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ABSTRACT. — We consider the nonlinear Robin problem driven by a nonhomogeneous differential
operator plus an indefinite potential. The reaction term is a Carathéodory function satisfying certain
conditions only near zero. Using suitable truncation, comparison, and cut-off techniques, we show
that the problem has a sequence of nodal solutions converging to zero in the C!(Q)-norm.
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1. INTRODUCTION

Let Q C RY be a bounded domain with a C?-boundary 0Q. We study the follow-
ing nonlinear nonhomogeneous Robin problem:

—diva(Du(z)) + E(2)|u(=)|"u(z) = f(z,u(z) inQ,

1
M) ;7” + B |ul’*u=0 on Q.

In this problem, a: RY — R is a continuous and strictly monotone map
(thus also maximal monotone), which satisfies certain regularity and growth con-
ditions listed in hypotheses H(a) below. These conditions are general and they
incorporate in our framework many differential operators of interest, such as
the p-Laplacian and the (p, ¢)-Laplacian. We stress that a(-) is not homogeneous
and this is a source of difficulties in the study of problem (1). The potential func-
tion £ € L™ (Q) is indefinite (that is, sign changing). The reaction term (the right-
hand side of (1)) is a Carathéodory function (that is, for all x € R, the function
z+ f(z,x) is measurable, and for almost all z € Q, the function x — f(z, x)) is
continuous. We impose conditions on f(z, -) only near zero. In the boundary con-

Ju
> on,
ator u — diva(Du) and is defined by extension of the map

dition denotes the conormal derivative corresponding to the differential oper-

CY(Q) 3 u— (a(Du),n)gv,

with n(-) being the outward unit normal on 0Q.
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We are looking for nodal (that is, sign-changing) solutions for problem (1).
Employing a symmetry condition on f(z,-) near zero and using truncation, per-
turbation, comparison, and cut-off techniques, and a result of Kajikiya [7], we
generate a whole sequence {u,},.; C C!(Q) of distinct nodal solutions such
that u, — 0 in C'(Q). -

The first result in this direction was produced by Wang [27], who used cut-off
techniques to produce an infinity of solutions converging to zero in H}(Q). In
Wang [27] the problem is semilinear driven by the Dirichlet Laplacian. There is
no potential term (that is, £ = 0). The sequence produced by Wang [27] does not
consist of nodal solutions. More recently, Li & Wang [8] produced a sequence of
nodal solutions for semilinear Schrédinger equations. For nonlinear equations we
mention the recent works of He, Huang, Liang & Lei [5], and Papageorgiou &
Radulescu [19]. In He et al. [5], the problem is Neumann (that is, f = 0) and the
differential operator is the p-Laplacian (that is, a(y) = |y|’ %y for all y € RV,
with 1 < p < o). In Papageorgiou & Radulescu [19], the differential operator is
the same as in the present paper, but & = 0. Also, the hypotheses on f(z,-) near
zero are more restrictive. In the present paper we extend the results of all afore-
mentioned works.

2. PRELIMINARIES AND HYPOTHESES

In the study of problem (1) we will use the following spaces: the Sobolev space
W1r(Q), the Banach space C'(Q), and the boundary Lebesgue spaces L"(0Q),
1 <r<oo.

We denote by || - || the norm on the Sobolev space W !'7(Q) defined by

lull = [lull? + | Dul 2 for all u e W'P(Q).

The Banach space C!(Q) is an ordered Banach space, with positive (order)
cone

C. ={ueCYQ):u(z) >0 forall z € Q}.
This cone has a nonempty interior which is the set

Dy ={ue Cy:u(z)>0forall z e Q}.

In fact, D, is also the interior of C, when furnished with the relative C(Q)-
norm topology.

On 0Q we consider the (N — 1)-dimensional Hausdorff (surface) measure o(-).
Using this measure, we can define in the usual way the Lebesgue spaces L"(0Q),
1 < r < oo0. From the theory of Sobolev spaces we know that there exists a unique
continuous linear map y, : W?(Q) — L?(0Q), known as the “trace map”, such
that

vo(u) =ul,q forallue W (Q)n C(Q).
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So, the trace map assigns ‘“‘boundary values™ to all Sobolev functions. We
N -1

( )P
N—p

p < N, and into L"(0Q) for all 1 <r < w0 if p > N. Furthermore, we have that

know that the trace map is compact into L"(9Q) for all 1 <r <

ne 1 1
keryy = Wy (@) and imo = Wr7(2Q) ([ +=1).

In what follows, for the sake of notational simplicity, we will drop the use of
the trace map y,(-). All restrictions of Sobolev functions on 0Q, are understood
in the sense of traces.

Let X be a Banach space and ¢ € C'(X,R). We say that ¢ satisfies the
“Palais-Smale condition” (the “PS-condition” for short), if the following prop-
erty holds:

“Every sequence {u,},-, € X such that
{o(u,)},>1 € Ris bounded and ¢'(u,) — 0in X* as n — oo,

admits a strongly convergent subsequence.”
We shall need the following result of Kajikya [7].

THEOREM 1. Assume that X is a Banach space, p € C'(X,R) satisfies the PS-
condition, ¢ is even and bounded below, p(0) = 0, and for every n € N, there exists
an n-dimensional subspace V, of X and p, > 0 such that

sup{o(u) :ueV,ndB, } <0,

where 0B, ={ue X :||ully =p,}. Then there exists a sequence {u,},-, C
X\{0} such that

(1) ¢'(uy,) =0 for all n € N (that is, each w, is a critical point of p);
(1) ¢(u,) <0 for all n € N; and
(iii) u, — 0in X asn — oo.
In the sequel, for any ¢ € C!'(X, R), we denote by K, the critical set of ¢, that
is,

K,={ueX:¢'(u)=0}

For X € R, we set x* = max{+x,0}. Then for any u e W'?(Q), we define
ut(-) = u(-)*. We know that

ut e Wh(Q), u=ut—u, |ul=u"+u".

Let § € C'(0, o) be such that 9(¢) > 0 for all # > 0 and
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50 <cy and PP < 9(1) < er(t 7Y

forall ¢ > 0, with ¢;, ¢, > 0,1 <7< p.

Then the hypotheses on the map «(-) are the following:
H(a) : a(y) = ap(|y|)y for all y e RY with ag() > 0 for all > 0 and

(i) ap € C'(0,0), t+ ap(f)t is strictly increasing on (0, 00), ag(t)t — 0% as

t— 0" and
ag (1)1 _
) Tl
y 401D N :
(ii) |Va(y)| < 3 for all y e R"\{0}, and some ¢3 > 0;

|

< ) (Va)e D > "2V foratl y e RY\(0), ¢ € R, and
) If Go(7) / sds for all # > 0, then there exists ¢ € (1, p] such that
1+ Go(1"/4) is convex and lim suqut(;(z) <+
t—0+

REMARK 1. Hypotheses H(a)(i), (ii), (iii) are dictated by the nonlinear global
regularity theory of Lieberman [10] and the nonlinear maximum principle of
Pucci & Serrin [24]. Hypothesis H(a)(iv) reflects the particular requirements
of our problem. However, H(a)(iv) is not restrictive as the examples below
illustrate.

Hypotheses H(a) imply that Gy(-) is strictly convex and strictly increasing.
We set G(y) = Go(|y|) for all y € RY. Evidently, G(-) is convex and G(0) = 0.
Also, we have

VG(y) = Ga<|y|>|—i| — ay(|y)y = a(y) forall y e RN\{0}, VG(0) = 0.

So, G(-) is the primitive of a(-). Moreover, the convexity of G(-) implies that
(3) G(y) < (a(y),y)pv forall y e RY.

The next lemma summarizes the main properties of the map «a(-) and it is an
easy consequence of hypotheses H(a) and condition (2) above.

LemMaA 2. If hypotheses H(a)(i), (i), (iii) hold, then

a) a(-) is continuous, strzctly monotone, hence maximal monotone, too;
b) la(y)| < ca(1+ [y|P™") forall y [R{N and some ¢4 > 0; and

) (a(y),y)g, ﬁ|y|pfor all y e RV,

—_
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This lemma and (3) lead to the following growth conditions on G(-).

COROLLARY 3. If hypotheses H(a)(i), (ii), (iii) hold, then

|
" <
G(y) < es(1+ |y|?) for all y € RN, and some cs5 > 0. p(p—1)

EXAMPLE 1. The following maps a(y) satisfy hypotheses H(a):

(&) a(y) ="y 1< p < oo

This map corresponds to the p-Laplace differential operator defined by
Apu = div(|Dul’ > Du)  for all u e W'P(Q).

(b) a(y) = |y 2y + |y|9%p, 1 < g < p < 0. This map corresponds to the (p, q)-
Laplace differential operator defined by

Apju+ A forallue W (Q).

Such operators arise in problems of mathematical physics. Recently (p,q)-
equations have been studied by Bobkov & Tanaka 1], Li & Zhang [9], Marano
& Mosconi [11], Marano, Mosconi & Papageorgiou [12, 13], Mugnai &
Papageorgiou [16], Papageorgiou & Rddulescu [17], Sun, Zhang & Su [25],
and Tanaka [26;. -

(c) a(y) = (1+ |y )I%y, 1 < p < oo. This map corresponds to the generalized

p-mean curvature differential operator defined by

div((1 + [Du|>)TDu)  for all u e W'P(Q).

1
— [y|P2
(@ a() =" (14 ) L < p <

We denote by <-,-> the duality brackets for the pair
(W), whr(Q)).

Let A : W2(Q) — W»(Q)" be the nonlinear map defined by
(A(u), hy = /(a(Du),Dh)RN dz forallu,h e WHr(Q).
Q

From Gasinski & Papageorgiou [3], we have:

PROPOSITION 4. The map A : WP (Q) — WhP(Q)™ is bounded (maps bounded
sets to bounded sets), continuous, monotone (hence maximal monotone, too), and
of type (S),, that is,

“Uy = win WP (Q) and lim sup {A(u,), 1y — 1> = 1 — u”.

n—aoo
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The hypotheses on the potential function &(-) and on the boundary coefficient
B(+) are the following:

H(&): Ee L7(Q).

H(B) : B e C»*(0Q) for some o € (0, 1) and B(z) > 0 for all z € 0Q.

REMARK 2. If f =0, then we recover the Neumann problem.

Finally, we introduce our conditions on the reaction term f(z, x):
H(f): f:QxR— R is a Carathéodory function such that f(z,0) =0 for
almost all z € Q and

(i) there exists 7 > 0 such that for almost all z € Q, f(z,-)[_, , is odd;
(ii) |f(z,x)] < ay(z) for almost all z € Q, x € [—n, 5], with a, € L™ (Q);
(iit) with g € (1, p] as in hypothesis H («a)(iv), we have

ics

x—0 |x|‘172x

= +oo0 uniformly for almost all z € Q; and

(iv) there exists & > 0 such that for almost all z € Q
x = f(z,x) + &) x
is nondecreasing on [—7, 7]

REMARK 3. We point out that all the above hypotheses concern the behaviour
of f(z,-) only near zero.

Finally, we mention that nonlinear problems with an indefinite potential
have recently been studied in the context of equations driven by the Neumann
p-Laplacian by Gasinski & Papageorgiou [4] (resonant problems) and Fragnelli,
Mugnai & Papageorgiou [2] (superlinear problems). Also, nodal solutions for non-
linear Robin problems with no potential term, were obtained by Papageorgiou &
Radulescu [21].

3. NODAL SOLUTIONS

Let ¢ € (0,5) and consider an even function y € C'(R) such that 0 <y < 1,

V—sq = 1 and suppy C [—7,7].
We set

f(Zv x) = y(x)f(z,x) + (1 - y(x))f(z)|x|1’*2x'

Evidently, f(z,x) is a Carathéodory function which is odd in x € R and has
the following two additional properties:

(4) f, MNiceg = f(2)]_sq forallz e

(5) flz,x) = &) |x|"*x forallzeQ, |x| > 7.
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It follows from (5) that

(6) fz,n) —Ez)nP~1 =0 for almost all z € Q.
Since f(z,-) is odd, we have

(7) Flz,=n) + &' =0 for almost all z € Q.

On account of hypothesis H(f)(iii), given any u > 0, we can find d = d(u) €
(0,¢) such that

(8) f(z,x)x = f(z,x) = ulx|? for almost all z € Q, and all |x| < J (see (4)).

Then (8) combined with hypothesis H(f)(ii) implies that given r > p we can
find ¢ > 0 such that

9) F(z,x)x > plx|? — cg|x|” for almost all z € Q, and all x € R.
We introduce the following function
(10) k(z,x) = pl| 75 = eglx]

This is a Carathéodory function which is odd in x € R.
We consider the following auxiliary nonlinear Robin problem:

{ —diva(Du(z)) + |&(2)| [u(2)|” u(z) = k(z,u(z)) inQ, }
(11)

_ =2, _
6na+ﬁ( 2)|ul’""u=0 on Q.

PRrROPOSITION 5. If hypotheses H(a), H(&), H(f3) hold, then problem (11) admits
a unique positive solution

u* e D,
and since k(z,-) is odd, v* = —u* € D, is the unique negative solution of (11).
PrROOF. We consider the Carathéodory function lAc(z, x) defined by
k(z,—n) —n?~' if x < —p
(12) k(z,x) =S k(z,x)+ |x]"*x if -p<x<py
k(z,n) +n?! if 7 <x

We set K(z, x) / k(z,s)ds and consider the C'-functional ¢ LW (Q)
— R defined by

(m(u):/g G(Du)dz + /[Ié( |+ 1luf? dz + - /ﬁ (D)l do

—/k(z,u+)dz for allu e W7 (Q).
Q
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From (12) and Corollary 3 it is clear that
¢, (-) is coercive.

Also, from the Sobolev embedding theorem and the compactness of the trace
map, we deduce that

¢ (+) is sequentially weakly lower semicontinuous.

So, by the Weierstrass—Tonelli theorem, we can find u* € W!?(Q) such that

(13) b, (u") = inf{g, (u) : ue W (Q)).

On account of hypothesis H(a)(iv), we can find ¢; > 0 such that
(14) GMS%MqMﬂMS&

withd > 0 as in (8). Let u € D.. Then we can find 7 € (0, 1) small such that
(15) tu(z) € (0,0] and |D(t)(z)] <5 forallz e Q.
Using (10), (12), (14) and (15), we obtain

oy (lu)<—||Du||q /|§ )W |ul?dz +— /ﬂ (2)|u|? do

L
5 lully == #lullg

(since e (0,1),g<p<r)
< [eg — ueo)t? for some cg, co > 0 depending on u.

. C .
Choosing u > —8, we infer that
€9

¢, (tu) <0,
= 0. () <0=0,(0) (see(13)),
= u"#0.

From (13) we have
(16) 9\ (u”) =0,

= @wmm+/m@uuwvawﬁ+ﬂf@WV%%%

/k Nhdz forallh e WhP(Q).
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In (16) we choose & = —(u*)~ € W1?(Q). Using Lemma 2(c), we obtain
1

p—1

= u" >0,u" #0.

D)~ [|7 4 [[(u*)"|l) <0 (see hypothesis H(B)),

In (16) we choose it = (u* — )" € W12(Q). Then

A, (" — )™+ /Q 1EE)] + ()" " —n)* d=
+ /mﬂ(Z)(u*)’”(u* —n)*do
= /Q[,wy‘f_1 —cen" VP (wt — )T dz (see (12) and (10))
< / A + 07w —n)tde (see (9))
Q
- / E(2) + g2\ — ) dz (see (6))
< (AW, (' — )5 + / 1E@)] + 1 (- n)* dz
Q

=z p—1 ut — + p
+ [ pemr o =
(note that A(n) = 0 and see hypothesis H(f)),
= A@W") = An), (u” =)™
+ [Ie@l+ 1) = =) de <0
Q

(see hypotesis H(f)),
= u" <.
So, we have proved that
(17) u* €0,n] ={ue W (Q):0<u(z) <nforalmostall z e Q}.

From (10), (12), (16) and (17), we infer that »* is a positive solution of prob-
lem (11). From Papageorgiou & Radulescu [20], we have

u* e L7 (Q).
Now the nonlinear regularity theory of Lieberman [10] implies that

u* e C;:\{0}.
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From (16) and (17), we have

{ —diva(Du*(z)) + |E(2)[u*(z)" " = k(z,u*(z)) for almost all z € Q, }
ou*
ony

+p(z)u* =0 ondQ

(see Papageorgiou & Radulescu [18])
= —diva(Du*(2)) + [&(2)|u" ()"
> —ceu*(z)""  for almost all z € Q (see (10)),

= diva(Du*(2)) < [esl|u*]|"7 + ||€] . Ju*(2)”"  for almost all z € Q
(see hypothesis H(&)),
= u" e D, (see Pucci & Serrin [24, p. 120]).

Next, we show the uniqueness of this solution. To this end, let i : L'(Q) — R
= R u {+o0} be the integral functional defined by

/ (Dufl )dz +— /|é |ufldz

Hu) = / B(2)ui do if u>0,ui e W(Q)
otherwise.

From Papageorgiou & Winkert [23] (see the proof of Proposition 3.3), we
know that #(-) is convex and if u*,v* € D, are two positive solutions of (11),
then

oo ayg L[ —diva(Du®) + ()| (u)" :
() = [ mE h
Gy L[ —diva(Du) +1¢(2)| ()" : (M — ()4
(") )(h)_q/Q i hdz forh= (u*)? — (v)".

The convexity of i(-) implies the monotonicity of i'(-). Hence

()"

o< [ [—divawu*) )"
Q

~ diva(Dv*) + E(2)|(v*) "

- /Qcﬁ[(“*)” — (@)@ = (")) dz - (see (10)),

= u"=0v" (sinceq<p<r).
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This proves the uniqueness of the positive solution u* € D, of (11). Since
problem (11) is odd, it follows that v* = —u* € —D_ is the unique negative solu-
tion of problem (11). O

Consider the following Robin problem:
—diva(Du(z)) + &) |u(2)|"u(z) = f(zu(z) inQ,

18

(18) o B =0 on oQ.

ony

We denote by S (respectively S™) the set of positive (respectively negative)
solutions of problem (18) which are in the order interval [0,7] = {u € WP (Q) :
0 < u(z) < n for almost all z € Q} (respectively in [—#,0] = {v e W'P(Q): — <
v(z) <0 for almost all z € Q}). From Papageorgiou, Radulescu & Repovs [22],
we know that

e ST is downward directed (that is, if u;,u; € ST, then we can find u € S* such
that u < uj,u < wp).

e S~ is upward directed (that is, if vj,v; € S—, then we can find v € S~ such that
v < v,03 < 0).

_ Moreover, reasoning as in the proof of Proposition 5 (with k(z, x) replaced by
f(z,x)), we show that

0#STCD, and 0#S C—-D..

PROPOSITION 6. If hypotheses H(a), H(E), H(f), H(f) hold, then u* < u for all
ueStandv <v* forallve S™.

ProOOF. Letu e S, and let k(z, x) be given by (12). We introduce the following
truncation of k(z, -):

0 if x <0
(19) e (z,x) = {1}(2, x) i 0<x<u(z)
k(z,u(z)) if u(z) < x.

This is a Carathéodory function. We set E (z,x) = / ’ e (z,5)ds and con-
sider the C!-functional ¥, : W'7(Q) — R defined by /0

1 1
Y. (u) :/QG(Du) dZ—i—;/Q[|f(Z)| + 1]ul? dz—l—;/@gﬁ(z)|u|"d0’
—/E+(z,u)dz for all u e WH7(Q).
Q

Evidently, W (-) is coercive (see (19)) and sequentially weakly lower semi-
continuous. So, we can find #* € W!?(Q) such that

(20) Y, (@) = inf{¥, (u) :ue WH(Q)}.
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As in the proof of Proposition 5, using hypotheses H (a)(iv) and H(f)(iii), we
show that

lPJr(a*) < 0= T+(O)a
= u" #0.

From (20) we have

(21) W, (@) =0,
= <A(ﬁ*),h>+/[|é(z)|+1}|ﬁ*|”_2ﬁ*hdz+/ B\ |a*|P2a hdo
Q Q
—/e+(z,ﬁ*)hdz for all h e WhP(Q).
Q

In (21), we choose h = —(u*)~ € W?(Q). Then using Lemma 2(c), we have

4

D)+ [ 1)+ 1)) d:

<0 (see hypothesis H(f5) and (19))
= @ >0,0" #0.

Next, in (21) we choose & = (ii* — u)" € W?(Q). We have
CA®@"), (" —u)"> + /Q[If(Z) + 1)@ @ —u)* dz
+ /mﬁ(z)(u*)”_l(ﬁ* —u)"da
= /Q[uuql — e’ Fub @ —u)" dz
(see (19), (12), (10) and recall that u € S*)

< [+ @ - ) s (see (9)
Q
— ), @ ="+ [ 1)+ @ )" ds
Q

—l—/ BE)u" Y@ —u)* do (sinceu e S)
o

= 4" <u
So, we have proved that

2" e [0,ul = {ye W'(Q):0 < y(z) < u(z) for almost all z € Q}.
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This fact, together with (10), (12), (19), (21), imply that

—diva(Di*z) + |E(2)|a* (2)" " = k(z,4*(z)) for almost all z € Q,
o

on

+B(2) @) =00ndQ (see Papageorgiou & Riadulescu [18]),

)

= 4" =u" (see Proposition 5),
u* <u forallueS™.

Similarly, we show that
v<v" forallveS™.

This completes the proof. O

Now we can establish the existence of extremal constant sign solutions for
problem (18), that is, we show that problem (18) has a smallest positive solution
and a biggest negative solution.

PROPOSITION 7. If hypotheses H(a), H(f), H(E), H(f) hold, then there exists a
smallest positive solution u, € St C D, and a biggest negative solution v, € S~ C
D,

ProOOF. Invoking Lemma 3.10 of Hu & Papageorgiou [6, p. 178], we can find a
decreasing sequence {u,},.; C S* such that

inf ST = inf u,.
n>1
Evidently, {u,},., C W!7(Q) is bounded. So, we may assume that

(22) Uy — uy in WHWP(Q) and  u, — uy in LP(Q) and L7 (0Q).

We have
(23) CA(u), By + / E(ul hdz+ / B2l hdo
Q o0
= / f(z, up)hdx forallhe Wl"”(Q)7 neN.
Q

In (23) we choose i = u, —u, € W?(Q), pass to the limit as n — co and use
(22). Then

(24) hm <A(1/ln), Up — u+> = 07

n— oo

= u, — u, in W (Q) (see Proposition 4).
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In (23) we pass to the limit as # — oo and use (24). Then
Q o0
:/f(Z,H+)hdz forallh e WLI’(Q).
Q

From Proposition 6, we have

(26) u* <u, forallneN,
= u" <u; (see(24)), hence u; # 0.

It follows from (25) and (26) that
u, e STCD,, u,=infS".
Similarly, we produce
veS C—-D,, v_=supS . O
Let 7 > ||¢]|, and consider the following truncation-perturbation of £z, -):

Fz0-(@) + - (@) P0-(2) if x <0 (2)
27)  folz.%) = q F(zx) +2lxP Py if v (2) < x <uy(2)
e

1y (2)) + 1y ()7 if u,(z) < x.

We set Fy(z, x) / fo(z,5) ds and consider the C!-functional ¢, : W!7(Q)
— R defined by

pol) = /Q G(Du) dz+% /Q () +ﬂ|u|”dz+% /Q B)lul? do
—/Fo(z,u)dz for allu e Wh7(Q).
Q

Evidently, ¢,(-) is coercive (see (27) and recall that = > ||&||_). So, ¢y(-) is
bounded below and satisfies the PS-condition (see Marano & Papageorgiou
[14, 15)).

PROPOSITION 8. If hypotheses H(a), H(E), H(B), H(f) hold and V C W'P(Q)
is a finite dimensional linear subspace, then there exists py, > 0 such that

sup{go(u) :ue V,|jul| =py} <O.
ProoF. Recall that u; € Dy and v_ € —D,. So, mp = min{ minu,, —maxv_
Q 0

> 0. We set ¢p = min{e, mp} (Where € > 0 is from (4)). On account of hypothesis
H(f)(iii), given any u > 0, we can find 0 = d(u) > 0 € (0,¢) such that
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() Fo(z,x) = F(z.0) + - |6} = F(z,%) +|x]”
p p
> Bl 4~ |
p
(for almost all z € Q, and all |x| <9, see (4) and (27)).
Moreover, on account of hypothesis H(a)(iv) and Corollary 3, we have

(29) G(y) < col|y|? +|y|?] for some cj9 > 0, and all y € RV,

Since the subspace V' C W!?(Q) is finite dimensional, all norms are equiva-
lent. So, we can find p;, € (0, 1] such that

(30) ueV, |ul|l <py=uiz)| < forallzeQ.
Then for every u € V' with |ju]| < p,,, we have
@o(u) < entl|ull? — perallul|? for some ¢y, c¢12 > 0

(see (27), (28), (29), (30) and recall that p;,, < 1, ¢ < p)

. . . c
Since u > 0 is arbitrary, we choose x > “!I and conclude that
€12

po(u) <0 forallu e V with ||u]] = p,.
The proof is now complete. O

We now obtain the following multiplicity theorem for the nodal solutions of
problem (1).

THEOREM 9. Assume that hypotheses H(a), H(&), H(f), H(f) hold. Then there
exists a sequence {u,},-, C C'(Q) of nodal solutions of problem (1) such that

u, — 0 in CY(Q).

ProOF. We know that ¢,(-) is even, bounded below, satisfies the PS-condition,
and ¢,(0) = 0. Moreover, using (27) as before, we can check that

(31) K, C [v_,uy] 0 CH Q).

The aforementioned properties of ¢,(-) and Proposition 8 permit us to apply
Theorem 1. So, we can find a sequence {u,},.; € W'7(Q) such that

(32)  w, €Ky Cvo,u]nCY(Q) (see (31)) and u, — 0in WP (Q).

The nonlinear regularity theory of Lieberman [10] implies that we can find
y € (0,1) and ¢13 > 0 such that

(33) u, € CH(Q), [l 105y < 13 forallme N.
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We know that C'7(Q) is compactly embedded in C'(Q). So, it follows from
(32) and (33) that

u, — 0 in C'(Q),
= —e <u,(z) <e forallzeQ, andalln>ny
(recall that ¢y = min{e,my} > 0, see the proof of Proposition 8).

From (4), (32) and the extremality of u,, v_, we get that {u,},.,; C C'(Q) are
nodal solutions of (1) and we have u, — 0 in C'(Q). ]
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