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1. Introduction

Let Ω ⊂ R
N be a bounded domain with a C2-boundary ∂Ω and let p > 2 be a real

number.
In this paper we study the following nonlinear nonhomogeneous elliptic equation

((p, 2)-equation):

−∆pu(z) − ∆u(z) = f(z, u(z)) in Ω, u|∂Ω = 0. (1.1)

Here ∆p denotes the p-Laplacian differential operator defined by

∆pu = div(‖Du‖p−2Du) for all u ∈W 1,p
0 (Ω).

Also f : Ω×R → R is a Carathéodory reaction (that is, for all x ∈ R, the mapping
z �→ f(z, x) is measurable and for a.a. z ∈ Ω, x �→ f(z, x) is continuous). The aim
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of this work is to prove a multiplicity theorem (in particular, a three solutions the-
orem), when the reaction f(z, ·) is (p−1)-linear near ±∞, but exhibits asymmetric
behavior at +∞ and at −∞. More precisely, we assume that the quotient f(z,x)

|x|p−2x

crosses the principal eigenvalue λ̂1(p) > 0 of (−∆p,W
1,p
0 (Ω)) as x ∈ R moves from

−∞ to +∞. Another interesting feature of our framework is that we allow for reso-
nance to occur at both +∞ and −∞. At +∞ the resonance can occur with respect
to the principal eigenvalue λ̂1(p) > 0, while at −∞ with respect to the second
eigenvalue λ̂2(p) > λ̂1(p).

Problems with an asymmetric nonlinearity were studied by Chabrowski and
Yang [5], Chang [6], de Paiva and Massa [11], de Paiva and Presoto [12], Motreanu,
Motreanu and Papageorgiou [18], Perera [25] (for semilinear Dirichlet problems), by
Motreanu, Motreanu and the first author [19] (for nonlinear equations driven by the
Dirichlet p-Laplacian) and by the authors [21] (for semilinear Neumann problems
with an indefinite and unbounded potential). None of the aforementioned works
permits resonance.

We mention that (p, 2)-equations (that is, equations driven by the sum of a
p-Laplacian and a Laplacian, with 2 < p < ∞) arise in mathematical physics
(see [4] (quantum physics) and [7] (plasma physics)). Recently some existence and
multiplicity results for such equations were proved by Cingolani and Degiovanni
[9], Cingolani and Vannella [10], the authors [22, 23], and Sun [28]. However, none
of the aforementioned works treats the asymmetric resonant case. We also refer to
the recent book by Ciarlet [8] for the rigorous qualitative analysis of many models
described by nonlinear partial differential equations.

Our approach combines variational methods based on the critical point theory
with Morse theoretic arguments (critical groups). In the next section, for the con-
venience of the reader, we recall the main mathematical tools that will be used in
the sequel.

2. Mathematical Background

Let X be a Banach space and X∗ be its topological dual. By 〈·, ·〉 we denote the
duality brackets for the pair (X∗, X). Given ϕ ∈ C1(X), we say that ϕ satisfies the
“Cerami condition” (the “C-condition” for short) if the following property holds:

“Every sequence {xn}n≥1 ⊆ X such that {ϕ(xn)}n≥1 ⊆ R is bounded and

(1 + ‖xn‖)ϕ′(xn) → 0 in X∗ as n→ ∞,

admits a strongly convergent subsequence.”

This is a compactness-type condition on the functional ϕ, which is more general
than the usual Palais–Smale condition. Both conditions compensate for the fact
that the ambient space X need not be locally compact. Using the C-condition, we
can have the following minimax characterization of certain critical values of ϕ. The
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result is know in the literature as the “mountain pass theorem” (see, for example,
[13, 27]).

Theorem 2.1. Let X be a Banach space. Assume that ϕ ∈ C1(X) satisfies the
C-condition, x0, x1 ∈ X with ‖x1 − x0‖ > ρ > 0,

max{ϕ(x0), ϕ(x1)} < inf{ϕ(x) : ‖x− x0‖ = ρ} = ηρ,

and c = infγ∈Γ max0≤t≤1 ϕ(γ(t)), where Γ = {γ ∈ C([0, 1],W 1,p
0 (Ω)) : γ(0) =

x0, γ(1) = x1}. Then c ≥ ηρ and c is a critical value of ϕ.

In the analysis of problem (1.1), in addition to the Sobolev space W 1,p
0 (Ω), we

will also use the Banach space C1
0 (Ω̄) defined by

C1
0 (Ω̄) = {u ∈ C1(Ω̄) : u|∂Ω = 0}.

This is an ordered Banach space with positive cone

C+ = {u ∈ C1
0 (Ω̄) : u(z) ≥ 0 for all z ∈ Ω̄}.

This cone has a nonempty interior given by

intC+ =
{
u ∈ C+ : u(z) > 0 for all z ∈ Ω,

∂u

∂n
(z) < 0 for all z ∈ ∂Ω

}
.

Here n(·) denotes the outward unit normal on ∂Ω.
Suppose that f0 : Ω×R → R is a Carathéodory function with subcritical growth

in the x ∈ R variable, that is,

|f0(z, x)| ≤ a(z)(1 + |z|r−1) for a.a. z ∈ Ω, all x ∈ R,

with

a ∈ L∞(Ω)+, 1 < r < p∗ =




Np

N − p
if p < N,

+∞ if p ≥ N.

We set F0(z, x) =
∫ x
0 f0(z, s)ds and consider the C1-functional ϕ0 : W 1,p

0 (Ω) → R

defined by

ϕ0(u) =
1
p
‖Du‖pp +

1
2
‖Du‖2

2 −
∫

Ω

F0(z, u(z))dz for all u ∈ W 1,p
0 (Ω).

The next proposition is a special case of a more general result due to Aizicovici,
the first author and Staicu [2] and it relates local C1

0 (Ω̄) and W 1,p
0 (Ω)-minimizers

of ϕ0. The result is essentially a consequence of the nonlinear regularity theory (see
[15, 17]).
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Proposition 2.2. Let û ∈ W 1,p
0 (Ω) be a local C1

0 (Ω̄)-minimizer of ϕ0, that is, there
exists ρ0 > 0 such that

ϕ0(û) ≤ ϕ0(û+ h) for all h ∈ C1
0 (Ω̄), ‖h‖C1

0(Ω̄) ≤ ρ0.

Then û ∈ C1,β
0 (Ω̄) with β ∈ (0, 1) and it is also a local W 1,p

0 (Ω)-minimizer of ϕ0,

that is, there exists ρ1 > 0 such that

ϕ0(û) ≤ ϕ0(û + h) for all h ∈W 1,p
0 (Ω), ‖h‖ ≤ ρ1.

In the above result and in the sequel we denote by ‖ · ‖ the norm of W 1,p
0 (Ω).

Using Poincaré’s inequality, we have

‖u‖ = ‖Du‖p for all u ∈W 1,p
0 (Ω).

Note that by ‖ ·‖ we also denote the norm in R
N . However, no confusion is possible

since it will always be clear from the context which norm is used.
For every x ∈ R, we set x± = max{0,±x}. Then for u ∈W 1,p

0 (Ω) we can define
u±(·) = u(·)±. We know that

u± ∈W 1,p
0 (Ω), u = u+ − u− and |u| = u+ + u−.

Given a measurable function h : Ω×R → R (for example, a Carathéodory function),
we set

Nh(u)(·) = h(·, u(·)) for all u ∈W 1,p
0 (Ω).

This is the Nemytskii map corresponding to h.
For every r ∈ (1,∞), let Ar : W 1,r

0 (Ω) → W−1,r′(Ω) = W 1,r
0 (Ω)∗(1

r + 1
r′ = 1)

be the nonlinear map defined by

〈Ar(u), v〉 =
∫

Ω

‖Du‖r−2(Du,Dv)RN dz for all u, v ∈ W 1,r
0 (Ω). (2.1)

If r = 2, then we write A2 = A ∈ L(H1
0 (Ω), H−1(Ω)). The next proposition sum-

marizes the basic properties of this map (see, for example, [13]).

Proposition 2.3. The nonlinear map Ar : W 1,r
0 (Ω) →W−1,r′(Ω) defined by (2.1)

is bounded (that is, maps bounded sets to bounded sets), continuous, strictly mono-
tone (strongly monotone if r ≥ 2) hence maximal monotone too and of type (S)+,
that is, if un

w−→ u in W 1,p
0 (Ω) and lim supn→∞〈Ar(un), un − u〉 ≤ 0, then un → u

in W 1,p
0 (Ω).

Next we recall some basic facts about the spectrum of the Dirichlet r-Laplace
operator. So, let m ∈ L∞(Ω), m ≥ 0, m �= 0 and consider the following nonlinear
weighted eigenvalue problem:

−∆ru(z) = λ̂m(z)|u(z)|r−2u(z) in Ω, u|∂Ω = 0. (2.2)

A number λ̂ ∈ R is an eigenvalue if problem (2.2) admits a nontrivial solution
û, which is an eigenfunction corresponding to λ̂. Problem (2.2) admits a small-
est eigenvalue denoted by λ̂1(r,m). The following facts are known about this first
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eigenvalue:

• λ̂1(r,m) > 0;
• λ̂1(r,m) is isolated, that is, we can find ε > 0 such that the interval

(λ̂1(r,m), λ̂1(r,m) + ε) contains no eigenvalues;
• λ̂1(r,m) is simple, that is, if û1, û2 are eigenfunctions corresponding to λ̂1(r,m)

then û1 = ξû2 for some ξ �= 0;
• λ̂1(r,m) > 0 admits the following variational characterization:

λ̂1(r,m) = inf




‖Du‖rr∫
Ω

m(z)|u|rdz
: u ∈ W 1,r

0 (Ω), u �= 0


 . (2.3)

The infimum in (2.3) is attained on the one-dimensional eigenspace corre-
sponding to λ̂1(r,m) > 0. It is clear from (2.3) that the elements of this one-
dimensional eigenspace do not change sign. In what follows by û1(r,m) we denote
the positive Lr-normalized (that is, ‖û1(r,m)‖r = 1) eigenfunction corresponding
to λ̂1(r,m) > 0. The nonlinear regularity theory and the nonlinear maximum prin-
ciple (see, for example, [13, pp. 737–738]) imply that û1(r,m) ∈ intC+. The first
eigenvalue λ̂1(r,m) > 0, as a function of the weight m, exhibits the following strict
monotonicity property.

Proposition 2.4. Assume that m, m̂ ∈ L∞(Ω)+\{0},m(z) ≤ m̂(z) a.e. in Ω,m �=
m̂. Then λ̂1(r, m̂) < λ̂1(r,m).

If σ(r,m) denotes the set of eigenvalues of (2.2), then σ(r,m) is closed. This
fact and since λ̂1(r,m) > 0 is isolated, imply that the second eigenvalue is well-
defined by

λ̂∗2(r,m) = inf{λ̂ : λ̂ ∈ σ(r,m), λ̂ > λ̂1(r,m)}.

The Ljusternik–Schnirelmann minimax scheme produces a whole strictly increasing
sequence {λ̂k(r,m)}k≥1 of eigenvalues such that λ̂k(r,m) → +∞. We know that
λ̂∗2(r,m) = λ̂2(r,m), that is, the second eigenvalue and the second Ljusternik–
Schnirelmann eigenvalue coincide. However, we do not know if the Ljusternik–
Schnirelmann sequence exhausts the spectral set σ(r,m). This is the case if r = 2
(linear eigenvalue problem) or if N = 1 (ordinary differential equation). We point
out that λ̂1(r,m) > 0 is the only eigenvalue with eigenfunctions of constant sign.
All the other eigenvalues have nodal (that is, sign changing) eigenfunctions.

When r = 2, the eigenvalue problem is linear and so we can define the eigenspace
for every eigenvalue. By E(λ̂k(2,m)) (for all k ≥ 1) we denote the eigenspace
corresponding to the eigenvalue λ̂k(2,m). The elements of this eigenspace have the
“unique continuation property”, namely if u ∈ E(λ̂k(2,m)) and u vanishes on a
set of positive Lebesgue measure, then u ≡ 0. The regularity theory implies that
E(λ̂k(2,m)) ⊆ C1

0 (Ω̄), k ≥ 1. Also, we have the following orthogonal direct sum
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decomposition

H1
0 (Ω) =

⊕
k≥1

E(λ̂k(2,m)).

If m ≡ 1, then we write λ̂1(r,m) = λ̂1(r), λ̂2(r,m) = λ̂2(r), and û1(r,m) = û1(r).
As a straightforward consequence of (2.3) and of the fact that û1(r) ∈ intC+,

we have the following easy lemma (see [20, p. 356]).

Lemma 2.5. If ϑ ∈ L∞(Ω), ϑ(z) ≤ λ̂1(p) a.e. in Ω and ϑ �= λ̂1(p), then there
exists c0 > 0 such that

‖Du‖pp −
∫

Ω

ϑ(z)|u|pdz ≥ c0‖u‖p for all u ∈ W 1,p
0 (Ω).

We conclude this section by recalling some basic facts from Morse theory (critical
groups) which we will use in the sequel. So, let (Y1, Y2) be a topological pair such
that Y2 ⊆ Y1 ⊆ X . For every integer k ≥ 0 we denote by Hk(Y1, Y2) the kth relative
singular homology group with integer coefficients for the pair (Y1, Y2).

Given ϕ ∈ C1(X) and c ∈ R, we introduce the following sets:

ϕc = {x ∈ X : ϕ(x) ≤ c}, Kϕ = {x ∈ X : ϕ′(x) = 0},
Kc
ϕ = {x ∈ Kϕ : ϕ(x) = c}.

Let x ∈ X be an isolated critical point of ϕ with ϕ(x) = c (that is, x ∈ Kc
ϕ). Then

the critical groups of ϕ at x are defined by

Ck(ϕ, x) = Hk(ϕc ∩ U,ϕc ∩ U\{x}) for all k ≥ 0,

where U is a neighborhood of x such that Kϕ∩ϕc∩U = {x}. The excision property
of singular homology theory implies that the above definition of critical groups is
independent of the particular choice of the neighborhood U .

Suppose that ϕ ∈ C1(X) satisfies the C-condition and inf ϕ(Kϕ) > −∞. Let
c < inf ϕ(Kϕ). The critical groups of ϕ at infinity are defined by

Ck(ϕ,∞) = Hk(X,ϕc) for all k ≥ 0.

The second deformation theorem (see, for example, [13, p. 628]) implies that the
above definition of critical groups at infinity is independent of the particular choice
of the level c < inf ϕ(Kϕ).

Suppose that Kϕ is finite. We set

M(t, x) =
∑
k≥0

rankCk(ϕ, x)tk for all t ∈ R, all x ∈ Kϕ

P (t,∞) =
∑
k≥0

rankCk(ϕ,∞)tk for all t ∈ R.
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The Morse relation says that∑
x∈Kϕ

M(t, x) = P (t,∞) + (1 + t)Q(t), (2.4)

where Q(t) =
∑
k≥0 βkt

k is a formal series in t ∈ R with nonnegative integer
coefficients.

The next proposition is a useful tool in the computation of critical groups at
infinity and it extends an earlier result for Hilbert spaces by Liang and Su [16].

Proposition 2.6. Let X be a Banach space and assume that (t, x) �→ ht(x) is a
C1([0, 1] × X)-function which maps bounded sets to bounded sets, the maps x �→
(ht)′(x) and t �→ ∂tht(x) are both locally Lipschitz, h0 and h1 satisfy the C-condition

|∂tht(x)| ≤ c1(‖u‖qX + ‖u‖pX) for all x ∈ X

with c1 > 0, 1 < q < p <∞, and there exist γ0 ∈ R and δ0 > 0 such that

ht(x) ≤ γ0 ⇒ (1 + ‖x‖X)‖(ht)′(x)‖X∗ ≥ δ0(‖x‖qX + ‖x‖pX) for all t ∈ [0, 1].

Then Ck(h0,∞) = Ck(h1,∞) for all k ≥ 0.

Proof. Since h ∈ C1([0, 1]×X), we know that it admits a pseudo-gradient vector
field v̂t(x) (see, for example, [13, p. 616]). From the construction of the pseudo-
gradient vector field we deduce that

v̂t(x) = (∂tht(x), vt(x)),

with (t, x) �→ vt(x) locally Lipschitz and for all t ∈ [0, 1], vt(·) is the pseudo-gradient
vector field corresponding to ht(·). So, for all t ∈ [0, 1] and all x ∈ X , we have

‖(ht)′(x)‖2
X∗ ≤ 〈(ht)′(x), vt(x)〉 and ‖vt(x)‖X ≤ 2‖(ht)′(x)‖X∗ . (2.5)

Given t ∈ [0, 1], we consider the map wt : X → X defined by

wt(x) = − |∂tht(x)|
‖(ht)′(x)‖2

X∗
vt(x) for all x ∈ X.

Evidently, [t, x] �→ wt(x) is well-defined and locally Lipschitz. Let γ ≤ γ0 be such
that

hγ0 �= ∅ or hγ1 �= ∅.
If we cannot find such a γ ≤ γ0, then Ck(h,∞) = Ck(h,∞) = δk,0Z for all k ≥ 0.

Assume that hγ0 �= ∅ and let y ∈ hγ0 . We consider the following abstract Cauchy
problem

dσ

dt
= wt(σ) on [0, 1], σ(0) = y. (2.6)

Problem (2.6) admits a local flow σ(t, y) (see, for example, [13, p. 618]). In what
follows, for notational simplicity, we drop y from the description of σ. Using the
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chain rule, we have

d

dt
ht(σ) =

〈
(ht)′(σ),

dσ

dt

〉
+ ∂tht(σ)

=
〈

(ht)′(σ),
−|∂tht(σ)|

‖(ht)′(σ)‖2
X∗
vt(σ)

〉
+ ∂tht(σ)

≤ −|∂tht(σ)| + ∂tht(σ) (see (2.5))

≤ 0

⇒ t �→ ht(σ) is nonincreasing.

Hence for t ≥ 0 small, we have

ht(σ(t)) ≤ h0(σ(0)) = h0(y) ≤ γ ≤ γ0

⇒ (1 + ‖σ(t)‖X)‖(ht)′(σ(t))‖X∗ ≥ δ0(‖σ(t)‖qX + ‖σ(t)‖pX). (2.7)

Then

|wt(σ(t))| ≤ |∂tht(σ(t))|
‖(ht)′(σ(t))‖2

X∗
‖vt(σ(t))‖X

≤ C1(‖σ(t)‖qX + ‖σ(t)‖pX)
‖(ht)′(σ(t))‖2

X∗
2‖(ht)′(x)‖Xτ (see (2.5))

≤ C1(‖σ(t)‖qX + ‖σ(t)‖pX)
δ0(‖σ(t)‖qX + ‖σ(t)‖pX)

(1 + ‖σ(t)‖X) (see (2.7))

=
C1

δ0
(1 + ‖σ(t)‖X) for all t ∈ [0, 1] small.

This means that the flow in (2.6) is global on [0, 1].
Then σ(t, ·) is a homeomorphism of hγ0 onto a subset D0 of hγ1 . Also, reversing

the time t → 1 − t and using the corresponding global flow σ∗(·, v) (here v ∈ hγ1 ),
we deduce that hγ1 is homeomorphic to a subset D1 of hγ0 .

Let

η(t, y) = σ∗(t, σ(1, y)) for all (t, y) ∈ [0, 1] × hγ0 .

Then we have

η(0, ·) is homotopy equivalent to id|D0(·) and η(1, ·) = (σ∗)1 ◦ σ1(·). (2.8)

Similarly, if

η∗(t, v) = σ(t, σ∗(1, v)) for all (t, v) ∈ [0, 1] × hγ1 ,

then

η∗(0, ·) is homotopy equivalent to id|D1(·) and η∗(1, ·) = σ1 ◦ (σ∗)1(·). (2.9)

Recall that D0 and Hγ
0 are homeomorphic. Similarly D1 and hγ1 are homeomorphic.

Combining these facts with (2.8) and (2.9), we infer that the level sets hγ0 and hγ1
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are homotopy equivalent. Therefore

Hk(X,h
γ
0) = Hk(X,h

γ
1) for all k ≥ 0 (see [14, p. 387])

⇒ Ck(h0,∞) = Ck(h,∞) for all k ≥ 0.

This completes the proof.

3. Two Nontrivial Solutions

In this section we establish the existence of two nontrivial solutions for problem
(1.1) without imposing any differentiability condition on f(z, ·).

First we produce a positive solution. To this end, we impose the following con-
ditions on the reaction f(z, x):

H1: f : Ω × R → R is a Carathéodory function such that f(z, 0) = 0 for a.a. z ∈ Ω
and

(i) |f(z, x)| ≤ a(z)(1 + |x|p−1) for a.a. z ∈ Ω, all x ∈ R with a ∈ L∞(Ω)+;
(ii) lim supx→+∞

f(z,x)
xp−1 ≤ λ̂1(p) uniformly for a.a. z ∈ Ω and if F (z, x) =∫ x

0 f(z, s)ds, then

lim
x→+∞[f(z, x)x− pF (z, x)] = +∞ uniformly for a.a. z ∈ Ω;

(iii) there exists a function η ∈ L∞(Ω)+ such that

λ̂1(p) ≤ η(z) for a.a. z ∈ Ω, λ̂1(p) �= η and

η(z) ≤ lim inf
x→−∞

f(z, x)
|x|p−2x

≤ lim sup
x→−∞

f(z, x)
|x|p−2x

≤ λ̂2(p) uniformly for a.a. z ∈ Ω;

(iv) there exist functions β, β̂ ∈ L∞(Ω)+ such that

λ̂1(2) ≤ β(z) for a.a. z ∈ Ω, λ̂1(2) �= β and

β(z) ≤ lim inf
x→0

f(z, x)
x

≤ lim sup
x→0

f(z, x)
x

≤ β̂(z) uniformly for a.a. z ∈ Ω;

(v) f(z, x)x − pF (z, x) ≥ 0 for a.a. z ∈ Ω, all x ≤ 0, and f(z, ·) is lower locally
Lipschitz on [0,+∞).

Let ϕ : W 1,p
0 (Ω) → R be the energy functional for problem (1.1) defined by

ϕ(u) =
1
p
‖Du‖pp +

1
2
‖Du‖2

2 −
∫

Ω

F (z, u(z))dz for all u ∈W 1,p
0 (Ω).

Proposition 3.1. Assume that hypotheses H1 hold. Then the functional ϕ satisfies
the C-condition.
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Proof. Let {un}n≥1 ⊆W 1,p
0 (Ω) be such that

|ϕ(un)| ≤M1 for all n ≥ 1, some M1 > 0 (3.1)

(1 + ‖un‖)ϕ′(un) → 0 in W−1,p′(Ω) as n→ ∞. (3.2)

From (3.2) we have∣∣∣∣〈Ap(un), h〉 −
∫

Ω

f(z, un)hdz
∣∣∣∣

≤ εn‖h‖
1 + ‖un‖ for all h ∈W 1,p

0 (Ω) with εn → 0+. (3.3)

In (3.3) we choose h = u+
n ∈ W 1,p

0 (Ω). Then∣∣∣∣‖Du+
n ‖pp + ‖Du+

n ‖2
2 −

∫
Ω

f(z, u+
n )u+

n dz

∣∣∣∣ ≤ εn for all n ≥ 1. (3.4)

Using (3.4) we will show that the sequence {u+
n }n≥1 ⊂W 1,p

0 (Ω) is bounded. Arguing
indirectly, suppose that the sequence is not bounded inW 1,p

0 (Ω). Then by passing to
a subsequence if necessary, we may assume that ‖u+

n ‖ → ∞. Let yn = u+
n

‖u+
n ‖ , n ≥ 1.

Then ‖yn‖ = 1 and yn ≥ 0 for all n ≥ 1. We may assume that

yn
w−→ y in W 1,p

0 (Ω) and yn → y in Lp(Ω). (3.5)

From (3.4), we have

‖Dyn‖pp ≤
εn

‖u+
n ‖p +

∫
Ω

f(z, u+
n )

‖u+
n ‖p−1

yndz for all n ≥ 1. (3.6)

From hypothesis H1(i) it is clear that{
Nf (u+

n )
‖u+

n ‖p−1

}
n≥1

⊆ Lp
′
(Ω) is bounded.

So, we may assume that

Nf (u+
n )

‖u+
n ‖p−1

w−→ g in Lp
′
(Ω) as n→ ∞. (3.7)

Using hypothesis H1(ii), as in [1], we show that

g(z) = ϑ(z)y(z)p−1 for a.a. z ∈ Ω, with ϑ ∈ L∞(Ω),

ϑ(z) ≤ λ̂1(p) a.e. in Ω.
(3.8)

Hence, if in (3.6) we pass to the limit as n→ ∞ and use (3.5), (3.7), (3.8) we obtain

‖Dy‖ −
∫

Ω

ϑ(z)ypdz ≤ 0. (3.9)

If ϑ �= λ̂1(p), then from (3.9) and Lemma 2.5, we have

c0‖y‖p ≤ 0, hence y = 0.
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Then from (3.6) it follows that Dyn → 0 in Lp(Ω,RN ) and so yn → 0 in W 1,p
0 (Ω),

a contradiction to the fact that ‖yn‖ = 1 for all n ≥ 1.
Next suppose that ϑ(z) = λ̂1(p) a.e. in Ω. Then from (3.9) and (2.3) we have

‖Dy‖pp = λ̂1(p)‖y‖pp
⇒ y = ξû1(p) for some ξ > 0 (see (2.3)).

Since y ∈ intC+, we have u+
n (z) → +∞ for a.a. z ∈ Ω and so by virtue of hypothesis

H1(ii) we have

f(z, u+
n (z))u+

n (z) − pF (z, u+
n (z)) → ∞ for a.a. z ∈ Ω

⇒
∫

Ω

[f(z, u+
n )u+

n − pF (z, u+
n )]dz → +∞ (by Fatou’s lemma). (3.10)

On the other hand, from (3.1) we have

‖Dun‖pp +
p

2
‖Dun‖2

2 −
∫

Ω

pF (z, un)dz ≤ p M1 for all n ≥ 1. (3.11)

Also from (3.3) with h = un ∈W 1,p
0 (Ω), we obtain

−‖Dun‖pp − ‖Dun‖2
2 +

∫
Ω

f(z, un)undz ≤ εn for all n ≥ 1. (3.12)

Adding (3.11) and (3.12) we have

(p
2
− 1

)
‖Dun‖2

2 +
∫

Ω

[f(z, un)un − pF (z, un)]dz

≤M2 for some M2 > 0, all n ≥ 1

⇒
∫

Ω

[f(z, un)un − pF (z, un)]dz ≤M2 for all n ≥ 1 (recall p > 2)

⇒
∫

Ω

[f(z, u+
n )u+

n − pF (z, u+
n )]dz +

∫
Ω

[f(z,−u−n )(−u−n ) − pF (z,−u−n )]dz

≤M2 for all n ≥ 1

⇒
∫

Ω

[f(z, u+
n )u+

n − pF (z, u+
n )]dz ≤M2 for all n ≥ 1 (see H1(v)). (3.13)

Comparing (3.10) and (3.13), we reach a contradiction which proves that

{u+
n }n≥1 ⊆W 1,p

0 (Ω) is bounded. (3.14)

Next we show that {u−n }n≥1 ⊆W 1,p
0 (Ω) is bounded. Again we argue by contradic-

tion. So, assume that ‖u−n ‖ → ∞ and let vn = u−
n

‖u−
n ‖ n ≥ 1. Then ‖vn‖ = 1, vn ≥ 0
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for all n ≥ 1 and so we may assume that

vn
w−→ v in W 1,p

0 (Ω) and vn → v in Lp(Ω), v ≥ 0. (3.15)

From (3.3) and (3.14), we have∣∣∣∣〈Ap(−u−n ), h〉 + 〈A(−u−n ), h〉 −
∫

Ω

f(z,−u−n )hdz
∣∣∣∣

≤M3‖h‖ for some M3 > 0, all n ≥ 1

⇒
∣∣∣∣〈Ap(−vn), h〉 +

1
‖u−n ‖p−2

〈A(−vn), h〉 −
∫

Ω

f(z,−u−n )
‖u−n ‖p−1

hdz

∣∣∣∣
≤ M3‖h‖

‖u−n ‖p−1
for all n ≥ 1. (3.16)

Hypothesis H1(i) implies that{
Nf (−u−n )
‖u−n ‖p−1

}
n≥1

⊆ Lp
′
(Ω) is bounded.

Passing to a subsequence if necessary and using hypothesis H1(iii) we have

Nf (−u−n )
‖u−n ‖p−1

w−→ −η̂vp−1 in Lp
′
(Ω) with η(z) ≤ η̂(z) ≤ λ̂2(p)

for a.a. z ∈ Ω. (3.17)

In (3.16) we choose h = v − vn ∈ W 1,p
0 (Ω), pass to the limit as n → ∞ and use

(3.15) and (3.17). Since p > 2, we obtain

lim
n→∞〈Ap(−vn), v − vn〉 = 0

⇒ vn → v in W 1,p
0 (Ω) (see Proposition 2.3), hence ‖v‖ = 1, v ≥ 0. (3.18)

Therefore, if in (3.16) we pass to the limit as n→ ∞ and use (3.17) and (3.18) and
the fact that p > 2, we deduce that

〈Ap(−v), h〉 =
∫

Ω

−η̂vp−1hdz for all h ∈W 1,p
0 (Ω)

⇒ Ap(v) = η̂vp−1

⇒ −∆pv(z) = η̂(z)v(z)p−1 a.e. in Ω, v|∂Ω = 0. (3.19)

From Proposition 2.4, we have

λ̂1(p, η̂) < λ̂1(p, λ̂1(p)) = 1.

So, from (3.19) it follows that v must be nodal, which contradicts (3.18). This
proves that

{u−n }n≥1 ⊆W 1,p
0 (Ω) is bounded

⇒ {un}n≥1 ⊆W 1,p
0 (Ω) is bounded (see (3.14)).
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Hence, we may assume that

un
w−→ u in W 1,p

0 (Ω) and un → u in Lp(Ω). (3.20)

In (3.3) we choose h = un − u ∈ W 1,p
0 (Ω), pass to the limit as n → ∞ and use

(3.20). Then

lim
n→∞[〈Ap(un), un − u〉 + 〈A(un), un − u〉] = 0

⇒ lim sup
n→∞

[〈Ap(un), un − u〉 + 〈A(u), un − u〉] ≤ 0 (since A is monotone)

⇒ lim sup
n→∞

〈Ap(un), un − u〉 ≤ 0

⇒ un → u in W 1,p
0 (Ω) (see Proposition 2.3).

This proves that ϕ satisfies the C-condition.

We consider the positive truncation of f(z, ·) defined by

f+(z, x) = f(z, x+).

This is a Carathéodory function. We set F+(z, x) =
∫ x
0 f+(z, s)ds and consider the

C1-functional ϕ+ : W 1,p
0 (Ω) → R defined by

ϕ+(u) =
1
p
‖Du‖pp +

1
2
‖Du‖2

2 −
∫

Ω

F+(z, u(z))dz for all u ∈W 1,p
0 (Ω).

Proposition 3.2. Assume that hypotheses H1 hold. Then the functional ϕ+ is
coercive.

Proof. We argue indirectly. So, suppose that ϕ+ is not coercive. Then we can find
{un}n≥1 ⊆W 1,p

0 (Ω) and M4 > 0 such that

‖un‖ → ∞ as n→ ∞ and ϕ+(un) ≤M4 for all n ≥ 1.

Let yn = un

‖un‖ , n ≥ 1. Then ‖yn‖ = 1 for all n ≥ 1 and so we may assume that

yn
w−→ y in W 1,p

0 (Ω) and yn → y in Lp(Ω). (3.21)

We have

1
p
‖Dun‖pp +

1
2
‖Dun‖2

2 −
∫

Ω

F+(z, un)dz ≤M4 for all n ≥ 1

⇒ 1
p
‖Dyn‖pp +

1
2‖un‖p−2

‖Dyn‖2
2 −

∫
Ω

F+(z, un)
‖un‖p dz ≤ M4

‖un‖p for all n ≥ 1.

(3.22)
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Hypothesis H1(ii) implies that given ε > 0, we can find M5 = M5(ε) > 0 such that

f(z, x) ≤ (λ̂1(p) + ε)xp−1 for a.a. z ∈ Ω, all x ≥M5

⇒ F (z, x) ≤ 1
p
(λ̂1(p) + ε)xp for a.a. x ∈ Ω, all x ≥M5

⇒ pF (z, x)
xp

≤ λ̂1(p) + ε for a.a. z ∈ Ω, all x ≥M5

⇒ lim sup
x→+∞

pF (z, x)
xp

≤ λ̂1(p) + ε uniformly for a.a. z ∈ Ω.

Since ε > 0, is arbitrary, we let ε ↓ 0 to conclude that

lim sup
x→+∞

pF+(z, x)
xp

≤ λ̂1(p) uniformly for a.a. z ∈ Ω. (3.23)

Hypothesis H1(i) implies that

⇒
{
F+(·, un(·))

‖un‖p
}
n≥1

⊆ L1(Ω) uniformly integrable.

Then from the Dunford–Pettis theorem and using (3.23), at least for a subsequence,
we have

F+(·, un(·))
‖un‖p

w−→ 1
p
ϑ(y+)p in L1(Ω) with ϑ ∈ L∞(Ω),

ϑ(z) ≤ λ̂1(p) a.a. in Ω. (3.24)

We return to (3.22), pass to the limit as n → ∞ and use (3.21) and (3.24). Since
2 < p, we obtain

1
p
‖Dy‖pp ≤

1
p

∫
Ω

ϑ(y+)pdz (3.25)

⇒ ‖Dy+‖pp ≤
∫

Ω

ϑ(y+)pdz. (3.26)

If ϑ �= λ̂1(p), then from (3.26) and Lemma 2.5, we have

c0‖y+‖p ≤ 0, hence y ≤ 0.

Then from (3.25) it follows that y = 0 and this from (3.22) implies that

Dyn → 0 in Lp(Ω,RN )

⇒ yn → 0 in W 1,p
0 (Ω).

This contradicts the fact that ‖yn‖ = 1 for all n ≥ 1.
Next we assume that ϑ(z) = λ̂1(p) a.e. in Ω. In this case from (3.26), we have

y+ = ξû1(p) with ξ ≥ 0. If ξ = 0, then as above we reach a contradiction. So, we
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assume that ξ > 0. We have

u+
n (z) → +∞ for a.a. z ∈ Ω. (3.27)

By virtue of hypothesis H1(ii), given ξ > 0, we can find M6 = M6(ξ) > 0 such that

f(z, x)x− pF (z, x) ≥ ξ for a.a. z ∈ Ω, all x ≥M6. (3.28)

For a.a. z ∈ Ω and all x ≥M6, we have

d

dx

F (z, x)
xp

=
f(z, x)xp − pF (z, x)xp−1

x2p

=
f(z, x)x− pF (z, x)

xp+1

≥ ξ

xp+1
(see (3.28))

⇒ F (z, x)
vp

− F (z, x)
xp

≥ − ξ
p

[
1
vp

− 1
xp

]
for a.a. z ∈ Ω, all v ≥ x ≥M6.

(3.29)

So, if in (3.29) we let v → +∞ and use (3.23), we obtain

λ̂1(p)
p

− F (z, x)
xp

≥ ξ

p

1
xp

for a.a. z ∈ Ω, all x ≥M6

⇒ λ̂1(p)
p

xp − F (z, x) ≥ ξ

p
for a.a. z ∈ Ω, all x ≥M6

⇒ lim
x→+∞

[
λ̂1(p)
p

xp − F (z, x)

]
≥ ξ

p
uniformly for a.a. z ∈ Ω.

But ξ > 0 is arbitrary. So, we conclude that

lim
x→+∞

[
λ̂1(p)
p

xp − F (z, x)

]
= +∞ uniformly for a.a. z ∈ Ω.

Thus, using (3.27), we have

λ̂1(p)
p

u+
n (z)p − F (z, u+

n (z)) → +∞ for a.a. z ∈ Ω

⇒
∫

Ω

[
λ̂1(p)
p

u+
n (z)p − F+(z, u+

n (z))

]
dz → +∞ (by Fatou’s Lemma).

(3.30)

Recall that
1
p
‖Dun‖pp +

1
2
‖Dun‖2

2 −
∫

Ω

F+(z, u+
n )dz ≤M4 for all n ≥ 1,

∫
Ω

[
λ̂1(p)
p

(u+
n )p − F+(z, u+

n )

]
dz ≤M4 for all n ≥ 1 (see (2.3)).

(3.31)
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Comparing (3.30) and (3.31), we have a contradiction which proves that ϕ+ is
coercive.

Now we can produce a first solution for problem (1.1) which is positive.

Proposition 3.3. Assume that hypotheses H1 hold. Then problem (1.1) admits a
positive solution u0 ∈ intC+ which is a local minimizer of the energy functional ϕ.

Proof. From Proposition 3.2, we know that ϕ+ is coercive. Also, using the Sobolev
embedding theorem, we see that ϕ+ is sequentially weakly lower semicontinuous.
So, by the Weierstrass theorem, we can find u0 ∈W 1,p

0 (Ω) such that

ϕ+(u0) = inf{ϕ+(u) : u ∈ W 1,p
0 (Ω)}. (3.32)

Hypothesis H1(iv) implies that given ε > 0, we can find δ = δ(ε) > 0 such that

F (z, x) ≥ 1
2
(β(z) − ε)x2 for a.a. z ∈ Ω, all |x| ≤ δ. (3.33)

Since û1(2) ∈ intC+, for λ ∈ (0, 1) small, we have λû1(2)(z) ∈ [0, δ] for all z ∈ Ω̄.
Then

ϕ+(λû1(2)) =
λp

p
‖Dû1(2)‖pp +

λ2

2
λ̂1(2) −

∫
Ω

F+(z, λû1(2))dz

≤ λp

p
‖Dû1(2)‖pp

− λ2

2

[∫
Ω

(β(z) − λ̂1(2))û1(2)2dz + ελ̂1(2)
]

(see (3.33)).

The hypothesis on β(·) (see H1(iv)) and since û1(2) ∈ intC+, imply that

ξ∗ =
∫

Ω

(β(z) − λ̂1(2))û1(2)2dz > 0.

So, if we choose ε ∈ (0, ξ∗/λ̂1(2)), then

ϕ+(λû1(2)) < 0

⇒ ϕ+(u0) < 0 = ϕ+(0) (see (3.32)), hence u0 �= 0.

From (3.32) we have

ϕ′
+(u0) = 0

⇒ Ap(un) +A(un) = Nf (u0). (3.34)

On (3.34) we act with −u−n ∈W 1,p
0 (Ω). We obtain

‖Du−n ‖pp + ‖Du−n ‖2
2 = 0, hence u0 ≥ 0, u0 �= 0.

Then from (3.34) we have

−∆pu0(z) − ∆u0(z) = f(z, u0(z)) a.e. in Ω, u0|∂Ω = 0.
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From [15, p. 286], we know that u0 ∈ L∞(Ω). Then Theorem 2.1 of [17] implies
that u0 ∈ C+\{0}.

Evidently hypotheses H1(i), (iv) imply that for every ρ > 0, we can find ξ̂ρ > 0
such that f(z, x)x + ξρ|x|p ≥ 0 for a.a. z ∈ Ω, all |x| ≤ ρ. Let ρ = ‖u0‖∞ and let
ξ̂ρ > 0 as just mentioned. We have

−∆pu0(z)−∆u0(z)+ ξ̂ρu0(z)p−1 = f(z, u0(z))+ ξ̂ρu0(z)p−1 ≥ 0 for a.a. z ∈ Ω

⇒ ∆pu0(z) + ∆u0(z) ≤ ξρu0(z)p−1 for a.a. z ∈ Ω.

(3.35)

Let a : R
N → R

N be the C1-map defined by

a(y) = ‖y‖p−2y + y (recall p > 2).

We have div a(Du) = ∆pu+ ∆u for all u ∈W 1,p
0 (Ω) and

∇a(y) = ‖y‖p−2

(
I + (p− 2)

y ⊗ y

‖y‖2

)
+ I for all y ∈ R

N

⇒ (∇a(y)ξ, ξ)RN ≥ ‖ξ‖2 for all y, ξ ∈ R
N .

Then the tangency principle of [26, p. 35] implies that

u0(z) > 0 for all z ∈ Ω.

So, from (3.35) and the boundary point theorem of [26, p. 120], we conclude that
u0 ∈ intC+.

Note that ϕ|C+ = ϕ+|C+ . So, u0 ∈ intC+ is a local C1
0 (Ω̄)-minimizer of ϕ.

Invoking Proposition 2.2, we conclude that u0 is a local W 1,p
0 (Ω)-minimizer of ϕ.

To produce a second nontrivial solution, we need to restrict the behavior of
f(z, ·) near zero. More precisely, the new hypotheses on the reaction f(z, x) are the
following.

H2: f : Ω×R → R is a Carathéodory function such that f(z, 0) = 0 for a.a. z ∈ Ω,
hypotheses H2(i), (ii), (iii), (v) are the same as the corresponding hypotheses H1(i),
(ii), (iii), (v) and

(iv) there exist an integer m ≥ 2 and functions β, β̂ ∈ L∞(Ω)+ such that

λ̂m(2) ≤ β(z) ≤ β̂(z) ≤ λ̂m+1(2) a.e. in Ω,

λ̂m(2) �= β, λ̂m+1(2) �= β̂ and

β(z) ≤ lim inf
x→0

f(z, x)
x

≤ lim sup
x→0

f(z, x)
x

≤ β̂(z) uniformly for a.a. z ∈ Ω.
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Theorem 3.4. Assume that hypotheses H2 hold. Then problem (1.1) admits at
least two nontrivial solutions

u0 ∈ intC+ and û ∈ C1
0 (Ω̄), u0 �= û.

Proof. From Proposition 3.3 we already have one nontrivial solution u0 ∈ intC+,
which is a local minimizer of ϕ. Hence as in [1] (see the proof of Proposition 29),
we can find ρ ∈ (0, 1) small such that

ϕ(u0) < inf{ϕ(u) : ‖u− u0‖ = ρ} = mρ. (3.36)

Hypothesis H2(iii) implies that

ϕ(tû1(p)) → −∞ as t→ −∞. (3.37)

Recall that ϕ satisfies the C-condition (see Proposition 3.1). This fact, together with
(3.36) and (3.37), permits the use of Theorem 2.1 (the mountain pass theorem).
So, we can find û ∈W 1,p

0 (Ω) such that

û ∈ Kϕ and ϕ(u0) < mρ ≤ ϕ(û). (3.38)

From (3.38) it is clear that û �= u0 and it is a solution of problem (1.1). We need
to show that û �= 0.

Since û is a critical point of ϕ of mountain pass type, we have

C1(ϕ, û) �= 0. (3.39)

Claim 1. Ck(ϕ, 0) = δk,dmZ for all k ≥ 0, with dm = dim
⊕m

i=1 E(λ̂i(2)).

Let µ ∈ (λ̂m, λ̂m+1) and consider the C2-functional ψ : W 1,p
0 (Ω) → R defined

by

ψ(u) =
1
p
‖Du‖pp +

1
2
‖Du‖2

2 −
µ

2
‖Du‖2

2 for all u ∈W 1,p
0 (Ω).

Evidently ψ is coercive (recall that p > 2) and so it satisfies the C-condition.
We consider the homotopy h : [0, 1]×W 1,p

0 (Ω) → R defined by

h(t, u) = (1 − t)ϕ(u) + tψ(u) for all (t, u) ∈ [0, 1]×W 1,p
0 (Ω).

Suppose that we can find {tn}n≥1 ⊆ [0, 1] and {un}n≥1 ⊆W 1,p
0 (Ω) such that

tn → t in [0, 1], un → 0 in W 1,p
0 (Ω) and

h′u(tn, un) = 0 for all n ≥ 1.
(3.40)

We have

Ap(un) +A(un) = (1 − tn)Nf (un) + tnµun for all n ≥ 1. (3.41)

Let yn = un

‖un‖n ≥ 1. Then ‖yn‖ = 1 for all n ≥ 1 and so we may assume that

yn
w−→ y in W 1,p

0 (Ω) and yn → y in L2(Ω). (3.42)
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From (3.41) we have

‖un‖p−2Ap(yn) +A(yn) = (1 − tn)
Nf (un)
‖un‖ + tnµyn for all n ≥ 1. (3.43)

Evidently {Nf (un)
‖un‖ }n≥1 ⊆ L2(Ω) is bounded (see H2(i), (iv)) and by virtue of

hypothesis H2(iv) and (3.40), we have (at least for a subsequence)

Nf (un)
‖un‖

w−→ gy in L2(Ω) with β(z) ≤ g(z) ≤ β̂(z) a.e. in Ω. (3.44)

Since Ap is bounded (see Proposition 2.3) and A ∈ L(H1
0 (Ω), H−1(Ω)), if in (3.43)

we pass to the limit as n→ ∞ and use (3.42) and (3.44), we obtain

A(y) = [(1 − t)g + tµ]y

⇒ −∆y(z) = [(1 − t)g(z) + tµ]y(z) a.e. in Ω, y|∂Ω = 0. (3.45)

Note that

λ̂m(2) ≤ (1 − t)g(z) + tµ = gt(z) ≤ λ̂m+1(2) a.e. in Ω,

λ̂m(2) �= gt, λ̂m+1(2) �= gt.

By virtue of the unique continuation property, we have

λ̂m(2, gt) < λ̂m(2, λ̂m(2)) = 1 and 1 = λ̂m+1(2, λ̂m+1(2)) < λ̂m+1(2, gt).

Then from (3.45) it follows that y = 0.
From (3.43), we have

−‖un‖p−2∆pyn(z) − ∆yn(z)

= (1 − tn)
f(z, un(z))

‖un‖ + tnµyn(z) a.e. in Ω, yn|∂Ω = 0.

From [15], we know that we can find M7 > 0 such that

‖yn‖∞ ≤M7.

Then the regularity result of [17] implies that we can find γ ∈ (0, 1) and M8 > 0
such that

yn ∈ C1,γ
0 (Ω̄) and ‖yn‖C1,γ

0 (Ω̄) ≤M8 for all n ≥ 1.

Exploiting the compact embedding of C1,γ
0 (Ω̄) into C1

0 (Ω̄), we have

yn → 0 in C1
0 (Ω̄) (see (3.42) and recall y = 0)

⇒ yn → 0 in W 1,p
0 (Ω)

which contradicts the fact that ‖yn‖ = 1 for all n ≥ 1. This implies that (3.40)
cannot happen. Then the homotopy invariance property of critical groups implies
that

Ck(ϕ, 0) = Ck(ψ, 0) for all k ≥ 0.
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But since µ ∈ (λ̂m(2), λ̂m+1(2)), by Theorem 1 of [10] we deduce that

Ck(ψ, 0) = δk,dmZ for all k ≥ 0.

This proves the claim.
From (3.39) and the claim, we conclude that û �= 0. Then û is the second

nontrivial solution of (1.1) and by the nonlinear regularity theory (see [15, 17]), we
have û ∈ C1

0 (Ω̄).

4. Three Solutions Theorem

In this section, we produce a third nontrivial solution for problem (1.1) (three
solutions theorem). To do this we need to improve the regularity of f(z, ·) and also
avoid complete resonance at +∞. So, the new hypotheses on the reaction f(z, x)
are the following:

H3: f : Ω × R → R is a measurable function such that for a.a. z ∈ Ω, f(z, 0) =
0, f(z, ·) ∈ C1(R) and

(i) |f ′
x(z, x)| ≤ a(z)(1 + |x|p−2) for a.a. z ∈ Ω, all x ∈ R, with a ∈ L∞(Ω)+;

(ii) there exists a function ϑ ∈ L∞(Ω)+ such that ϑ(z) ≤ λ̂1(p) a.e. in Ω, ϑ �= λ̂1(p)
and

lim sup
x→+∞

f(z, x)
xp−1

≤ ϑ(z) uniformly for a.a. z ∈ Ω;

(iii) there exists a function η ∈ L∞(Ω)+ such that

λ̂1(p) ≤ η(z) for a.a. z ∈ Ω, λ̂1(p) �= η and

η(z) ≤ lim inf
x→−∞

f(z, x)
|x|p−2x

≤ lim sup
x→−∞

f(z, x)
|x|p−2x

≤ λ̂2(p) uniformly for a.a. z ∈ Ω;

(iv) there exists integer m ≥ 2 such that

f ′
x(z, 0) ∈ [λ̂m(2), λ̂m+1(2)] a.e. in Ω,

f ′
x(·, 0) �= λ̂m(2), f ′

x(·, 0) �= λ̂m+1(2);

(v) f(z, x)x− pF (z, x) ≥ 0 for a.a. z ∈ Ω, all x ≤ 0.

Remark 4.1. Now at +∞ we allow only nonuniform nonresonance with respect
to the principal eigenvalue λ̂1(p) > 0 (see hypothesis H3(ii)). The reason for this
is the computation of the critical groups of ϕ at infinity based on Proposition 2.6
(see Proposition 4.2 below).

Proposition 4.2. Assume that hypotheses H3 hold. Then Ck(ϕ,∞) = 0 for all
k ≥ 0.
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Proof. Let β ∈ L∞(Ω)+, β �= 0 and µ ∈ (λ̂1(p), λ̂2(p)). We consider the following
one-parameter family of C1-functionals defined by

ht(u) =
1
p
‖Du‖pp +

1
2
‖Du‖2

2 − t

∫
Ω

F (z, u(z))dz

− 1 − t

p
µ‖u−‖pp + (1 − t)

∫
Ω

β(z)u(z)dz for all (t, u) ∈ [0, 1] ×W 1,p
0 (Ω).

We have

h0(u) = ψ(u) =
1
p
‖Du‖pp −

µ

p
‖u−‖pp +

∫
Ω

β(z)u(z)dz for all u ∈W 1,p
0 (Ω),

h1(u) = ϕ(u) for all u ∈W 1,p
0 (Ω).

Since µ ∈ (λ̂1(p), λ̂2(p)), we can easily check that ψ satisfies the C-condition. Also,
from Proposition 3.1 we know that ϕ satisfies the C-condition.

Claim 2. There exist γ0 ∈ R and δ0 > 0 such that

ht(u) ≤ γ0 ⇒ (1 + ‖u‖)‖(ht)′(u)‖∗ ≥ δ0(‖u‖2 + ‖u‖p) for all t ∈ [0, 1).

We proceed by contradiction. So, suppose that the claim is not true. Since the
function (t, u) �→ ht(u) maps bounded sets to bounded sets, we can find {tn}n≥1 ⊆
[0, 1] and {un}n≥1 ⊆W 1,p

0 (Ω) such that

tn → t, ‖un‖ → ∞, htn(un) → −∞ and

(1 + ‖un‖)‖(htn)′(un)‖∗ ≤ 1
n

(‖un‖2 + ‖un‖p) for all n ≥ 1.
(4.1)

Let yn = un

‖un‖n ≥ 1. Then ‖yn‖ = 1 for all n ≥ 1 and so we may assume that

yn
w−→ y in W 1,p

0 (Ω) and yn → y in Lp(Ω). (4.2)

From (4.1) we have∣∣∣∣〈Ap(un), v〉 + 〈A(un), v〉 − tn

∫
Ω

f(z, un)vdz + (1 − tn)µ
∫

Ω

(u−n )p−1vdz

+ (1 − tn)
∫

Ω

β(z)vdz
∣∣∣∣ ≤ 1

n

‖v‖
1 + ‖un‖ (‖un‖2 + ‖un‖p)

⇒
∣∣∣∣〈Ap(yn), v〉 +

1
‖un‖p−2

〈A(yn), v〉 − tn

∫
Ω

f(z, un)
‖un‖p−1

vdz

+ (1 − tn)µ
∫

Ω

(y−n )p−1vdz +
1 − tn
‖un‖p−1

∫
Ω

β(z)vdz
∣∣∣∣ ≤ ‖v‖

n
for all n ≥ 1.

(4.3)
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In (4.3) we choose v = yn− y ∈W 1,p
0 (Ω), pass to the limit as n→ ∞ and use (4.2).

Since p > 2, we obtain

lim
n→∞〈Ap(yn), yn − y〉 = 0

⇒ yn → y in W 1,p
0 (Ω) and so ‖y‖ = 1. (4.4)

Hypotheses H3(i), (iv) imply that

|f(z, x)| ≤ c1(|x| + |x|p−1)

≤ c2(1 + |x|p−1) for a.a. z ∈ Ω, all x ∈ R

and some c2 > 0 (recall p > 2)

⇒
{
Nf (un)
‖un‖p−1

}
n≥1

⊆ Lp
′
(Ω) is bounded.

Hence we may assume that

Nf(un)
‖un‖p−1

w−→ g in Lp
′
(Ω). (4.5)

Hypotheses H3(ii), (iii) imply that

g(z) = ϑ̃(z)y+(z)p−1 − ξ̃(z)y−(z)p−1 for a.a. z ∈ Ω. (4.6)

So, if we return to (4.3), pass to the limit as n→ ∞ and use (4.4), (4.5), (4.6), we
obtain

〈Ap(y), v〉 = t

∫
Ω

ϑ̃(z)(y+)p−1vdz

−
∫

Ω

[tξ̃(z) + (1 − t)µ](y−)p−1vdz for all v ∈W 1,p
0 (Ω)

⇒ Ap(y) = tϑ̃(y+)p−1 − ξ̃t(y−)p−1 where ξ̃t = tξ̃ + (1 − t)µ, (4.7)

⇒ −∆py(z) = tϑ̃(z)y+(z)p−1 − ξ̃t(z)y−(z)p−1 a.e. in Ω, y|∂Ω = 0. (4.8)

On (4.7) first we act with y+ ∈W 1,p
0 (Ω). Then

‖Dy+‖pp = t

∫
Ω

ϑ̃(z)(y+)pdz ≤
∫

Ω

ϑ(z)(y+)pdz

⇒ c0‖Dy+‖pp ≤ 0 (see Lemma 2.5), hence y+ = 0.

From (4.8) and since ξ̃t(z) ∈ [η(z), λ̂2(p)] a.e. in Ω, it follows that y− must be nodal,
a contradiction. This proves the claim.

Invoking Proposition 2.6, we infer that

Ck(ϕ,∞) = Ck(ψ,∞) for all k ≥ 0. (4.9)
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Now let u ∈ Kψ. Then

Ap(u) = −µ(u−)p−1 − β. (4.10)

On (4.10) we act with u+ ∈ W 1,p
0 (Ω) and obtain

‖Du+‖pp = −
∫

Ω

β(z)u+dz ≤ 0

⇒ u+ = 0, hence u ≤ 0

Equation (4.10) becomes

Ap(u) = µ|u|p−2u− β

⇒ −∆pu(z) = µ|u(z)|p−2u(z) − β(z) a.e. in Ω, u|∂Ω = 0.

The nonlinear regularity theory implies that u ∈ (−C+)\{0}. Moreover, as before
from the tangency principle and the boundary point theorem of [26, pp. 35 and
120], we have

u ∈ −intC+.

Let v ∈ intC+ and consider the function

R(v,−u)(z) = ‖Dv(z)‖p − ‖D(−u)(z)‖p
(
D(−u)(z), D

(
vp

(−u)p−1

)
(z)

)
RN

.

From the nonlinear Picone’s identity of [3], we have

0 ≤
∫

Ω

R(v − u)dz

= ‖Dv‖pp −
∫

Ω

−∆p(−u)
vp

(−u)p−1
dz (by Green’s theorem)

= ‖Dv‖pp −
∫

Ω

µ(−u)p−1 vp

(−u)p−1
dz −

∫
Ω

β
vp

(−u)p−1
dz (see (4.11))

≤ ‖Dv‖pp − µ‖v‖pp. (4.11)

Choose v = û1(p) ∈ intC+, to reach a contradiction (recall that µ ∈ (λ̂1(p), λ̂2(p))).
Hence Kψ = ∅ and so we have

Ck(ψ,∞) = 0 for all k ≥ 0

⇒ Ck(ϕ,∞) = 0 for all k ≥ 0 (see (4.9)).

This completes the proof.

Now we are ready for the three solutions theorem.

Theorem 4.3. Assume that hypotheses H3 hold. Then problem (1.1) has at least
three nontrivial solutions

u0 ∈ intC+ and û, ũ ∈ C1
0 (Ω̄)\{0}.
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Proof. From Theorem 3.4, we already have two nontrivial solutions

u0 ∈ intC+ and û ∈ C1
0 (Ω̄)\{0}.

From Proposition 3.3 we know that u0 is a local minimizer of the energy func-
tional ϕ. Therefore

Ck(ϕ, u0) = δk,0Z for all k ≥ 0. (4.12)

From the proof of Theorem 3.4, we know that û is a critical point ϕ of mountain
pass type. Then from [22, 24], we have

Ck(ϕ, û) = δk,1Z for all k ≥ 0. (4.13)

From the proof of the Theorem 3.4 (see the claim), we have

Ck(ϕ, 0) = δk,dmZ for all k ≥ 0. (4.14)

Finally, Proposition 4.2 implies that

Ck(ϕ,∞) = 0 for all k ≥ 0. (4.15)

Suppose that Kϕ = {0, u0, û}. Then from (4.12)–(4.15) and the Morse relation (see
(2.4)) with t = −1, we have

(−1)dm + (−1)0 + (−1)1 = 0

⇒ (−1)dm = 0, a contradiction.

So, we can find ũ ∈ Kϕ, ũ /∈ {0, u0, û}. Then ũ is the third nontrivial solution of
(1.1) and ũ ∈ C1

0 (Ω̄) (nonlinear regularity).

Remark 4.4. It is an interesting open problem if this three solutions theorem
remains valid when we allow complete resonance at +∞.
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