice of µ̂ > 0 and (3), (6) we infer that φ̂ has the following properties.

Proposition 2. If hypotheses H(ξ), H(β), H(f) hold, then φ̂ is even, φ̂(0) = 0 and φ̂(·) is coercive.

From Proposition 2 and Papageorgiou and Winkert [17, Proposition 2.13], we infer that:

Corollary 3. If hypotheses H(ξ), H(β), H(f) hold, then φ̂ is bounded from below and satisfies the PS-
condition.

Let φ̂± : H1(Ω) → R be the positive and negative truncations of φ̂, that is

φ̂±(u) = 1
2γ(u) + µ̂

2 ∥u∥2
2 −

∫
Ω

F̂ (z, ±u±)dz for all u ∈ H1(Ω).

We know that φ̂± ∈ C1(H1(Ω),R). We introduce the critical sets of the functionals φ̂, φ̂±, that is, the
sets

Kφ̂ = {u ∈ H1(Ω) : φ̂′(u) = 0},

Kφ̂± = {u ∈ H1(Ω) : φ̂′
±(u) = 0}.

From the regularity theory of Wang [15], we have

Kφ̂ ⊆ C1(Ω). (7)

Similarly, using the regularity theory of Wang [15] and the strong maximum principle, we have

Kφ̂+ ⊆ D+ ∪ {0} and Kφ̂− ⊆ (−D+) ∪ {0} . (8)

Proposition 4. If hypotheses H(ξ), H(β), H(f) hold, then there exists M > 0 such that

−M ⩽ u(z) ⩽ M for all z ∈ Ω , all u ∈ Kφ̂.

Proof. From (6) we see that we can find M > 0 such that

|f̂(z, x)| ⩽ (ξ(z) + µ̂)M for almost all z ∈ Ω , all x ∈ R (9)

(recall that µ̂ > max{∥ξ+∥∞, µ}).
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Let u ∈ Kφ̂. Then we have

⟨A(u), h⟩ +
∫
Ω

(ξ(z) + µ̂)uhdz +
∫

∂Ω

β(z)uhdσ =
∫
Ω

f̂(z, u)hdz

⩽
∫
Ω

|f̂(z, u)||h|dz

⩽
∫
Ω

(ξ(z) + µ̂)M |h|dz for all h ∈ H1(Ω) (see (9)).

Choose h = (u − M)+ ∈ H1(Ω). Then

⟨A(u), (u − M)+⟩ +
∫
Ω

(ξ(z) + µ̂)u(u − M)+dz +
∫

∂Ω

β(z)u(u − M)+dσ

⩽
∫
Ω

(ξ(z) + µ̂)M(u − M)+dz +
∫

∂Ω

β(z)M(u − M)+dσ (see hypothesis H(β)),

⇒ ⟨A(u) − A(M), (u − M)+⟩ +
∫
Ω

(ξ(z) + µ̂)(u − M)(u − M)+dz +
∫

∂Ω

β(z)(u − M)(u − M)+dσ ⩽ 0,

⇒ ∥D(u − M)+∥2
2 +

∫
Ω

(ξ(z) + µ̂)((u − M)+)2dz +
∫

∂Ω

β(z)((u − M)+)2dσ ⩽ 0,

⇒ u ⩽ M.

Similarly, choosing h = (−M − u)+ ∈ H1(Ω), we obtain

−M ⩽ u,

⇒ u ∈ [−M, M ] ∩ C1(Ω) (see (7)). □

Proposition 5. If hypotheses H(ξ), H(β), H(f) hold, then

(a) τ µ̂1 ⩽ u for all u ∈ Kφ̂+ \ {0};
(b) v ⩽ −τ û1 for all v ∈ Kφ̂− \ {0}.

Proof.

(a) Let u ∈ Kφ̂+ \ {0} and consider the set

Su = {t > 0 : tû1 ⩽ u}.

Since u ∈ D+ (see (8)), we infer that

Su ̸= ∅.

Let t∗ = sup Su and suppose that t∗ < τ . Set

Ω1
+ = {0 < u ⩽ τ û1} and Ω2

+ = {u > τû1}.

We have

f̂(z, u) ⩾ (η + µ̂)u > (|λ̂1| + µ̂)u ⩾ (|λ̂1| + µ̂)(t∗û1)
for almost all z ∈ Ω1

+ (see (6) and recall t∗ < τ) (10)

f̂(z, u) = f(z, τ û1) + µ̂(τu1) (see (6))
⩾ (η + µ̂)(τ µ̂1) (see (5) and recall the definition of τ)
> (|λ̂1| + µ̂)(t∗û1) for almost all z ∈ Ω2

+ (recall t∗ < τ). (11)
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Then

⟨A(u), h⟩ +
∫
Ω

(ξ(z) + µ̂)uhdz +
∫

∂Ω

β(z)uhdσ =
∫
Ω

f̂(z, u)hdz for all h ∈ H1(Ω)

⇒ −∆u(z) + (ξ(z) + µ̂)u(z) = f̂(z, u(z))
> (|λ̂1| + µ̂)(t∗û1(z)) (see (10), (11))
⩾ −∆(t∗û1(z)) + (ξ(z) + µ̂)(t∗û1(z)) for almost all z ∈ Ω

(see (10), (11))
⇒ ∆(u − t∗û1)(z) ⩽ (∥ξ+∥∞ + µ̂)(u − t∗û1)(z) for almost all z ∈ Ω

(see hypothesis H(ξ) and recall that t∗ < τ)
⇒ u − t∗û1 ∈ D+ (by the strong maximum principle).

This contradicts the maximality of t∗. Therefore

τ ⩽ t∗,

⇒ τ û1 ⩽ u for all u ∈ Kφ̂+ .

(b) Similarly we show that

v ⩽ −τ û1 for all v ∈ Kφ̂− . □

With the next proposition we satisfy the geometry of Theorem 1.Proposition 6. If hypotheses H(ξ), H(β), H(f) hold, and Vn is an n-dimensional subspace of H1(Ω), then
we can find ρn ∈ (0, 1) small such that

sup[φ̂(u) : u ∈ Vn, ∥u∥ = ρn] < 0.

Proof. All norms on Vn are equivalent. So, we can find ρn ∈ (0, 1) small such that

u ∈ Vn, ∥u∥ ⩽ ρn ⇒ |u(z)| ⩽ m∗ for almost all z ∈ Ω , (12)

with m∗ = minΩτ û1 (recall that û1 ∈ D+). So, for u ∈ Vn, with ∥u∥ ⩽ ρn, we have

φ̂(u) ⩽ ĉ∥u∥2 − η ∥u∥2
2 for some ĉ > 0

(see hypothesis H(ξ), H(β), (5) and (12))
⩽ ĉ − ηĉ1∥u∥2 for some ĉ1 > 0

(since all norms on Vn are equivalent).

Then choosing η > |λ̂1| even bigger if necessary (so that η > ĉ1
ĉ ), we see that

sup[φ̂(u) : u ∈ Vn, ∥u∥ = ρn] < 0. □

Now we are ready for the main result of this paper, which shows that problem (1) admits a whole sequence
of distinct nodal smooth solutions which converge to the trivial solution.

Theorem 7. If hypotheses H(ξ), H(β), H(f) hold, then problem (1) has a sequence {un}n⩾1 ⊆ H1(Ω) of
nodal solutions such that

un ∈ C1(Ω) for all n ∈ N and un → 0 in C1(Ω).
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Proof. Proposition 2, Corollary 3 and Proposition 6 permit the use of Theorem 1. So, we can find

{un}n⩾1 ⊆ Kφ̂ such that un → 0 in H1(Ω). (13)

Recall that Kφ̂ ⊆ C1(Ω) (see (7)). So, we have un ∈ C1(Ω).
Proposition 4 and the regularity theory of Wang [15] imply that there exist α ∈ (0, 1) and ĉ2 > 0 such

that

un ∈ C1,α(Ω) and ∥un∥C1,α(Ω) ⩽ ĉ2 for all n ∈ N. (14)

Then from (13), (14) and the compact embedding of C1,α(Ω) into C1(Ω), we have that

un → 0 in C1(Ω).

So, we will have

un ∈ [−τ û1, τ û1] \ {±τ û1} for all n ⩾ n0. (15)

From Proposition 5 and (6), (15), it follows that

{un}n⩾n0
⊆ C1(Ω) are nodal solutions of (1)

and we have

un → 0 in C1(Ω). □
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