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In this paper, by using variational methods, we study the following elliptic problem

8>><
>>:

−divA(x,∇u) = λβ(x)uq + f(u) in Ω,

u ≥ 0 in Ω,

u = 0 on ∂Ω

involving a general operator in divergence form of p-Laplacian type (p > 1). In our con-
text, Ω is a bounded domain of R

N , N ≥ 3, with smooth boundary ∂Ω, A is a continuous
function with potential a, λ is a real parameter, β ∈ L∞(Ω) is allowed to be indefinite
in sign, q > 0 and f : [0, +∞) → R is a continuous function oscillating near the origin or
at infinity. Through variational and topological methods, we show that the number of
solutions of the problem is influenced by the competition between the power uq and the
oscillatory term f . To be precise, we prove that, when f oscillates near the origin, the
problem admits infinitely many solutions when q ≥ p − 1 and at least a finite number
of solutions when 0 < q < p − 1. While, when f oscillates at infinity, the converse holds
true, that is, there are infinitely many solutions if 0 < q ≤ p − 1, and at least a finite
number of solutions if q > p − 1. In all these cases, we also give some estimates for
the W 1,p and L∞-norm of the solutions. The results presented here extend some recent
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contributions obtained for equations driven by the Laplace operator, to the case of the
p-Laplacian or even to more general differential operators.

Keywords: Dirichlet problems; elliptic operators; p-Laplacian operator; infinitely many
solutions; variational methods.
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1. Introduction

Competition phenomena in elliptic equations have been widely studied in the litera-
ture in different contexts. After the seminal work [4], where Ambrosetti, Brezis and
Cerami studied a Laplacian equation involving a concave–convex nonlinearity, a lot
of papers appeared on this subject (see, for instance, [5, 6, 10, 15, 16, 18–20, 27]
and the references therein). Also when dealing with singular terms, the interac-
tions with different type of nonlinearities were investigated: see, for instance, [8]
for supercritical nonlinearities, [21, 28, 29] for equations involving superlinear and
subcritical terms, [1] for the concave–convex setting and [12] for the asymptotically
linear case, just to name a few.

Equations driven by the p-Laplace operator, or, more generally, by operators in
divergence form of p-Laplacian type were widely studied recently in the literature
(see, e.g., [1, 10, 17, 14, 24] and the references therein).

In this paper we are interested in problems driven by general operators of
p-Laplacian type involving oscillatory terms, in presence of a concave or convex
power. Usually, equations involving oscillatory nonlinearities give infinitely many
distinct solutions (see, e.g., [25, 26, 30] and references therein for more details), but
the presence of an additional term may alter the situation. For instance, in [22]
the authors studied a Laplacian equation with an oscillatory term in presence of a
power and they showed that the number of solutions depend strongly on this power:
when there is an oscillatory term near the origin the equation under consideration
admits infinitely many distinct solutions if the power is convex, while it has a finite
number of distinct solution when the power is concave. In the case of oscillations
at infinity, the converse result holds true.

The aim of the present paper is to extend some of the results obtained in [22]
to a general class of quasilinear equations of p-Laplacian type. Precisely, here we
deal with the following problem


−divA(x,∇u) = λβ(x)uq + f(u) in Ω,

u ≥ 0 in Ω,

u = 0 on ∂Ω,

(1.1)

where Ω ⊂ R
N , N ≥ 3, is a bounded domain with smooth boundary ∂Ω, q > 0

and λ ∈ R are parameters, while β ∈ L∞(Ω) and f : [0, +∞) → R is a continuous
function.
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We also assume that A : Ω × R
N → R

N is a function such that

A is continuous in Ω × R
N ; (1.2)

there exist p > 1 and two positive constants Γ1 ≤ Γ2 such that

A(x, ξ) · ξ ≥ Γ1|ξ|p and |A(x, ξ)| ≤ Γ2|ξ|p−1 for all (x, ξ) ∈ Ω × R
N ; (1.3)

A = ∇ξa. (1.4)

Here, a : Ω × R
N → R is the potential of A (with respect to the second variable)

and satisfies the following conditions:

a is continuous in Ω × R
N ; (1.5)

a(x, 0) = 0 and a(x, ξ) = a(x,−ξ) for all (x, ξ) ∈ Ω × R
N ; (1.6)

a(x, ·) is strictly convex in R
N for all x ∈ Ω. (1.7)

Assumptions (1.2)–(1.7) are natural structural conditions. As a model for A we
can take the function

A(x, ξ) = |ξ|p−2ξ,

(of course, in this case a(x, ξ) = |ξ|p/p) which gives rise to the well-known p-Laplace
operator ∆p, defined as

∆pu := div(|∇u|p−2∇u).

The purpose of this paper is to study the number and the behavior of the
solutions of problem (1.1), when f oscillates near the origin or at infinity. This
analysis will be carried on using variational and topological techniques. In the
sequel, we state our main results, treating separately the two cases, that is, when
the nonlinearity f oscillates near the origin or at infinity, respectively.

Finally, we would like to emphasize that the coefficient β ∈ L∞(Ω) in prob-
lem (1.1) is allowed to be indefinite in sign, as suggested by several well-known
works (see, for instance, [2, 3, 7, 15, 16] and references therein).

The plan of the paper is as follows. In Sec. 2 we will state the main results
of the paper in the two different situations when f oscillates near the origin or at
infinity. In Sec. 3 we will comment the assumptions on the data of problem (1.1). In
Sec. 4 we will consider an auxiliary problem and for it we will prove the existence
of solutions by direct minimization. Finally, in Sec. 5 we will study problem (1.1)
in presence of an oscillation term near zero, while Sec. 6 is devoted to the case of
oscillations at infinity.

We refer to the recent books by Brezis [9] and Ciarlet [11] for related results
and complements.

2. Main Results

This section is devoted to the main results of the paper, where we prove the
existence of infinitely many solutions for problem (1.1) in these two different
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contexts:

(i) f oscillating near the origin and q ≥ p − 1;
(ii) f oscillating at infinity and 0 < q ≤ p − 1,

while, in the remaining cases, that is, when

(iii) f oscillates near the origin and 0 < q < p − 1;
(iv) f oscillates at infinity and q > p − 1,

we show the existence of at least a finite number of solutions. Here p is the parameter
appearing in (1.3).

In all these cases we assume that f : [0, +∞) → R is a continuous function. Also,
we denote by F the function

F (s) :=
∫ s

0

f(t)dt (2.1)

for any s > 0.
As usual, here and in the sequel, W 1,p

0 (Ω) will denote the closure of C∞
0 (Ω) with

respect to the norm

‖u‖W 1,p
0 (Ω) :=

(∫
Ω

|∇u(x)|pdx

)1/p

.

2.1. Oscillation near the origin

In this framework we assume that the following conditions are satisfied:

lim inf
s→0+

f(s)
sp−1

=: −�0 ∈ [−∞, 0); (2.2)

−∞ < lim inf
s→0+

F (s)
sp

≤ lim sup
s→0+

F (s)
sp

= +∞, (2.3)

where p is the parameter given in (1.3) and F is the function defined in (2.1).
As a model for f we can take the function

f(s) =

{
αsα−1(1 − sin s−σ) + σsα−σ−1 cos s−σ − pγsp−1 if s > 0,

0 if s = 0,

where α, σ and γ are such that 1 < σ + 1 < α < p and γ > 0. Note that f is
continuous in [0, +∞) and F is the following function

F (s) =
∫ s

0

f(t)dt = sα(1 − sin s−σ) − γsp, s > 0.

Another prototype for f is given by

f(s) =

{
αsα−1 cos2 s−σ − 2σsα−σ−1 cos s−σ sin s−σ − pγsp−1 if s > 0,

0 if s = 0,

where α, σ and γ are such that 1 < α < p, σ > 0, α − σ > 1 and γ > 0. Thanks to
these choices of the parameters f is continuous in [0, +∞). Also F is the following
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function

F (s) =
∫ s

0

f(t)dt = sα cos2 s−σ − γsp, s > 0.

In both examples, we deduce by direct calculations that f and F satisfy assump-
tions (2.2) and (2.3).

In this setting our main result can be stated as follows.

Theorem 2.1. Let Ω ⊂ R
N , N ≥ 3, be a bounded domain with smooth boundary,

λ ∈ R and let A : Ω×R
N →R

N and a : Ω×R
N →R be two functions satisfying (1.2)–

(1.4) and (1.5)–(1.7), respectively. Assume that β ∈ L∞(Ω) and f ∈ C([0, +∞); R)
satisfies (2.2) and (2.3). If either

(a) q = p − 1, �0 ∈ (0, +∞) and λβ(x) < λ0 a.e. x ∈ Ω for some λ0 ∈ (0, �0) or
(b) q = p − 1, �0 = +∞ and λ ∈ R is arbitrary or
(c) q > p − 1 and λ ∈ R is arbitrary,

then there exists a sequence {uj}j in W 1,p
0 (Ω) of distinct weak solutions of prob-

lem (1.1) such that

lim
j→+∞

‖uj‖W 1,p
0 (Ω) = lim

j→+∞
‖uj‖L∞(Ω) = 0. (2.4)

While, if 0 < q < p − 1, then for every k ∈ N there exists Λk > 0 such that
problem (1.1) has at least k distinct weak solutions u1, . . . , uk ∈ W 1,p

0 (Ω) such that

‖uj‖W 1,p
0 (Ω) ≤ 1/j and ‖uj‖L∞(Ω) ≤ 1/j, j = 1, . . . , k (2.5)

provided |λ| < Λk.

Assumption (2.2) yields the existence of solutions for problem (1.1), while (2.3)
allows us to deduce some information about the number of the solutions.

We also would like to note that assertion (b) covers also the case when the power
q is critical or supercritical, that is the case when q ≥ p∗, where

p∗ = Np/(N − p), N > p (2.6)

is the Sobolev critical exponent.

2.2. Oscillation at infinity

In this framework we assume that the following assumptions hold true:

lim inf
s→+∞

f(s)
sp−1

=: −�∞ ∈ [−∞, 0); (2.7)

−∞ < lim inf
s→+∞

F (s)
sp

≤ lim sup
s→+∞

F (s)
sp

= +∞, (2.8)

where p is the parameter given in (1.3) and F is as in (2.1).
As in the case of the oscillations near the origin, here we can construct a proto-

type for f as follows:

f(s) = αsα−1(1 − sin sσ) − σsα+σ−1 cos sσ − pγsp−1,
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where α, σ and γ are such that α > p, σ > 0 and γ > 0. Note that f is continuous
in [0, +∞) and F is the following function

F (s) =
∫ s

0

f(t)dt = sα(1 − sin sσ) − γsp, s > 0.

Also in this case, direct calculations show that f and F satisfy assumptions (2.7)
and (2.8).

In this setting the counterpart of Theorem 2.1 can be stated as follows.

Theorem 2.2. Let Ω ⊂ R
N , N ≥ 3, be a bounded domain with smooth boundary,

λ ∈ R and let A : Ω×R
N →R

N and a : Ω×R
N →R be two functions satisfying (1.2)–

(1.4) and (1.5)–(1.7), respectively. Assume that β ∈ L∞(Ω) and f ∈ C([0, +∞); R)
satisfies (2.7), (2.8) and f(0) = 0. If either

(a) q = p− 1, �∞ ∈ (0, +∞) and λβ(x) < λ∞ a.e. x ∈ Ω for some λ∞ ∈ (0, �∞) or
(b) q = p − 1, �∞ = +∞ and λ ∈ R is arbitrary or
(c) 0 < q < p − 1 and λ ∈ R is arbitrary,

then there exists a sequence {uj}j in W 1,p
0 (Ω) of distinct weak solutions of prob-

lem (1.1) such that

lim
j→+∞

‖uj‖L∞(Ω) = +∞ . (2.9)

While, if q > p − 1, then for every k ∈ N there exists Λk > 0 such that prob-
lem (1.1) has at least k distinct weak solutions u1, . . . , uk ∈ W 1,p

0 (Ω) such that

‖uj‖L∞(Ω) ≥ j − 1, j = 1, . . . , k (2.10)

provided |λ| < Λk.

As in the case when there is an oscillation near the origin, here assumption (2.7)
is used in order to prove the existence of solutions for problem (1.1), while (2.8)
guarantees that these solutions are infinitely many, when 0 < q ≤ p − 1, and at
least a finite number, if q > p − 1.

In all the situations, that is, when there is an oscillation near zero or at infinity
and for any value of q, the idea is to prove the existence of solutions for problem (1.1)
using variational method. More precisely, we first consider an auxiliary problem
and, under suitable assumptions on the data, we prove the existence of solutions
for this equation studying the associated energy functional and proving that this
functional admits a minimum, using the direct methods of the calculus of variations
(see Theorem 4.1). Next, we apply Theorem 4.1 to problem (1.1), in order to get
Theorems 2.1 and 2.2.

3. Some Comments on the Assumptions

In this section we comment the assumptions on the data of problem (1.1) and we
prove some preliminary results which will be useful in the sequel.
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First of all, we would like to emphasize that the technical assumptions (1.2)–
(1.7) appeared very recently in [14], where the authors studied elliptic equations
involving operators in divergence form and proved the existence of at least three
non-trivial weak solutions for their problem.

Now, we derive some relations involving A and a. Since a is the potential of A

and (1.6) holds true, it is easily seen that for any (x, ξ) ∈ Ω × R
N

a(x, ξ) =
∫ 1

0

d(a(x, tξ))
dt

dt =
∫ 1

0

A(x, tξ) · ξ dt, (3.1)

thanks to (1.6).
Furthermore, assumption (1.3) implies∫ 1

0

A(x, tξ) · ξ dt =
∫ 1

0

1
t
A(x, tξ) · tξ dt ≥ Γ1

p
|ξ|p (3.2)

and ∫ 1

0

A(x, tξ) · ξ dt ≤ |ξ|
∫ 1

0

|A(x, tξ)| dt ≤ Γ2

p
|ξ|p (3.3)

for any (x, ξ) ∈ Ω × R
N .

Hence, as a consequence of (3.1)–(3.3), we easily get that

Γ1

p
|ξ|p ≤ a(x, ξ) ≤ Γ2

p
|ξ|p, (3.4)

for every (x, ξ) ∈ Ω × R
N .

Thus, for every u ∈ W 1,p
0 (Ω),

Γ1

p
‖u‖p

W 1,p
0 (Ω)

≤
∫

Ω

a(x,∇u(x))dx ≤ Γ2

p
‖u‖p

W 1,p
0 (Ω)

, (3.5)

that is

u 	→
∫

Ω

a(x,∇u(x))dx

is a norm on W 1,p
0 (Ω) which is equivalent to the usual one.

In the literature, when dealing with general second-order operators in divergence
form, the standard condition required on a is the p-uniformly convexity, that is, that
there exists a constant K > 0 such that

a

(
x,

ξ + η

2

)
≤ 1

2
a(x, ξ) +

1
2

a(x, η) − K|ξ − η|p, (3.6)

for every x ∈ Ω and ξ, η ∈ R
N (see, for instance, [17, 24] and references therein).

We would like to note that condition (1.7) is weaker than (3.6). Indeed, the function
a(x, ξ) = |ξ|p/p satisfies (1.7) for any p > 1, while verifies (3.6) just when p ≥ 2
(see [17]).

Before ending this section, we would like to discuss a property of the function
f , which will be useful in the sequel. As a consequence of assumptions (2.2) and
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(2.3) we have that

f(0) = 0. (3.7)

Indeed, suppose that f(0) = L ∈ R\{0}. Then, by the continuity of f and (2.2) we
would get

lim
s→0+

f(s)
sp−1

= −∞,

so that, by l’Hôpital’s rule we would deduce that

lim
s→0+

F (s)
sp

= lim
s→0+

f(s)
psp−1

= −∞,

which contradicts (2.3). Hence, assertion (3.7) holds true.

4. An Auxiliary Problem

In this section we consider the problem{
−divA(x,∇u) + K(x)|u|p−2u = h(x, u) in Ω,

u = 0 on ∂Ω.
(PK

h )

Here, we assume that K : Ω → R is such that

K ∈ L∞(Ω) with ess inf
x∈Ω

K(x) > 0, (4.1)

while h : Ω × [0, +∞)→R is a Carathéodory function satisfying the following
conditions:

h(x, 0) = 0 for a.e. x ∈ Ω; (4.2)

there exists M > 0 such that |h(x, s)| ≤ M for a.e. x ∈ Ω and for any s ≥ 0; (4.3)

there exist δ and η, with 0 < δ < η, such that

h(x, s) ≤ 0 for a.e. x ∈ Ω and for any s ∈ [δ, η]. (4.4)

In the sequel we extend the function h on the whole Ω × R by taking h(x, s) = 0
for a.e. x ∈ Ω and s < 0.

The aim of this section is to prove the existence of a non-negative weak solution
for problem (PK

h ), that is, a non-negative solution of the following problem:


∫
Ω

A(x,∇u(x))∇ϕ(x)dx +
∫

Ω

K(x)|u(x)|p−2u(x)ϕ(x)dx

=
∫

Ω

h(x, u(x))ϕ(x)dx for any ϕ ∈ W 1, p
0 (Ω),

u ∈ W 1, p
0 (Ω).

(4.5)

Problem (4.5) has a variational nature and the energy functional EK, h : W 1,p
0

(Ω) → R associated with it is defined as follows

EK, h(u) =
∫

Ω

a(x,∇u(x))dx +
1
p

∫
Ω

K(x)|u(x)|p dx −
∫

Ω

H(x, u(x))dx, (4.6)
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where

H(x, s) :=
∫ s

0

h(x, t)dt for any s ∈ R. (4.7)

Due to (3.5), hypotheses (4.1)–(4.4) and the embedding properties of the space
W 1,p

0 (Ω) into the Lebesgue spaces, it is easy to see that EK, h is well defined. More-
over, standard arguments show that EK, h is of class C1 on W 1,p

0 (Ω).
Hence, finding non-negative solutions of problem (4.5) means looking for non-

negative critical points of the functional EK, h. At this purpose, we introduce the
set W η defined as follows:

W η := {u ∈ W 1,p
0 (Ω) : ‖u‖L∞(Ω) ≤ η},

where η is the positive parameter given in (4.4).
The main result of this section is given in the following theorem.

Theorem 4.1. Let Ω ⊂ R
N , N ≥ 3, be a bounded domain with smooth boundary,

λ ∈ R and let A : Ω × R
N → R

N and a : Ω × R
N → R be two functions satisfying

(1.2)–(1.4) and (1.5)–(1.7), respectively. Assume that K : Ω→R is a function ver-
ifying (4.1) and that h : Ω × [0, +∞) → R is a Carathéodory function satisfying
(4.2)–(4.4). Then,

(i) the functional EK, h is bounded from below on W η and its infimum is attained
at some uη ∈ W η;

(ii) uη ∈ [0, δ], where δ is the positive parameter given in (4.4);
(iii) uη is a non-negative weak solution of problem (PK

h ).

Proof. Let us start by proving assertion (i). First of all, it is easy to see that the
set W η is convex. Moreover, W η is closed in W 1,p

0 (Ω). To see this, let {uj}j be a
sequence in W η such that uj → u in W 1,p

0 (Ω) as j → +∞.
We claim that u ∈ W η. Of course u ∈ W 1,p

0 (Ω). Furthermore, by assumption
{uj}j is bounded in L∞(Ω). Since L∞(Ω) is the dual space of L1(Ω), which is a
separable Banach space, then by [9, Corollary III.26] we get that uj → u in the
weak∗ topology of L∞(Ω) as j → +∞. Hence, [9, Proposition III.12] yields that,
up to a subsequence, still denoted by {uj}j ,

lim inf
j→+∞

‖uj‖L∞(Ω) ≥ ‖u‖L∞(Ω).

As a consequence of this and taking into account that

‖uj‖L∞(Ω) ≤ η

for any j ∈ N, we get that

‖u‖L∞(Ω) ≤ η,

that is u ∈ W η, which proves the claim.
Thus, since W η is convex and closed in W 1,p

0 (Ω), then it is weakly closed in
W 1,p

0 (Ω) by [9, Theorem III.7].
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Now, let us consider the functional EK, h. One can easily see that EK, h is sequen-
tially weakly lower semicontinuous (see [13, Lemma 3.4.3] for details). Moreover,
note that (3.5), (4.1), (4.3) and the definition of H yield that the functional EK, h

is bounded from below on W η. Indeed, for any u ∈ W η

EK, h(u) =
∫

Ω

a(x,∇u(x))dx +
1
p

∫
Ω

K(x)|u(x)|p dx −
∫

Ω

H(x, u(x))dx

≥ Γ1

p
‖u‖p

W 1,p
0 (Ω)

−
∫

Ω

H(x, u(x))dx

≥ −
∫

Ω

H(x, u(x))dx

≥ −M

∫
Ω

|u(x)|dx

≥ −ηML(Ω),

where L(Ω) denotes the Lebesgue measure of Ω.
Let us denote by αη the infimum of EK, h on W η, that is,

αη := inf
u∈W η

EK, h(u) > −∞. (4.8)

It is easily seen that for every k ∈ N, there exists uk ∈ W η such that

αη ≤ EK, h(uk) ≤ αη +
1
k

. (4.9)

Also, since uk ∈ W η and thanks to (4.3), we get∫
Ω

a(x,∇uk(x))dx +
1
p

∫
Ω

K(x)|uk(x)|pdx =
∫

Ω

H(x, uk(x))dx + EK, h(uk)

≤ ηML(Ω) + EK, h(uk)

≤ ηML(Ω) + αη +
1
k

≤ ηML(Ω) + αη + 1,

for every k ∈ N. Thus, by (3.5) and (4.1)

‖uk‖p

W 1,p
0 (Ω)

≤ p

Γ1
(ηML(Ω) + αη + 1), (4.10)

for every k ∈ N. Then, the sequence {uk}k is bounded in W 1,p
0 (Ω) and so, up to a

subsequence, still denoted by {uk}k,

uk → uη weakly in W 1,p
0 (Ω) (4.11)

as k → +∞ for some uη ∈ W 1,p
0 (Ω).

Now, let us show that uη is the minimum of EK, h we are looking for. At this
purpose, first of all note that uη ∈ W η, since W η is weakly closed in W 1,p

0 (Ω).
Thus, by (4.8)

EK, h(uη) ≥ αη. (4.12)
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On the other hand, thanks to the sequential weak lower semicontinuity of EK, h,
(4.9) and (4.11), we obtain that

αη ≥ lim inf
k→+∞

EK, h(uk) ≥ EK, h(uη).

By this and (4.12) we obtain that

EK, h(uη) = αη.

This and (4.8) conclude the proof of statement (i).
Now, let us prove (ii). At this purpose, let δ be as in assumption (4.4) and let

B the following set

B := {x ∈ Ω : uη(x) /∈ [0, δ]}.
We argue by contradiction and we suppose that L(B) > 0.

Let γ : R → R be the function given by

γ(s) := min{s+, δ},
where s+ = max{s, 0}. Also, set w := γ ◦ uη, that is

w(x) =




δ if uη(x) > δ,

uη(x) if 0 ≤ uη(x) ≤ δ,

0 if uη(x) < 0,

for a.e. x ∈ Ω.
Since γ is a Lipschitz function and γ(0) = 0, the theorem of Marcus–Mizel (see

[9]) shows that w ∈ W 1,p
0 (Ω). Moreover, 0 ≤ w(x) ≤ δ for a.e. Ω. Consequently,

w ∈ W η, being δ < η, by assumption (4.4).
We introduce the sets

B1 := {x ∈ Ω : uη(x) < 0}
and

B2 := {x ∈ Ω : uη(x) > δ}.
Thus, B = B1 ∪B2, and we have that w(x) = uη(x) for a.e. x ∈ Ω\B, w(x) = 0 for
a.e. x ∈ B1, and w(x) = δ for a.e. x ∈ B2.

As a consequence of this and of (1.6) we get(∫
Ω

a(x,∇w(x))dx −
∫

Ω

a(x,∇uη(x))dx

)
= −

∫
B

a(x,∇uη(x))dx,

from which it follows that

EK, h(w) − EK, h(uη) =
(∫

Ω

a(x,∇w(x))dx −
∫

Ω

a(x,∇uη(x))dx

)

+
1
p

∫
Ω

K(x)(|w(x)|p − |uη(x)|p)dx
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−
∫

Ω

(H(x, w(x)) − H(x, uη(x)))dx

= −
∫

B

a(x,∇uη(x))dx +
1
p

∫
B

K(x)(|w(x)|p − |uη(x)|p)dx

−
∫

B

(H(x, w(x)) − H(x, uη(x)))dx. (4.13)

Since ess infx∈ΩK(x) > 0 by (4.1), one has∫
B

K(x)(|w(x)|p − |uη(x)|p)dx = −
∫

B1

K(x)|uη(x)|pdx

+
∫

B2

K(x)(δp − |uη(x)|p)dx ≤ 0. (4.14)

Moreover, due to the fact that h(x, s) = 0 for a.e. x ∈ Ω and all s ≤ 0, then∫
B1

(H(x, w(x)) − H(x, uη(x)))dx = 0, (4.15)

while, by the mean value theorem, for a.e. x ∈ B2, there exists θ(x) ∈ [δ, uη(x)] ⊆
[δ, η] such that

H(x, w(x)) − H(x, uη(x)) = H(x, δ) − H(x, uη(x)) = h(x, θ(x))(δ − uη(x)).

Thus, taking into account (4.4) and the definition of B2, one has∫
B2

(H(x, w(x)) − H(x, uη(x)))dx =
∫

B2

h(x, θ(x))(δ − uη(x))dx ≥ 0. (4.16)

Hence, by (4.15) and (4.16), we get that∫
B

(H(x, w(x)) − H(x, uη(x)))dx ≥ 0. (4.17)

As a consequence of (4.13), (4.14), (4.17) and taking into account (3.5), we get

EK, h(w) − EK, h(uη) ≤ 0. (4.18)

On the other hand, since w ∈ W η, it is easy to see that EK, h(w) ≥ EK, h(uη).
By this and (4.18) we get that

EK, h(w) = EK, h(uη). (4.19)

Since (4.19) holds true and all the integrals in the right-hand side of (4.13) are
non-negative, it is easy to see that every integral term in (4.13) should be zero. In
particular, ∫

B1

K(x)|uη(x)|p =
∫

B2

K(x)(|uη(x)|p − δp)dx = 0.

Due to the definition of B1 and B2 and to (4.1), we necessarily have L(B1) =
L(B2) = 0, that is L(B) = 0, contradicting our assumption. Thus, assertion (ii) is
proved.
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Finally, let us show (iii). For this let us fix ϕ ∈ C∞
0 (Ω) and let

ε0 :=
η − δ

‖ϕ‖L∞(Ω) + 1
> 0,

where δ and η are given as in (4.4). Moreover, let E : [−ε0, ε0] → R be the function
defined as

E(ε) = EK, h(uη + εϕ).

First of all, note that, since (ii) holds true, for any ε ∈ [−ε0, ε0] we have

|uη(x) + εϕ(x)| ≤ |uη(x)| + ε|ϕ(x)|

≤ uη(x) +
η − δ

‖ϕ‖L∞(Ω) + 1
‖ϕ‖L∞(Ω)

≤ δ + η − δ = η,

for a.e. x ∈ Ω. So, uη + εϕ ∈ W η .
Consequently, due to (i), one has E(ε) ≥ E(0) for every ε ∈ [−ε0, ε0], that is

0 is an interior minimum point for E. Then, since E is differentiable at 0, it is
easy to see that E′(0) = 0 and so also 〈E ′

K, h(uη), ϕ〉 = 0. Taking into account
that ϕ ∈ C∞

0 (Ω) is arbitrary and using the definition of EK, h, we obtain that uη

is a weak solution of problem (PK
h ) (that is a solution of (4.5)). Of course, uη is

non-negative in Ω thanks to (ii) and this ends the proof of (iii).

We would like to note that, as a consequence of (1.3), it is easily seen that
A(x, 0) = 0 for any x ∈ Ω. Hence, since also h(x, 0) = 0 a.e. x ∈ Ω by (4.2),
the function u ≡ 0 is a weak solution of problem (PK

h ). Theorem 4.1 does not
guarantee that the solution uη of problem (PK

h ) is not the trivial one. In spite of
this, by Theorem 4.1 we will derive the existence of non-trivial solutions for the
original problem (1.1), provided the nonlinear term f is chosen appropriately.

We conclude this section by constructing a special function which will be useful
in the proof of our main theorems. In the sequel, let x0 ∈ Ω and r > 0 be such that
B(x0, r) ⊂ Ω. For any s > 0 we define the function zs as follows:

zs(x) :=




0 if x ∈ Ω\B(x0, r),

2s

r
(r − |x − x0|) if x ∈ B(x0, r)\B(x0, r/2),

s if x ∈ B(x0, r/2).

(4.20)

It is clear that zs ≥ 0 in Ω and zs ∈ W 1,p
0 (Ω). Moreover, ‖zs‖L∞(Ω) = s and

‖zs‖p

W 1,p
0 (Ω)

=
∫

Ω

|∇zs(x)|p dx ≤ 2pspωNrN

rp
≡ C(r, p, N)sp, (4.21)

where C(r, p, N) is a positive constant and ωN is the volume of the unit ball in R
N .
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We also introduce the truncation function τη : [0, +∞) → R defined as

τη(s) := min{η, s} (4.22)

for any s ≥ 0, where η is the positive constant given in assumption (4.4). Note that
τη is a continuous function in [0, +∞).

5. Oscillation Near the Origin

In this section we study problem (1.1) in the case when the nonlinear term f

oscillates near the origin.
In order to prove Theorem 2.1 we first give an auxiliary result obtained as a

consequence of Theorem 4.1. Precisely, we prove the existence of infinitely many
solutions for problem (PK

h ) under the following assumptions on the function h:

there exists s̄ > 0 such that sup
s∈[0,s̄]

|h(·, s)| ∈ L∞(Ω); (5.1)

there exist two sequences {δj}j and {ηj}j with 0 < ηj+1 < δj < ηj and

lim
j→+∞

ηj = 0 such that h(x, s) ≤ 0 for a.e. x ∈ Ω

and for every s ∈ [δj , ηj ], j ∈ N; (5.2)

−∞ < lim inf
s→0+

H(x, s)
sp

≤ lim sup
s→0+

H(x, s)
sp

= +∞ uniformly for a.e. x ∈ Ω,

(5.3)

where H is the function given in (4.7).
In this setting our result for problem (PK

h ) is the following theorem.

Theorem 5.1. Let Ω ⊂ R
N , N ≥ 3, be a bounded domain with smooth boundary,

λ ∈ R and let A : Ω × R
N → R

N and a : Ω × R
N → R be two functions satisfying

(1.2)–(1.4) and (1.5)–(1.7), respectively. Moreover, assume that K : Ω→R satisfies
(4.1) and h : Ω× [0, +∞)→R is a Carathéodory function verifying (4.2) and (5.1)–
(5.3).

Then, there exists a sequence {uj}j ⊂W 1,p
0 (Ω) of distinct non-trivial non-

negative weak solutions of problem (PK
h ) such that

lim
j→+∞

‖uj‖W 1,p
0 (Ω) = lim

j→+∞
‖uj‖L∞(Ω) = 0. (5.4)

Proof. Since ηj → 0 as j → +∞, by (5.2), without loss of generality, we may
assume that

δj < ηj < s̄ (5.5)

for j sufficiently large, where s̄ > 0 comes from (5.1).
For every j ∈ N, let hj : Ω × [0, +∞) → R be the function defined by

hj(x, s) = h(x, τηj (s)), (5.6)
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and

Hj(x, s) :=
∫ s

0

hj(x, t)dt

for a.e. x ∈ Ω and s ≥ 0, where τηj is the function defined in (4.22) with η = ηj .
Also, in what follows for any j ∈ N we denote by

Ej := EK, hj , (5.7)

where EK, hj is the functional given in (4.6), with h = hj . Note that Ej is the energy
functional associated with problem (PK

hj
), that is (PK

h ) with h = hj .
The function hj verifies all the assumptions of Theorem 4.1 for j ∈ N large

enough. Indeed, due to the regularity of h, the continuity of τη and (4.2), the
function hj is Carathéodory and such that hj(x, 0) = 0 a.e. x ∈ Ω. Moreover, by
(5.1), (5.5) and (5.6), hj satisfies (4.3). Finally, condition (4.4) comes from (5.2).

Hence, as a consequence of Theorem 4.1, for j sufficiently large there exists
uj ∈ W ηj such that

min
u∈W ηj

Ej(u) = Ej(uj) (5.8)

uj(x) ∈ [0, δj] for a.e. x ∈ Ω, (5.9)

and

uj is a non-negative weak solution of (PK
hj

). (5.10)

By the definition of τη, (5.6) and the fact that uj(x) ≤ δj < ηj a.e. x ∈ Ω, then

hj(x, uj(x)) = h(x, τηj (uj(x)) = h(x, uj(x))

a.e. x ∈ Ω. Thus, by this and (5.10), uj is a non-negative weak solution not only
for (PK

hj
) but also for problem (PK

h ).
To conclude the proof of Theorem 5.1, we have to prove that there are infinitely

many distinct elements in the sequence {uj}j. In order to see this, we first claim
that

Ej(uj) < 0 for j ∈ N large enough. (5.11)

Assumption (5.3) implies the existence of some � > 0 and ζ ∈ (0, η1) such that

ess inf
x∈Ω

H(x, s) ≥ −�sp for all s ∈ (0, ζ) (5.12)

and that there is a sequence {sj}j such that 0 < sj → 0 as j → +∞ (here we use
the definition of H , to take sj > 0) such that

lim
j→+∞

ess inf
x∈Ω

H(x, sj)

sp
j

= +∞, (5.13)

namely, for any L > 0

ess inf
x∈Ω

H(x, sj) > Lsp
j (5.14)

for j ∈ N large enough.
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Since δj↘ 0 as j → +∞, we can choose a subsequence of {δj}j , still denoted by
{δj}j, such that

sj ≤ δj (5.15)

for all j ∈ N.
Now, let us fix j ∈ N sufficiently large and let

zj := zsj ∈ W 1,p
0 (Ω)

be the function defined as in (4.20) with s = sj . Then, zj ∈W 1,p
0 (Ω) and ‖zj‖L∞(Ω) =

sj ≤ δj < ηj by (5.15) and (5.2). Hence, zj ∈ W ηj and 0 ≤ zj(x) ≤ sj ≤ δj < ηj

a.e. x ∈ Ω. This yields that for a.e. x ∈ Ω∫ zj(x)

0

hj(x, t)dt =
∫ zj(x)

0

h(x, τηj (t))dt =
∫ zj(x)

0

h(x, t)dt.

By this and taking into account (3.5), (4.1) and (4.21), for j sufficiently large one
has:

Ej(zj) =
∫

Ω

a(x,∇zj(x))dx +
1
p

∫
Ω

K(x)|zj(x)|pdx −
∫

Ω

Hj(x, zj(x))dx

=
∫

Ω

a(x,∇zj(x))dx +
1
p

∫
Ω

K(x)|zj(x)|pdx −
∫

Ω

H(x, zj(x))dx

≤ C(r, p, N)
Γ2

p
sp

j +
1
p

∫
Ω

K(x)|zj(x)|pdx

−
∫

B(x0,r/2)

H(x, sj)dx −
∫

B(x0,r)\B(x0,r/2)

H(x, zj(x))dx

≤
(

C(r, p, N)
Γ2

p
+ ‖K‖L∞(Ω)

L(Ω)
p

− L(r/2)NωN + �L(Ω)
)

sp
j , (5.16)

thanks to (5.12), (5.14) and using the fact that zj(x) < ηj < η1 (being {ηj}j

decreasing by (5.2)). Here ωN denotes the volume of the unit ball in R
N . Choosing

L > 0 large enough so that

L(r/2)NωN > C(r, p, N)
Γ2

p
+ ‖K‖L∞(Ω)

L(Ω)
p

+ �L(Ω),

we get that, for j large enough

Ej(zj) < 0.

Consequently, using also (5.8), we obtain that, if j is sufficiently large

Ej(uj) = min
u∈W ηj (u)

Ej ≤ Ej(zj) < 0, (5.17)

which proves (5.11). Also, this guarantees that uj �≡ 0 in Ω, being Ej(0) = 0.
Now, we claim that

lim
j→+∞

Ej(uj) = 0. (5.18)
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At this purpose, note that for j ∈ N sufficiently large, by using the definition of Hj ,
(5.1), (5.2), (5.5), (5.6) and (5.9), we have

Ej(uj) ≥ −
∫

Ω

Hj(x, uj(x))dx

= −
∫

Ω

∫ uj(x)

0

h(x, s)ds

≥ −
∫

Ω

sup
s∈[0,s̄]

|h(x, s)|uj(x)dx

≥ −L(Ω)

∥∥∥∥∥ sup
s∈[0,s̄]

|h(·, s)
∥∥∥∥∥

L∞(Ω)

δj . (5.19)

Since limj→+∞ δj = 0 by (5.2), the above inequality and (5.17) leads to (5.18)
and so the claim is proved.

Combining (5.11) and (5.18), we deduce that the sequence {uj}j contains
infinitely many distinct elements, that is problem (PK

h ) has infinitely many dis-
tinct weak solutions.

Finally, it remains to prove relation (5.4). Since ‖uj‖L∞(Ω) ≤ δj for j ∈N suffi-
ciently large by (5.9), and limj→+∞ δj =0 (see (5.2)), we easily get that ‖uj‖L∞(Ω)

→ 0 as j → +∞.
For the latter limit, observe that by (4.1), we have∫

Ω

a(x,∇uj(x))dx ≤
∫

Ω

a(x,∇uj(x))dx +
1
p

∫
Ω

K(x)|uj(x)|pdx

<

∫
Ω

Hj(x, uj(x))dx

=
∫

Ω

H(x, uj(x))dx

≤ L(Ω)

∥∥∥∥∥ sup
s∈[0,s̄]

|h(·, s)|
∥∥∥∥∥

L∞(Ω)

δj ,

thanks to (5.1), (5.9) and (5.11).
Thus, by (3.5) and (5.2) it is easy to see that

lim
j→+∞

‖uj‖p
W 1

0 (Ω)
≤ p

Γ1
lim

j→+∞

∫
Ω

a(x,∇uj(x))dx = 0,

which concludes the proof of the theorem.

Now, we are ready to prove Theorem 2.1. The strategy will consists in applying
Theorems 4.1 and 5.1 with a suitable choice of the functions K and h.

5.1. Proof of Theorem 2.1

First of all, we show that, under suitable assumptions, problem (1.1) has infinitely
many distinct weak solutions, provided q ≥ p − 1. Let us consider separately the
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case when q = p−1 and the one when q > p−1: in both the situations the strategy
will consist in using Theorem 5.1.

Let us start proving assertion (a). In this setting we suppose that q = p − 1,
�0 ∈ (0, +∞) and λ ∈ R is such that λβ(x) < λ0 a.e. x ∈ Ω for some λ0 ∈ (0, �0).
Let us choose λ̃0 ∈ (λ0, �0) and let

K(x) := λ̃0 − λβ(x) and h(x, s) := λ̃0s
p−1 + f(s), (5.20)

a.e. x ∈ Ω and s ≥ 0.
Now, we show that the functions K and h given in (5.20) satisfy all the assump-

tions of Theorem 5.1. First of all, note that K ∈ L∞(Ω) and

ess inf
x∈Ω

K(x) ≥ λ̃0 − λ0 > 0,

thanks to the fact that β ∈ L∞(Ω). Hence, (4.1) is satisfied.
Moreover, using the regularity of f , it is easy to see that h is a continuous

function in Ω × [0, +∞) and h(x, 0) = 0 for any x ∈ Ω, since f(0) = 0, due to
(3.7). Thus, h verifies assumption (4.2). Also, the continuity of s 	→ h(·, s) and the
Weierstrass Theorem yield (5.1). Furthermore, since for any x ∈ Ω and s > 0

H(x, s)
sp

=
λ̃0

p
+

F (s)
sp

,

hypothesis (2.3) immediately implies (5.3).
It remains to show that h satisfies (5.2). At this purpose, note that, by (2.2),

we get that there exists a sequence {sj}j converging to 0 such that

f(sj)
sp−1

j

→ −�0 (5.21)

as j → +∞. Now, since λ̃0 < �0 by assumption, there exists ε > 0 such that
λ̃0 + ε < �0. By this and (5.21) we get that, for j large enough, say j ≥ j∗ ∈ N,

f(sj)
sp−1

j

< −λ̃0. (5.22)

Consequently, by using the continuity of f , there exists a neighborhood of sj , say
(δj , ηj) such that

h(x, s) = λ̃0s
p−1 + f(s) ≤ 0,

for any x ∈ Ω and all s ∈ [δj , ηj ] and j ≥ j∗. Therefore, (5.2) holds too.
Now, we can apply Theorem 5.1 to problem (PK

h ) with K and h given in (5.20).
As a consequence of this, we get the existence of infinitely many distinct non-trivial
non-negative solutions {uj}j for problem (PK

h ), satisfying condition (2.4). Due to
the choice of K and h in (5.20) and taking into account that q = p − 1, it is
easy to see that uj is a weak solution of problem (1.1) and this ends the proof of
Theorem 2.1 in the case q = p − 1.
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Now, let us consider assertion (b). At this purpose, let q = p− 1, �0 = +∞ and
λ ∈ R. In this case we choose λ̃0 ∈ (λ0, �0) and

K(x) := λ̃0 and h(x, s) := (λβ(x) + λ̃0)sp−1 + f(s), (5.23)

a.e. x ∈ Ω and s ≥ 0. In this setting we can argue exactly as in the proof of
assertion (a), just replacing formula (5.22) with the following one

f(sj)
sp−1

j

< −(|λ|‖β‖L∞(Ω) + λ̃0) (5.24)

for j large enough, and taking into account that

h(x, s) = (λβ(x) + λ̃0)sp−1 + f(s) ≤ (|λ|‖β‖L∞(Ω) + λ̃0)sp−1 + f(s).

Now, let us prove assertion (c). At this purpose, let q > p − 1 and λ ∈ R. Let
λ̃0 ∈ (0, �0) and

K(x) := λ̃0 and h(x, s) := λβ(x)sq + λ̃0s
p−1 + f(s), (5.25)

for a.e. x ∈ Ω and s ≥ 0. Also in this setting our aim is to prove that K and h

given in (5.25) satisfy the conditions required by Theorem 5.1.
Clearly, (4.1) and (4.2) are trivially satisfied, also thanks to (2.2). Moreover,

since β ∈ L∞(Ω), the continuity of s 	→ h(·, s) and the Weierstrass Theorem yield
that (5.1) holds true. Moreover, for a.e. x ∈ Ω and s > 0 we have

H(x, s)
sp

= λ
β(x)
q + 1

sq−p+1 +
λ̃0

p
+

F (s)
sp

,

so that hypothesis (2.3) and the fact that q > p − 1 imply (5.3).
Finally, note that for a.e x ∈ Ω and any s ≥ 0, we have

h(x, s) ≤ |λ|‖β‖L∞(Ω)s
q + λ0s

p−1 + f(s). (5.26)

As a consequence of this and of (2.2) we get

lim inf
s→0+

h(x, s)
sp−1

≤ lim inf
s→0+

(
λ| ‖β‖L∞(Ω)s

q−p+1 + λ̃0 +
f(s)
sp−1

)
= λ̃0 − �0 < 0 (5.27)

uniformly a.e. x ∈ Ω, thanks to the choice of q. Thus, there exists a sequence {sj}j

converging to 0 as j → +∞ such that h(x, sj) < 0 for j ∈ N large enough and
uniformly a.e. x ∈ Ω. Thus, by using the continuity of s 	→ h(·, s), there exist two
sequences {δj}j , {ηj}j such that 0 < ηj+1 < δj < sj < ηj , limj→+∞ ηj = 0, and

h(x, s) ≤ 0,

for a.e. x ∈ Ω and all s ∈ [δj , ηj ] and j large enough. Therefore, hypothesis (5.2)
holds. Arguing as in the proof of assertion (a) and applying Theorem 5.1 we get (c).

Finally, let us consider the case when 0 < q < p− 1. In this setting the strategy
will consist in applying Theorem 4.1 to problem (PK

h ) with a suitable choices of K
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and h. At this purpose, let λ̃0 ∈ (0, �0), where �0 > 0 is given in assumption (2.2),
and let

K(x) := λ̃0 and h(x, s, λ) := λβ(x)sq + λ̃0s
p−1 + f(s), (5.28)

a.e. x ∈ Ω, s ≥ 0 and λ ∈ R.
Using the fact that

h(x, s, 0) = λ̃0s
p−1 + f(s),

and arguing as in (5.26)–(5.27), we get that there exist the sequences {δj}j, {ηj}j,

{sj}j and {λj}j such that λj > 0,

0 < ηj+1 < δj < sj < ηj < 1, lim
j→+∞

ηj = 0, (5.29)

and

h(x, s, λ) ≤ 0 (5.30)

a.e. x ∈ Ω, for all s ∈ [δj , ηj ], λ ∈ [−λj , λj ] and j ∈ N large enough.
For any j ∈ N, let hj : Ω × [0, +∞) × [−λj , λj ] → R be the function defined by

hj(x, s, λ) = h(x, τηj (s), λ), (5.31)

and

Hj(x, s, λ) :=
∫ s

0

hj(x, t, λ)dt

for a.e. x ∈ Ω, s ≥ 0 and λ ∈ [−λj , λj ].
Let us prove that K given in (5.28) and hj satisfy all the assumptions of Theo-

rem 4.1. Of course, (4.1) and (4.2) are trivially verified, also thanks to (3.7). More-
over, the regularity of h and the continuity of τη show that hj is a Carathéodory
function. Also, thanks to (5.31), (4.22), the continuity of s 	→ h(·, s, ·) and the
Weierstrass Theorem give that hj satisfies (4.3). Finally, (5.30) and (5.31) yield
(4.4) for j large enough. Hence, hj satisfies all the assumptions of Theorem 4.1 for
j large.

Now, for any j ∈ N let Ej,λ be the energy functional

Ej,λ := EK,hj(·,·,λ), (5.32)

where EK, hj(·,·,λ) is the functional given in (4.6), with h = hj(·, ·, λ). By Theorem 4.1
we get that, for j sufficiently large and provided |λ| ≤ λj , there exists uj,λ ∈ W ηj

such that

min
u∈W ηj

Ej,λ(u) = Ej,λ(uj,λ) (5.33)

uj,λ(x) ∈ [0, δj ] for a.e. x ∈ Ω, (5.34)

and

uj,λ is a non-negative weak solution of (PK
hj(·,·,λ)). (5.35)

Since for j sufficiently large

0 ≤ uj,λ(x) ≤ δj < ηj (5.36)
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a.e. x ∈ Ω by (5.29) and (5.34), we get

hj(x, uj,λ(x), λ) = h(x, uj,λ(x), λ),

so that by (5.28) it is easily seen that uj,λ is a non-negative weak solution of
problem (1.1), provided j is large and |λ| ≤ λj .

It remains to prove that for any k ∈ N problem (1.1) admits at least k distinct
solutions, for suitable values of λ. At this purpose, first of all note that, thanks to
the choices of K and hj and (5.36), the functional Ej,λ is given by

Ej,λ(u) =
∫

Ω

a(x,∇u(x))dx − λ

q + 1

∫
Ω

β(x)|u(x)|q+1 dx −
∫

Ω

F (u(x))dx

= Ej,0(u) − λ

q + 1

∫
Ω

β(x)|u(x)|q+1 dx (5.37)

for any u ∈ W 1,p
0 (Ω).

We claim that there exists an increasing sequence {θj}j such that θj < 0,
limj→+∞ θj = 0 and

θj−1 < Ej,0(uj,0) < θj (5.38)

for j ≥ j∗, with j∗ ∈ N.
First, note that the function

(x, s) 	→ h(x, s, 0) = λ̃0s
p−1 + f(s)

verifies all the assumptions of Theorem 5.1, in particular thanks to (2.3). Hence,
arguing as in the proof of Theorem 5.1 (see, in particular, formulas (5.12)–(5.15))
we get that there exist � > 0 and ζ ∈ (0, η1) such that

F (s) ≥ −�sp for all s ∈ (0, ζ) (5.39)

and that there is a sequence {s̃j}j such that 0 < s̃j → 0 as j → +∞ such that for
any L > 0

F (sj) > Lsp
j (5.40)

for j ∈ N large enough. Also, since δj ↘ 0 as j → +∞, we can choose a subsequence
of {δj}j, still denoted by {δj}j , such that

s̃j ≤ δj (5.41)

for all j ∈ N.
Now, let us fix j ∈ N sufficiently large and let

z̃j := zs̃j ∈ W 1,p
0 (Ω)

be the function defined as in (4.20) with s = s̃j . Arguing as in (5.16), by (5.39) and
(5.40) we get that for j large enough

Ej,0(uj,0) ≤ Ej,0(z̃j) < −C1s̃
p
j =: cj < 0, (5.42)
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for a suitable positive constant C1. Also, as in (5.19) and taking into account the
continuity of f and (5.36), we have that, for j sufficiently large

Ej,0(uj,0) ≥ −
∫

Ω

F (uj,0(x))dx

≥ −
∫

Ω

∫ uj,0(x)

0

|f(s)| ds dx

≥ −
∫

Ω

∫ δj

0

|f(s)| ds dx

≥ −C2δj =: dj < 0, (5.43)

where C2 is a positive constant.
Note that {cj}j and {dj}j are such that dj < cj < 0 for any j ∈N and

limj→+∞ cj = limj→+∞ dj = 0, since {δj}j does, thanks to (5.29). Thus, we can
extract two subsequences, still denoted by {cj}j and {dj}j , such that the above
properties hold true and the sequences {cj}j and {dj}j are non-decreasing. Now,
we define

θj :=

{
cj if j ∈ N is even,

dj if j ∈ N is odd.

As a consequence of this definition and of (5.42) and (5.43) we have that for i large
enough

θ2i−1 = d2i−1 ≤ d2i < E2i,0(u2i,0) < c2i = θ2i,

which, putting 2i = j gives (5.38). Hence, the claim is proved. Note that θj is inde-
pendent of λ, since cj and dj do.

Now, for any j ≥ j∗ let

λ′
j :=

(q + 1)(Ej,0(uj,0) − θj−1)
(‖β‖L∞(Ω) + 1)L(Ω)

, λ′′
j :=

(q + 1)(θj − Ej,0(uj,0))
‖β‖L1(Ω) + 1

. (5.44)

Note that λ′
j and λ′′

j are strictly positive, thanks to (5.38), and they are independent
of λ.

Now, for any fixed k ∈ N, let

Λk := min{λj∗+1, . . . , λj∗+k, λ′
j∗+1, . . . , λ

′
j∗+k, λ′′

j∗+1, . . . , λ
′′
j∗+k}.

Of course, Λk > 0 is independent of λ . Also, if |λ| ≤ Λk, then |λ| ≤ λj for any
j = j∗ + 1, . . . , j∗ + k . As a consequence of this, for any λ ∈ R with |λ| ≤ Λk

uj,λ is a non-negative weak solution of problem (1.1)

for any j = j∗ + 1, . . . , j∗ + k.
Let us show that these solutions are distinct. At this purpose, note that uj,λ ∈

W ηj by (5.36) and so

Ej,0(uj,0) = min
u∈W ηj

Ej,0(u) ≤ Ej,0(uj,λ). (5.45)
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By (5.37) and (5.45), for any λ such that |λ| ≤ Λk we get

Ej,λ(uj,λ) = Ej,0(uj,λ) − λ

q + 1

∫
Ω

β(x)|uj,λ(x)|q+1 dx

≥ Ej,0(uj,0) − |λ|
q + 1

‖β‖L∞(Ω)η
q+1
j L(Ω)

≥ Ej,0(uj,0) − Λk

q + 1
‖β‖L∞(Ω)L(Ω)

≥ Ej,0(uj,0) −
λ′

j

q + 1
‖β‖L∞(Ω)L(Ω)

= θj−1, (5.46)

for any j = j∗ + 1, . . . , j∗ + k, thanks to (5.29), (5.36), the choice of Λk and the
definition of λ′

j .
On the other hand, by (5.42), (5.37) and using the fact that ‖z̃j‖L∞(Ω) = s̃j ≤

δj < ηj < 1 (see (5.29) and (5.41)), for any λ with |λ| ≤ Λk we deduce that

Ej,λ(uj,λ) = min
u∈W ηj

Ej,λ(u)

≤ Ej,λ(z̃j)

= Ej,0(z̃j) − λ

q + 1

∫
Ω

β(x)|z̃j(x)|q+1 dx

≤ Ej,0(z̃j) − λ

q + 1

∫
{x∈Ω:λβ(x)<0}

β(x)|z̃j(x)|q+1 dx

≤ Ej,0(z̃j) − λ

q + 1

∫
{x∈Ω:λβ(x)<0}

β(x)dx

≤ Ej,0(z̃j) +
|λ|

q + 1

∫
{x∈Ω:λβ(x)<0}

|β(x)|dx

≤ Ej,0(z̃j) +
λ

q + 1

∫
Ω

|β(x)|dx

≤ Ej,0(z̃j) +
Λk

q + 1
‖β‖L1(Ω)

≤ Ej,0(z̃j) +
λ′′

j

q + 1
‖β‖L1(Ω)

= θj , (5.47)

for any j = j∗ + 1, . . . , j∗ + k, again thanks to the choice of Λk and the definition
of λ′′

j .
Hence, by (5.46), (5.47) and the properties of {θj}j we deduce that for any

j = j∗ + 1, . . . , j∗ + k

θj−1 < Ej,λ(uj,λ) < θj < 0, (5.48)
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which yields that

E1,λ(u1,λ) < . . . < Ek,λ(uk,λ) < 0,

that is the solutions {u1,λ, . . . , uk,λ} are all distinct and non-trivial, provided
|λ| ≤ Λk.

Finally, let us estimate the W 1,p
0 -norm of uj,λ. For this, by (3.5), (5.29), (5.36),

(5.37) and (5.48) we have that for any j = j∗ + 1, . . . , j∗ + k and |λ| ≤ Λk

Γ1

p
‖uj,λ‖p

W 1,p
0 (Ω)

≤ Ej,λ(uj,λ) +
λ

q + 1

∫
Ω

β(x)|uj,λ(x)|q+1 dx +
∫

Ω

F (uj,λ(x))dx

< θj +
|λ|

q + 1
‖β‖L∞(Ω)δ

q+1
j +

∫
Ω

∫ δj

0

|f(s)| ds dx

<
Λk

q + 1
‖β‖L∞(Ω)δj + C̄δj ,

for a suitable positive constant C̄, that is

‖uj,λ‖W 1,p
0 (Ω) ≤ C̃δ

1/p
j ,

where C̃ > 0. Since δj → 0 as j → +∞, without loss of generality, we may assume
that

δj ≤ min{C̃−p, 1}1/jp (5.49)

and this gives

‖uj,λ‖W 1,p
0 (Ω) ≤ 1/j

for any j = j∗ + 1, . . . , j∗ + k, provided |λ| ≤ Λk, which is the desired assertion.
Finally, by (5.36) and (5.49) it is easily seen that

‖uj,λ‖L∞(Ω) ≤ 1/jp < 1/j

for any j = j∗ + 1, . . . , j∗ + k, provided |λ| ≤ Λk This completes the proof of
Theorem 2.1.

6. Oscillation at Infinity

This section is devoted to the study of problem (1.1) in the case when f oscillates
at infinity.

In order to prove Theorem 2.2 we apply some techniques used in the previous
section. However, for completeness, we give all the details.

Here, we consider again problem (PK
h ), under the following assumptions on the

function h:

for any s ≥ 0 sup
t∈[0,s]

|h(·, t)| ∈ L∞(Ω); (6.1)

there exist two sequences {δj}j and {ηj}j with 0 < δj < ηj < δj+1 and
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lim
j→+∞

δj = +∞ such that h(x, s) ≤ 0 for a.e. x ∈ Ω

and for all s ∈ [δj , ηj ], j ∈ N; (6.2)

−∞ < lim inf
s→+∞

H(x, s)
sp

≤ lim sup
s→+∞

H(x, s)
sp

= +∞ uniformly for a.e. x ∈ Ω, (6.3)

where H is the function given in (4.7).
In this context our existence result for problem (PK

h ) is given by the following
theorem.

Theorem 6.1. Let Ω ⊂ R
N , N ≥ 3, be a bounded domain with smooth boundary,

λ ∈ R and let A : Ω × R
N → R

N and a : Ω × R
N → R be two functions satisfying

(1.2)–(1.4) and (1.5)–(1.7), respectively. Moreover, assume that K : Ω → R satisfies
(4.1) and h : Ω × [0, +∞) → R is a Carathéodory function verifying (4.2) and
(6.1)–(6.3).

Then, there exists a sequence {uj}j ⊂ W 1,p
0 (Ω) of distinct non-negative weak

solutions of problem (PK
h ) such that

lim
j→+∞

‖uj‖L∞(Ω) = +∞. (6.4)

Proof. Here we consider again the function hj and the functional Ej defined in
(5.6) and (5.7), respectively. Taking into account hypotheses (6.1) and (6.2), it is
easily seen that hj fulfills the assumptions of Theorem 4.1 for any j ∈ N. Thus, for
every j ∈ N, there is an element uj ∈ W ηj such that

uj is the minimum point of the functional Ej on W ηj , (6.5)

uj(x) ∈ [0, δj] for a.e. x ∈ Ω, (6.6)

and

uj is a non-negative weak solution of (PK
hj

). (6.7)

Arguing as in the proof of Theorem 5.1 and taking into account the definition
of hj , (6.2) and (6.6), it is easily seen that

hj(x, uj(x)) = h(x, τηj (uj(x))) = h(x, uj(x)),

so that, by (6.7), uj is also a non-negative weak solution of problem (PK
h ).

In order to get the assertion of Theorem 6.1, we need to show that there are
infinitely many distinct elements in the sequence {uj}j. To this end, first of all we
claim that, up to a subsequence,

lim
j→+∞

Ej(uj) = −∞. (6.8)

For this, note that, by (6.3), there exist � > 0 and ζ > 0 such that

ess inf
x∈Ω

H(x, s) ≥ − �sp for all s > ζ (6.9)
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and there exists a sequence {sj}j such that limj→+∞ sj = +∞ and

lim sup
j→+∞

H(x, sj)
sp

j

= +∞,

that is, for any L > 0

ess inf
x∈Ω

H(x, sj) > Lsp
j (6.10)

for j ∈ N sufficiently large.
Since δj ↗ +∞ by (6.2), we can choose a subsequence of {δj}j , still denoted by

{δj}j, such that

sj ≤ δj (6.11)

for all j ∈ N. Let us fix j ∈ N and let

zj := zsj ∈ W 1,p
0 (Ω)

be the function from (4.20) with s = sj . Then, zj ∈ W 1,p
0 (Ω) and ‖zj‖L∞(Ω) = sj ,

so that, by (6.2) and (6.11), 0 ≤ zj(x) ≤ δj < ηj a.e. x ∈ Ω. Taking into account
(3.4), (4.21), (6.9) and (6.10), we have

Ej(zj) =
∫

Ω

a(x,∇zj(x))dx +
1
p

∫
Ω

K(x)|zj(x)|pdx −
∫

Ω

Hj(x, zj(x))dx

≤ C(r, p, N)
Γ2

p
sp

j +
1
p

∫
Ω

K(x)|zj(x)|pdx −
∫

B(x0,r/2)

H(x, sj)dx

−
∫

(B(x0,r)\B(x0,r/2))∩{zj> ζ}
H(x, zj(x))dx

−
∫

(B(x0,r)\B(x0,r/2))∩{zj≤ ζ}
H(x, zj(x))dx

≤
(

C(r, p, N)
Γ2

p
+

‖K‖L∞(Ω)L(Ω)
p

− L(r/2)NωN + �L(Ω)
)

sp
j

+

∥∥∥∥∥ sup
s∈[0, ζ]

|h(·, s)|
∥∥∥∥∥

L∞(Ω)

L(Ω)ζ. (6.12)

Choosing L > 0 sufficiently large, so that

L(r/2)NωN > C(r, p, N)
Γ2

p
+

‖K‖L∞(Ω)L(Ω)
p

+ �L(Ω),

and taking into account that limj→+∞ sj = +∞, by (6.12) we get

lim
j→+∞

Ej(zj) = −∞. (6.13)

On the other hand, using (6.5), we have

Ej(uj) = min
u∈W ηj

Ej(u) ≤ Ej(zj),

so that, by this and (6.13) it easily follows claim (6.8).
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As a consequence of (6.8) we get that the sequence {uj}j has infinitely many
distinct elements (and, in particular, uj �≡ 0 in Ω, being Ej(0) = 0). Indeed, let
us assume that in the sequence {uj}j there is only a finite number of elements,
say {u1, . . . , uk} for some k ∈ N. Consequently, the sequence {Ej(uj)}j reduces to
at most the finite set {E1(u1), . . . , Ek(uk)} and this fact contradicts relation (6.8).
Hence, problem (PK

h ) admits infinitely many distinct weak solutions.
Now, we prove (6.4), arguing by contradiction. We assume that, up to a subse-

quence, still denoted by {uj}j , there exists L > 0 such that

‖uj‖L∞(Ω) ≤ L (6.14)

for all j ∈ N.
Since ηj → +∞ as j → +∞, for j large enough, say j ≥ j∗, with j∗ ∈ N, we

have that ηj ≥ L. As a consequence of this and (6.14), we deduce that

uj ∈ W ηj∗ for any j ≥ j∗. (6.15)

Here we used also the fact that the sequence {ηj}j is increasing by (6.2).
Also, note that, as a consequence of the monotonicity of {ηj}j, it is easy to see

that when u ∈ W ηj and j < k, then u ∈ W ηk , that is

W ηj ⊆ W ηk (6.16)

and this implies that a.e. x ∈ Ω

Hj(x, u(x)) =
∫ u(x)

0

h(x, τηj (t))dt

=
∫ u(x)

0

h(x, t)dt

=
∫ u(x)

0

h(x, τηk
(t))dt

= Hk(x, u(x)), (6.17)

provided u ∈ W ηj .
Furthermore, the sequence {Ej(uj)}j is non-increasing. Indeed, for j < k, by

(6.16) and (6.17) we have

Ej(uj) = min
u∈W ηj

Ej(u)

= min
u∈W ηj

Ek(u)

≥ min
u∈W ηk

Ek(u)

= Ek(uk). (6.18)

Then, by (6.15)–(6.18), for any j ≥ j∗ we get

Ej∗(uj∗) ≥ Ej(uj)

≥ min
u∈W

ηj∗
Ej(u)
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= min
u∈W

ηj∗
Ej∗(u)

= Ej∗(uj∗).

As a consequence,

Ej(uj) = Ej∗(uj∗) for all j ≥ j∗.

This fact contradicts (6.8). Hence, ‖uj‖L∞(Ω) → +∞ as j → +∞ and this concludes
the proof of the theorem.

Requiring the following extra condition on the function h

sup
s∈[0,+∞)

|h(x, s)|
1 + sp∗−1

< +∞ uniformly a.e. x ∈ Ω, (6.19)

where p∗ is the critical Sobolev exponent given in (2.6), we have the next result.

Corollary 6.2. Let all the assumptions of Theorem 6.1 be satisfied. In addition
assume that (6.19) holds true.

Then,

lim
j→+∞

‖uj‖W 1,p
0 (Ω) = +∞,

where {uj}j is the sequence of distinct weak solutions of problem (PK
h ), given by

Theorem 6.1.

Proof. We argue by contradiction and we assume that, up to a subsequence, still
denoted by {uj}j , there exists L > 0 such that for any j ∈ N

‖uj‖W 1,p
0 (Ω) ≤ L. (6.20)

Hence, for any j ∈ N by (3.5) and (6.19) we have

|Ej(uj)| ≤ Γ2

p
‖uj‖p

W 1,p
0 (Ω)

+ ‖K‖L∞(Ω)‖uj‖p
Lp(Ω) + C1

∫
Ω

∫ uj(x)

0

(1 + |s|p∗−1) ds dx

≤ Γ2

p
‖uj‖p

W 1,p
0 (Ω)

+ ‖K‖L∞(Ω)‖uj‖p
Lp(Ω) + C2‖uj‖L1(Ω) + C3‖uj‖p∗

Lp∗(Ω)

(6.21)

for suitable positive constants C1, C2 and C3. Since the Sobolev space W 1,p
0 (Ω)

is continuously embedded into Lγ(Ω) for any γ ∈ [1, p∗], by (6.20) and (6.21) we
easily obtain that the sequence {Ej(uj)}j is bounded in R. This contradicts (6.8)
and this ends the proof of the corollary.

6.1. Proof of Theorem 2.2

We use some techniques developed in the proof of Theorem 2.1. The main idea
consists in applying Theorems 4.1 and 6.1 to problem (P K

h ) with a suitable choice
for the functions K and h appearing in the equation.
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In the case when q = p−1 and �∞ ∈ (0, +∞) we fix λ ∈ R such that λβ(x) < λ∞
a.e. x ∈ Ω for some λ∞ ∈ (0, �∞). In this setting we take λ̃∞ ∈ (λ∞, �∞) and

K(x) := λ̃∞ − λβ(x) and h(x, s) := λ̃∞sp−1 + f(s), (6.22)

for a.e. x ∈ Ω and s ≥ 0, in Theorem 6.1. With the same arguments used in the
proof of Theorem 2.1, it is easily seen that K and h satisfy the assumptions of
Theorem 6.1 (here we use also the fact that f(0) = 0 by assumption) and this gives
the assertion of Theorem 2.2.

In the case when q = p−1 and �∞ = +∞ we take λ ∈ R and we use Theorem 6.1
with

K(x) := λ̃∞ and h(x, s) := (λβ(x) + λ̃∞)sp−1 + f(s), (6.23)

for a.e. x ∈ Ω and s ≥ 0 . The arguments are the same of the ones used in the
previous case.

In the case when 0 < q < p − 1 we choose K and h in Theorem 6.1 as follows:

K(x) := λ̃∞ and h(x, s) := λβ(x)sq + λ̃∞sp−1 + f(s), (6.24)

for a.e. x ∈ Ω and s ≥ 0 , where λ̃∞ ∈ (0, �∞), and we argue as above.
In the case when q > p − 1 the strategy will consist in applying Theorem 4.1

to problem (PK
h ) with a suitable choices of K and h. At this purpose, let λ̃∞ ∈

(λ∞, �∞), where �∞ > 0 is given in assumption (2.7), and let

K(x) := λ̃∞ and h(x, s, λ) := λβ(x)sq + λ̃∞sp−1 + f(s)

a.e. x ∈ Ω, s ≥ 0 and λ ∈ R. Arguing as in the proof of Theorem 2.1 we get the
assertion.

Finally, when q > p − 1 we can adapt the arguments used in the proof of
Theorem 2.1. This ends the proof of Theorem 2.2.

As a consequence of Corollary 6.2, we have the following result.

Corollary 6.3. Let q ≤ p−1 and let all the assumptions of Theorem 2.2 be satisfied.
In addition, assume that

sup
s∈[0,+∞)

|f(s)|
1 + sp∗−1

< +∞, (6.25)

where p∗ is given in (2.6).
Then,

lim
j→+∞

‖uj‖W 1,p
0 (Ω) = +∞,

where {uj}j is the sequence of distinct weak solutions of problem (1.1), given by
Theorem 2.2.

Proof. It is enough to apply Corollary 6.2 with K and h given in (6.22) when
q = p − 1, and in (6.24) when 0 < q < p − 1.
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Let us consider the case when q = p− 1. Note that q > 0, being p > 1. Also, by
(6.25), for s ∈ [0, 1]

|h(x, s)|
1 + sp∗−1

=
λ̃∞sp−1

1 + sp∗−1
+

|f(s)|
1 + sp∗−1

≤ λ̃∞sp−1 +
|f(s)|

1 + sp∗−1

≤ λ̃∞ +
|f(s)|

1 + sp∗−1

≤ λ̃∞ + sup
s∈[0,+∞)

|f(s)|
1 + sp∗−1

< +∞,

while for s > 1 we have

|h(x, s)|
1 + sp∗−1

=
λ̃∞sp−1

1 + sp∗−1
+

|f(s)|
1 + sp∗−1

≤ λ̃∞sp−p∗
+

|f(s)|
1 + sp∗−1

≤ λ̃∞sp−p∗
+ sup

s∈[0,+∞)

|f(s)|
1 + sp∗−1

< +∞,

since p < p∗ and sp−p∗ → 0 as s → +∞. Thus, in any case (6.19) is satisfied.
In the case when 0 < q < p − 1 we argue in a similar way, taking into account

that q < p − 1 < p∗ − 1. This concludes the proof of the corollary.
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[22] A. Kristály and G. H. Moroşanu, New competition phenomena in Dirichlet problems,
J. Math. Pures Appl. (9) 94(6) (2010) 555–570.

[23] M. Marcus and V. Mizel, Every superposition operator mapping one Sobolev space
into another is continuous, J. Funct. Anal. 33 (1979) 217–229.
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