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the z-variable. We only assume that f(z,-) is odd and superlinear near zero. Using

a variant of the symmetric mountain pass theorem, we show that the problem has

a whole sequence of distinct smooth nodal solutions converging to the trivial one.
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1. Introduction

Let 2 C RY be a bounded domain with a C?-boundary 92. In this paper, we study the following
semilinear Robin problem:

BAU(Z) +&(2)ulz) = fz,u(z)) n 82, X
afZJrﬂ(z)u:O in 912. S

In this problem, £ € L*(§2) (s > N) is an indefinite (that is, sign-changing) potential function and the
reaction term f(z,z) is a Carathéodory function (that is, for all € R, z — f(z,x) is measurable and for
almost all z € 2, x — f(z,z) is continuous). No global growth condition is imposed on f(z,-), which can
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be arbitrary near +oco. The only conditions on f(z,-) concern its behavior near zero and we require that it
is superlinear there. In the boundary condition, g—z is the usual normal derivative defined by extension of

the linear map

U g—u = (Du,n)gn  for all u € C*(),
n

with n(-) being the outward unit normal on 2. The boundary coefficient 3(-) belongs to W°(9£2) and
we assume that 8(z) > 0 for all z € 942.

We are looking for nodal (that is, sign-changing) solutions of problem (1). Using an abstract multiplicity
result of Heinz [1], Wang [2] and Kajikiya [3], we show that problem (1) admits a whole sequence
{tn},>1 C H' () of distinct nodal solutions such that

u, € C'(2) foralln € N and u,, — 0 in C*(12).

Recently multiplicity results for semilinear elliptic problems with indefinite linear part were proved by
Castro, Cossio and Vélez [4], Papageorgiou and Papalini [5], Qin, Tang and Tang [6], Wu and An [7],
Zhang and Liu [8], Zhang, Tang and Zhang [9] (Dirichlet problems), Papageorgiou and Réadulescu [10,11]
(Neumann problems) and Papageorgiou and Rédulescu [12] (Robin problems). None of the aforementioned
works produces a whole sequence of nodal solutions and all impose a subcritical growth condition on the
reaction term f(z,-). We mention also the very recent work of Papageorgiou and Riadulescu [13], which deals
with nonlinear nonhomogeneous Robin problems with no potential term (that is, £ = 0) and a reaction term
f(z,z) of arbitrary growth in € R. The authors of [13] produce a sequence of nodal solutions but under
more restrictive conditions on f(z,-).

2. Mathematical background

Let X be a Banach space. By X* we denote its topological dual and by (-,-) we denote the duality
brackets for the pair (X*, X). Given ¢ € C'(X,R), we say that ¢ satisfies the “Palais—Smale condition”
(the “PS-condition” for short), if the following property holds:

“Every sequence {u,},-; € X such that {¢(un)}, >, C R is bounded and

@' (up) = 0 in X* as n — oo,

admits a strongly convergent subsequence”.

As we already mentioned, our main tool is the following abstract multiplicity theorem of Heinz [1],
Wang [2] and Kajikiya [3]. The result is a variant of the classical symmetric mountain pass theorem (see,
for example, Gasinski and Papageorgiou [14, p. 688]).

Theorem 1. Assume that X is a Banach space, ¢ € C1(X,R) satisfies the PS-condition, it is even, bounded
below, p(0) = 0 and for every n € N, there exist an n-dimensional subspace V,, C X and p, > 0 such that

suplp(u) 1 u € Vp, |lull = pa] <0 for all n € N.
Then we can find a sequence {un},, € X such that

¢ (un) =0 foralln €N and u, — 0 in X.

The analysis of problem (1) involves the Sobolev space H'(2), the Banach space C'(2) and the Lebesgue
“boundary” spaces LP(0£2) (1 < p < o0).
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The Sobolev space H'({2) is a Hilbert space with inner product
(u,0) g1 (o) = /qudz + /Q(DmDv)RNdz for all u,v € H'(2)
and corresponding norm

lull = [lull3 + | Dull3)"/?  for all w € H'(£2).
The Banach space C1(2) is an ordered Banach space with positive cone

C,={ueC'(R):uz)>0 forall zec 2}
This cone has a nonempty interior given by

Dy ={u€Cy:u(z)>0forall z € 2}.

On 002 we consider the (N — 1)-dimensional Hausdorff (surface) measure o(-). Using this measure, we
can define in the usual way the Lebesgue spaces LP(9£2) (1 < p < o0). From the theory of Sobolev spaces,
we know that there exists a unique continuous linear map o : H*(£2) — L?(92) known as “trace map”,
such that

Yo(u) = ulpe for all w € H(2) N C(02).
We know that

im'yozH%’2(3Q) and  keryy = Hy(92).

Moreover, the trace map <y is compact into LP(9f2) for all p € [1, 215\7:22) if N > 3 and into
LP(0f2) forall p > 1 if N = 1,2. In the sequel for notational economy, we drop the use of the trace
map o. All restrictions of Sobolev functions on 92 are understood in the sense of traces.

Consider the following linear eigenvalue problem

5Au(z) + &(2)u(z) = Mu(z) in £2,
% +B(z)u=0 on 9.

We assume that

e €LY (Q)if N>3,¢€ LP(2) withp € (1,+00) if N =2 and € € L} (Q2) if N = 1;
e € WH(002) and B(2) = 0 for all z € 9.

Let v: H'(£2) — R be the C'-functional defined by

v(u) = HDqu +/ E(2)utdz + (2)u*do  for all u € H' ().
o a0

From Papageorgiou and Riadulescu [10,12], we know that there exists u > 0 such that
() + pl|ul]® > co ||u||§ for all uw € H'(£2), some ¢y > 0. (3)

Using (3) and the spectral theorem for compact self-adjoint operators on a Hilbert space, we produce
the spectrum of (2) which consists of a sequence {j\k} k>1 of distinct eigenvalues such that M — +00. By



45 N.S. Papageorgiou, V.D. Radulescu / Applied Mathematics Letters 64 (2017) 42-50

E(j\k) (k € N) we denote the corresponding eigenspace and we have the following orthogonal direct sum
decomposition

Concerning the first eigenvalue ;\17 we have

e )\, is simple (that is, dim E(:\l) =1);
5\1 = inf fY(ug
[[ullz

cu€ HY(2),u#0]|. (4)

The infimum in (4) is realized on E(\;). From the above properties, it is clear that the elements of E(1) do
not change sign. Let 4; denote the L2-normalized (that is, |41]|2 = 1) positive eigenfunction corresponding
to . If € € L#(§2) with s > N, then the regularity theory of Wang [15] implies that 4, € C1 \ {0}. In fact,
if £ € L>(£2) then the strong maximum principle implies that 4, € D,. We mention that A; is the only
eigenvalue with eigenfunctions of constant sign. All the other eigenvalues have nodal (that is, sign-changing)
eigenfunctions.

We conclude this section, by introducing some notation which we will use in sequel.

By A € L(HY(2), H(2)*) we denote the linear operator defined by

(A(u), h) = / (Du, Dh)gndz for all u,h € H'(2).
0

For = € R, we set ¥ = max{#x,0}. Then for u € H'(£2) we define

We know that

3. Nodal solutions

The hypotheses on the data of problem (1), are the following:
H(&): £ € L3(N2) with s > N and £F € L>(12).
H(B): B € Wh(902) and B(z) = 0 for all z € 912.

Remark 1. When S = 0, we recover the Neumann problem.

H(f): f: 2xR — R is a Carathéodory function such that for almost all z € 2, f(z,0) =0, f(z,-) is odd
on [—c¢,c] with ¢ > 0 and

(i) for every M > 0, there exists ap; € L>®(2) such that

|f(z,2)] < ap(z) for almost all z € 2, all |z| < M;

(ii) limx_,()@ = +oo uniformly for almost all z € £2.
Remark 2. We stress that no global growth condition is imposed on f(z,-). Also note that f(z,-) is
superlinear near zero (presence of a concave term near zero). Note that the function f(x) = z(1 —In |z|) for

|z| < ¢ satisfies hypotheses H(f), but does not fit in the framework of Papageorgiou and Ridulescu [16].
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Hypothesis H(f) (i) implies that given 5 > |A;|, we can find ¢ € (0, ] such that
f(z,x)x = nx?® for almost all z € 2, all |z| < co. (5)

Recall that 43 € Dy. Hence we can find ¢ > 0 such that ti; < cg. Let 7 > 0 be the maximum such

positive real. Let g > max{||¢" oo, u} (see hypothesis H(£) and (3)). We introduce the Carathéodory
function f : 2xR — R defined by

fz,—7h1(2)) — f(ra1(2)) if 2 < 701(2)

x if |2| < 781(2) (6)
fz,701(2)) + p(ra1(2))  if 701(2) < a.
We set F(z, z) fo f(2,s)ds and consider the C''-functional ¢ : H'(£2) — R defined by

1

P(u) = i’y(u) + g Hu||§ —/ F(z,u)dz for all u € H*(R).
Q

From hypothesis H(f), the choice of i > 0 and (3), (6) we infer that ¢ has the following properties.

Proposition 2. If hypotheses H(§), H(B), H(f) hold, then ¢ is even, $(0) =0 and $(-) is coercive.

From Proposition 2 and Papageorgiou and Winkert [17, Proposition 2.13], we infer that:

Corollary 3. If hypotheses H(E), H(B), H(f) hold, then ¢ is bounded from below and satisfies the PS-
condition.

Let ¢4 : H*(£2) — R be the positive and negative truncations of ¢, that is

P (u) = %'y(u) + g R —/ F(z,+ut)dz for allu € H'(12).
2

We know that ¢ € CT(H'(£2),R). We introduce the critical sets of the functionals ¢, (¢, that is, the
sets

Ko = {ue H'(2):¢'(u) = 0},
Koy = {u€ H'(2): ¢l (u) = 0}.

From the regularity theory of Wang [15], we have
K, < C (D) @
Similarly, using the regularity theory of Wang [15] and the strong maximum principle, we have
Ky, €D,uU{0} and Ky C(-Dy)U{0}. (8)
Proposition 4. If hypotheses H(E), H(B), H(f) hold, then there exists M > 0 such that
~M <u(z) <M forall z€ 2, all u € K.
Proof. From (6) we see that we can find M > 0 such that

|f(z,2)] < (€(2) + {)M  for almost all z € 2, all z € R 9)

(recall that i > max{||¢"||oo, 1t})-
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Let u € K. Then we have

(A(u), h) +/ (&(2) + p)uhdz + z)uhdo = f(z,u)hdz

Q 8(2
f(z,u)||h|dz

)+ @)M|h|dz for all h € H'(2) (see (9)).

\\\

Choose h = (u— M) € H*(£2). Then

(A(u), (u — M)T) + /Q(S(z) + u(u — M) dz + o B(2)u(u — M)*do

< / (€(z) + )M (u— M)"dz + B(z)M(u — M)"do (see hypothesis H(3)),
0 Yo

= (A(u) — A(M), (u— M)") +/Q(§(Z) + ) (u— M)(u—M)+dZ+/m B(z)(u— M)(u— M)*do <0,

9802

= [|D(u — M)*[I3 + /9(5(2) + ) ((u—M)*)Pdz+ | B(2)((uw— M)*)*do <0,
=u< M.
Similarly, choosing h = (=M — u)* € H!(£2), we obtain

—-M<u

=u € [-M,MNCY Q) (see (7). O

Proposition 5. If hypotheses H(§), H(B), H(f) hold, then

(a) Tin <wu forallue Ky, \ {0};
(b) v < —7ty for allve Ky \ {0}

Proof.
(a) Let u € Ky, \ {0} and consider the set
Sy ={t>0:ti <ul.
Since u € D4 (see (8)), we infer that
Su # 2.
Let t* = sup S,, and suppose that t* < 7. Set
2y ={0<u< 7y} and 07 ={u>7i}.

We have

fzw) = (4 pu> (M| + @u > (M| + ) (@)
for almost all z € 2} (see (6) and recall t* < T) (10)
f(zu) = f(z7i) + fTur) (see (6))
> (n+ )(7ii1) (see (5) and recall the definition of 7)
> (|A1] + ) (t*a1)  for almost all z € 22 (recall t* < 7). (11)
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Then

(A(u), h) + /{ (€ + undz + [ p(epuhdo = /Q F(zwhdz for all h € HY(9)

1) (¢4 (2)) (see (10), (11))
(&(2) + ) (t*01(z)) for almost all z € 2

\YARY
!
BN
=2
*
>
O
+ £

1
see (10), (11))
1€ oo + ) (u — t*6i1)(2)  for almost all z € 2
(see hypothesis H(&) and recall that t* < 7)

= A(u—t"01)(2) <

=u—t"l € Dy (by the strong maximum principle).
This contradicts the maximality of t*. Therefore

T <t

=70 <u forallue K¢+.
(b) Similarly we show that
v -7y forallve K, . 0O
With t t iti ti h t f corem 1.
Proplositlllgr{l%)f I?%Oﬁ)%st égrc}svﬁ(% 717}%5}’%%6%11}?0&1 2n}}\1}7:nz'(slgn n-dimensional subspace of H'({2), then
we can find py € (0,1) small such that

sup[p(u) 1 u € Vi, |lull = pn] <O0.

Proof. All norms on V,, are equivalent. So, we can find p,, € (0,1) small such that
w € Vi, |lul| € pn = |u(z)] < my  for almost all z € £2, (12)
with m, = ming7; (recall that 4y € D). So, for u € V,,, with [lu|| < pp, we have

o(u) < éllul|®* —n Hu||g for some ¢ > 0
(see hypothesis H (), H(), (5) and (12))
< é— 7]61Hu||2 for some ¢; > 0

(since all norms on V;, are equivalent).
Then choosing 7 > |A;| even bigger if necessary (so that 7 > %1), we see that
sup[p(u) 1 u € Vp, |lul]| = pn] < 0. O

Now we are ready for the main result of this paper, which shows that problem (1) admits a whole sequence
of distinct nodal smooth solutions which converge to the trivial solution.

Theorem 7. If hypotheses H(E), H(B), H(f) hold, then problem (1) has a sequence {un},~; C HY(2) of
nodal solutions such that

u, € CY(R) for all n € N and u,, — 0 in C*(02).
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Proof. Proposition 2, Corollary 3 and Proposition 6 permit the use of Theorem 1. So, we can find
{un},>; € Ky such that u, — 0 in HY(92). (13)

Recall that K; C C1(£2) (see (7)). So, we have u,, € C*(£2).
Proposition 4 and the regularity theory of Wang [15] imply that there exist a € (0,1) and é; > 0 such
that

u, € CH*(2) and ||un||cl,a(§) < é forallmeN. (14)
Then from (13), (14) and the compact embedding of C1:*(£2) into C'(2), we have that
U, — 0 in C1(0).
So, we will have
Uy, € [=7h1, 701] \ {£701} for all n = ny. (15)
From Proposition 5 and (6), (15), it follows that
{untnsn, © C*(12) are nodal solutions of (1)
and we have

u, =0 in CY(2). O
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