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1. Introduction

In the present note we deal with the following problem

�divAðx;‘uÞ ¼ lf ðx; uÞ in W;

u ¼ 0 on qW;

�
ðPlÞ

where W � RN ðNb 2Þ is a bounded domain with a smooth boundary qW,
A : W� RN ! RN is a function admitting a general enough structure in order to
cover the simple case Aðx; xÞ ¼ jxjp�2x, p > 1, namely ðPlÞ involves the usual
p-Laplacian operator, moreover, l is a positive parameter, while f : W� R ! R
is a suitable Carathéodory function.

During the last decades a lot of papers have been devoted to the study of sev-
eral di¤erential problems that are included or strictly related with problem ðPlÞ,
see, e.g., [15] and [14]. In all these manuscripts the case pb 2 has been investi-
gated, while di¤erent asymptotic conditions at zero and/or at infinity of the non-
linear term f ðx; �Þ have been considered. In [13] the more general case p > 1 has
been treated when the reaction term is a suitable perturbation of the nonlinearity
jujp�2

u (see also [6]). More recently, in [8] exploiting the structure of A as intro-



duced in [13], the case when f ðx; �Þ is ðp� 1Þ-superlinear at zero and ðp� 1Þ-
sublinear at infinity has been studied.

Here, we still consider the same general elliptic operator in divergence form as
in [8, 13] and assume that A : W� RN ! RN admits a potential A : W� RN !
R, with

ðAÞ A ¼ Aðx; xÞ is a continuous function on W� RN, with a continuous derivative
with respect to x and A ¼ qxA. Moreover
(i) Aðx; 0Þ ¼ 0 and Aðx; xÞ ¼ Aðx;�xÞ for every x a W and x a RN.

(ii) Aðx; �Þ is strictly convex in RN for all x a W.
(iii) There exist two constants a1, a2, with 0 < a1 a a2 such that

Aðx; xÞ � xb a1jxjp and jAðx; xÞja a2jxjp�1

for every ðx; xÞ a W� RN.

We allow the function f to have a ðp� 1Þ-superlinear behaviour at infinity
that, as a special case, gives back the concave-convex structure. We refer to the
seminal papers [1, 3, 4] for existence, multiplicity and non existence results for
di¤erential problems involving the p-Laplacian under the combined e¤ects of
concave and convex nonlinear terms (see also [7, 16, 17, 18, 22, 23, 29, 33] as
well as [25, 26, 27, 28, 31, 32], where a nonhomogeneous operator is considered).

We adopt the variational methods and in the set of assumptions the classical
Ambrosetti–Rabinowitz condition is employed in order to assure the existence
of an interval of parameters l for which problem ðPlÞ admits at least two non-
trivial solutions. In particular, both the solutions are positive when f satisfies a
sign condition. The main tool is a general critical point theorem proved in [7]
(see Theorem 2.1). We wish to emphasize that the proposed approach permits to
consider also more general situations when the multiplicity result can be obtained
without requiring any particular asymptotic condition near at zero of f ðx; �Þ (see
Theorem 3.1, assumption ( jj)) so that we can go further the although meaningful
concave-convex case. The autonomous case is also treated (see Corollary 3.1 and
Theorem 3.3).

In Section 2 a quite detailed description of some auxiliary results is given. The
main result is proved in Section 3.

Some of the main abstract tools used in this paper are developed in the recent
monograph [30]. We also refer to [24] for an overview of recent results concerning
elliptic variational problems with nonstandard growth conditions and related to
di¤erent kinds of nonuniformly elliptic operators.

2. Basic notations and auxiliary results

In what follows W is a bounded domain of RN and W
1;p
0 ðWÞ, with 1 < p < N,

denotes the usual Sobolev space equipped with the norm

kuk ¼ k‘ukp;
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while W�1;p 0 ðWÞ is its dual space. It is well known, see [35], that the best constant
of the embedding of W 1;p

0 ðWÞ into Lp�ðWÞ, with p� ¼ Np
N�p

, is explicitly comput-
able by the formula

T ¼ p�1=2N�1=p
� p� 1

N � p

�1�1=p Gð1þN=2ÞGðNÞ
GðN=pÞGð1þN �N=pÞ

� �1=N

;ð2:1Þ

where G is the gamma function. In particular, the inequality

kukp� aTkuk;ð2:2Þ

for every u a W
1;p
0 ðWÞ, can be exploited, together with the Hölder inequality, in

such a way that, for every t a ½1; p��, one has

kukt a ctkukð2:3Þ

for all u a X , where ct ¼ T jWjðp
��tÞ=ðp�tÞ and jWj is the Lebesgue measure of W.

Moreover, the embedding W
1;p
0 ðWÞ ,! LtðWÞ is compact provided t a ½1; p�½.

The condition

a1jxjp a pAðx; xÞa a2jxjpð2:4Þ

for every ðx; xÞ a W� RN , can be derived from assumptions ðAÞ(i) and ðAÞ(iii);
as well as the following lemma has been proved.

Lemma 2.1 ([13, Lemma 2.5]). Let A satisfy ðAÞ(i)–ðAÞ(iii). Then the functional
F : W 1;p

0 ðWÞ ! R defined by

FðuÞ ¼
Z
W

Aðx;‘uðxÞÞ dxð2:5Þ

is convex, weakly lower semicontinuous and of class C1 in W
1;p
0 ðWÞ, being

F 0ðuÞðvÞ ¼
Z
W

Aðx;‘uÞ � ‘v dx

for every u; v a W
1;p
0 ðWÞ.

Moreover, F 0 : W 1;p
0 ðWÞ ! W�1;p 0 ðWÞ satisfies the ðSþÞ condition, i.e., for

every sequence fung in W
1;p
0 ðWÞ such that un * u weakly in W

1;p
0 ðWÞ and

lim sup
n!l

Z
W

Aðx;‘unÞ � ð‘un � ‘uÞ dxa 0;

then un ! u strongly in W
1;p
0 ðWÞ.

Our nonlinear reaction f : W� R ! R will be required to be a Carathéodory
function such that for some function a a LaðWÞ, that is a.e. positive, with a >

Np
Np�Nqþpq

, and p < q < p�, the following growth condition holds
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ðGf ;a; s;qÞ There exist positive constants s, bs and bq, with 1a sa p, such that

j f ðx; tÞja aðxÞðbsjtjs�1 þ bqjtjq�1Þ for a:a: x a W and all t a R:

The next lemma will be useful in order to approach problem ðPlÞ in the varia-
tional setting.

Lemma 2.2. Assume that f satisfies condition ðGf ;a; s;qÞ and put F ðx; tÞ ¼R t

0 f ðx; xÞ dx. Then, the functional Cf : W
1;p
0 ðWÞ ! R defined by

Cf ðuÞ ¼
Z
W

F ðx; uðxÞÞ dxð2:6Þ

is of class C1 being

C 0
f ðuÞðvÞ ¼

Z
W

f ðx; uðxÞÞvðxÞ dx:

Moreover the operator C 0
f : W

1;p
0 ðWÞ ! W�1;p 0 ðWÞ is compact and Cf is sequen-

tially weakly continuous in W
1;p
0 ðWÞ.

Proof. First of all we can observe that from q < p� one has that Np�Nqþ
pq > 0 and, in particular, p < N implies that Np

Np�Nqþpq
> 1. Hence, a > 1. If a 0

is the conjugate exponent of a, a direct computation shows that 1a a 0a a 0sa
a 0p < a 0q < p�. Indeed, it is immediate if a ¼ þl, being a 0 ¼ 1. Otherwise, if
a < þl, one has

a 0q ¼ a

a� 1
q <

Np

N � p
, aqðN � pÞ < aNp�Np

, aðNq�Np� qpÞ < �Np

, a >
Np

Np�Nqþ pq
:

Thus, since by ðGf ;a; s;qÞ one has

jFðx; uðxÞÞja aðxÞ
�bs
s
juðxÞjs þ bq

q
juðxÞjq

�
;ð2:7Þ

for all u a W
1;p
0 ðWÞ and a.e. in W, taking in mind that a 0q < p� implies that

jujq a La 0
, the Hölder inequality assures that Cf is well defined.

Classical arguments assure that Cf is di¤erentiable and

C 0
f ðuÞðvÞ ¼

Z
W

f ðx; uðxÞÞvðxÞ dx

for every u; v a W
1;p
0 ðWÞ. For the reader convenience, we explicitly compute

it. Let u; v a W
1;p
0 ðWÞ. Fixed x a W and t a ��1; 1½nf0g there exists stðxÞ a
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½htðxÞ; ktðxÞ�, with htðxÞ ¼ minfuðxÞ; uðxÞ þ tvðxÞg and ktðxÞ ¼ maxfuðxÞ; uðxÞ þ
tvðxÞg, such that

FðuðxÞ þ tvðxÞÞ � FðuðxÞÞ
t

¼ f ðx; stðxÞÞvðxÞ:

In view of ðGf ;a; s;qÞ, if wðxÞ ¼ maxfjuðxÞj; jvðxÞjg, there exists a constant B > 0
such that

j f ðx; stðxÞÞvðxÞja aðxÞðbsðjuðxÞj þ jvðxÞjÞs�1 þ bqðjuðxÞj þ jvðxÞjÞq�1ÞjvðxÞj
aBaðxÞðwðxÞs þ wðxÞqÞ

a.e. in W and for every t a ��1; 1½nf0g. Since w a W
1;p
0 ðWÞ, one has w a La 0q and

the dominated convergence theorem assures the announced formula.
For verifying the regularity of Cf we chiefly argue as in the proof of [13,

Lemma 3.2]. We report all the details showing that C 0
f is weak-to-strong sequen-

tially continuous, namely if fungn and u are in W
1;p
0 ðWÞ with un * u in W

1;p
0 ðWÞ,

then kC 0
f ðunÞ �C 0

f ðuÞkW �1; p 0 ðWÞ ! 0 as n ! l. Indeed, fix fungn in W
1;p
0 ðWÞ with

un * u. The compactness of the embedding W
1;p
0 ðWÞ ,! La 0qðWÞ assures that

un ! u in La 0qðWÞ. Hence, from [12, Thm. IV.9], there exist a subsequence, still
denoted by fungn, and a function h a La 0qðWÞ such that

un ! u a:e: in W and junðxÞja hðxÞ a:e: in W; for every n a N:ð2:8Þ

Again from ðGf ;a; s;qÞ one has

j f ðx; unðxÞÞ � f ðx; uðxÞÞj
a aðxÞðbsðjunðxÞjs�1 þ juðxÞjs�1Þ þ bqðjunðxÞjq�1 þ juðxÞjq�1ÞÞ
a 2aðxÞðbshðxÞs�1 þ bqhðxÞq�1Þ

for a.a. x a W, that in particular implies

j f ðx; unðxÞÞ � f ðx; uðxÞÞjq
0
aðxÞ1=ð1�qÞð2:9Þ

a 2q 0
aðxÞq

0þ1=ð1�qÞðbshðxÞs�1 þ bqhðxÞq�1Þq
0

a 22q
0�1aðxÞðbq 0

s hðxÞq
0ðs�1Þ þ bq 0

q hðxÞq
0ðq�1ÞÞ

¼ 22q
0�1aðxÞðbq 0

s hðxÞq
0ðs�1Þ þ b

q 0

2 hðxÞqÞ

a.e. in W, namely, observing that 1=ð1� qÞ ¼ �q 0=q and being ahq 0ðs�1Þ a L1ðWÞ,
one has

j f ð�; unð�ÞÞ � f ð�; uð�ÞÞjað�Þ�1=q a Lq 0 ðWÞ:

Thus, fixed v a W
1;p
0 ðWÞ with kvk ¼ 1, taking in mind that a1=qv a LqðWÞ and

exploiting the Hölder inequality, one has
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jC 0
f ðunÞðvÞ �C 0

f ðuÞðvÞj ¼
Z
W

ð f ðx; unðxÞÞ � f ðx; uðxÞÞÞvðxÞ dx
����

����
a

Z
W

j f ðx; unðxÞÞ � f ðx; uðxÞÞjjvðxÞj dx

¼
Z
W

j f ðx; unðxÞÞ � f ðx; uðxÞÞjaðxÞ�1=q
aðxÞ1=qjvðxÞj dx

a

�Z
W

j f ðx; unðxÞÞ � f ðx; uðxÞÞjq
0
aðxÞ1=ð1�qÞ

dx
�1=q 0

�
�Z

W

aðxÞjvðxÞjq
�1=q

:

At this point, observe that from the Hölder inequality and condition (2.3) one
has Z

W

aðxÞjvðxÞjq dxa kakakvk
q
a 0q a c

q
a 0qkaka:

In conclusion,

kC 0
f ðunÞðvÞ �C 0

f ðuÞkW �1; pðWÞ

a ca 0qkak1=qa

�Z
W

j f ðx; unðxÞÞ � f ðx; uðxÞÞjq
0
aðxÞ1=ð1�qÞ

dx
�1=q 0

and, in view of (2.9), the dominated convergence theorem, condition (2.8) and the
continuity of f ðx; �Þ, we can conclude that C 0

f ðunÞ ! C 0
f ðuÞ in W �1;pðWÞ, that

completes the proof. r

In analogy with [13] and [8], if f is a function of type ðGf ;a; s;qÞ, a weak solu-

tion of problem ðPlÞ is any u a W
1;p
0 ðWÞ such thatZ

W

Aðx;‘uðxÞÞ � ‘vðxÞ dx� l

Z
W

f ðx; uðxÞÞvðxÞ dx ¼ 0

for every v a W
1;p
0 ðWÞ. Thus, thanks to the previous lemmas, if for l > 0 we

define the functional Il : W
1;p
0 ðWÞ ! R by IlðuÞ ¼ FðuÞ � lCf ðuÞ, the following

claim holds

The critical points of Il are weak solutions of problem ðPlÞ:ð2:10Þ

Next theorem, see [7, Theorem 2.1], will be the main tool in order to apply the
variational methods and establish our multiplicity results. We recall that the the-
orem below is based on a local minimum theorem obtained in [5] and the classical
mountain pass theorem (see [2] and [10]).

824 g. bonanno, r. livrea and v. d. rădulescu



Theorem 2.1. Let X be a real Banach space and let F;C : X ! R be two con-
tinuously Gâteaux di¤erentiable functions such that infX F ¼ Fð0Þ ¼ Cð0Þ ¼ 0.
Assume that there are r a R and ~uu a X, with 0 < Fð~uuÞ < r such that

supu AF�1ð��l; r�Þ CðuÞ
r

<
Cð~uuÞ
Fð~uuÞ

and for each l a Fð~uuÞ
Cð~uuÞ ;

r
sup

u AF�1ð��l; r½Þ CðuÞ

� �
the functional Il ¼ F� lC satisfies the

ðPSÞ-condition and it is unbounded from below.

Then, for each l a Fð~uuÞ
Cð~uuÞ ;

r
sup

u AF�1ð��l; r½Þ CðuÞ

� �
the functional Il admits at least two

non-zero critical points ul;1, ul;1 such that Ilðul;1Þ < 0 < Ilðul;2Þ.

3. Main results

Here we present some theorems that assure the existence of at least two nontrivial
solutions for problem ðPlÞ.

A technical constant will be used. In particular, if r : W ! �0;þl½ is the func-
tion defined by rðxÞ ¼ dðx; qWÞ (observe that for each x a W obviously Bðx; rðxÞÞ
¼ fy a W : jy� x0j < rðxÞg � W), then, for a fixed x0 a W and, for a a LaðWÞ
(a.e. positive, with, as usual, a > Np=ðNp�Nqþ pqÞ), we put

K ¼ Kðrðx0ÞÞ ¼
a1

a2

1

T pkakað2N � 1ÞjWjðp��a 0pÞ=ða 0p�ÞjB1j

� 2

rðx0Þ

�N�p

;ð3:1Þ

where T is the Talenti constant introduced in (2.1), a1 and a2 are the constants
considered in ðAÞ(iii), a 0 is the conjugate exponent of a and jB1j denotes the
Lebesgue measure of the N-dimensional unit ball.

We are in the position to state our first main result.

Theorem 3.1. Assume that f satisfies condition ðGf ;a; s;qÞ and that there exist
m > a2

a1
p, R > 0 such that

0 < mF ðx; tÞa tf ðx; tÞðARÞ

for a.a. x a W and for all jtjbR. Moreover, suppose that there exist c; d > 0 with
c < d and x0 a W such that

( j) Fðx; tÞb 0 a.e. in Bðx0; rðx0ÞÞ and for all t a ½0; c�;

( jj)
bs

s
d s�p þ bq

q
d q�p < K

R
Bðx0;rðx0Þ=2Þ Fðx; cÞ dx

c p
.

Put

825non-homogeneous dirichlet problems with concave-convex reaction



l� ¼ l�ðcÞ ¼
a2ð2N � 1ÞjB1j

p

�rðx0Þ
2

�N�p c pR
Bðx0;rðx0Þ=2Þ Fðx; cÞ dx

;ð3:2Þ

¼ a1

kakapT pkWjðp��a 0pÞ=ðp�a 0Þ
1

K

c pR
Bðx0;rðx0Þ=2Þ F ðx; cÞ dx

and

l� ¼ l�ðdÞ ¼ a1

kakapT pjWjðp��a 0pÞ=ðp�a 0Þ
1

bs
s
d s�p þ bq

q
d q�p

:ð3:3Þ

Then, for every l a �l�; l�½ problem ðPlÞ admits at least two nontrivial weak
solutions.

Proof. We wish to apply Theorem 2.1, with X ¼ W
1;p
0 ðWÞ and the func-

tionals F and Cf as defined in (2.5) and (2.6) respectively, so that, as seen in
Lemma 2.1 and Lemma 2.2, they are of class C1, moreover infX F ¼ Fð0Þ ¼
Cf ð0Þ ¼ 0.

Step 1. For every l > 0 the functional Il ¼ F� lCf is unbounded from below.
Indeed, integrating condition (AR) one has that

F ðx; tÞb jtjm

Rm
minfFðx;RÞ;F ðx;�RÞg

for a.a. x a W and for every jtjbR. On the other hand, from ðGf ;a; s;qÞ one has
that

jF ðx; tÞja aðxÞ
�bs
s
Rs þ bq

q
Rq

�

for a.a. x a W and for every jtjaR. Hence, if we put bðxÞ ¼ 1
Rm minfFðx;RÞ;

F ðx;�RÞg and dðxÞ ¼ aðxÞ
�
bs
s
Rs þ bq

q
Rq

	
,

Fðx; tÞb bðxÞjtjm � bðxÞjtjm � dðxÞ
b bðxÞjtjm � RmbðxÞ � dðxÞ

for a.a. x a W and for every jtjaR. Thus,

F ðx; tÞb bðxÞjtjm � RmbðxÞ � dðxÞð3:4Þ

for a.a. x a W and for every t a R. Moreover, observe that, in view of (AR),
bðxÞ > 0 for a.a. x a W. In addition, it is clear that b a LaðWÞ. Then, for every
l > 0, fixed u a W

1;p
0 ðWÞ with uA 0, exploiting (2.4) and (3.4) one has that for

every h > 0
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IlðhuÞ ¼ FðhuÞ � lCf ðhuÞ

a t p
a2

p
kukp � l

�
hm

Z
W

bðxÞjuðxÞjm dx� Rm

Z
W

bðxÞ dx�
Z
W

dðxÞ dx
�
:

Passing to the limit as h ! þl in the previous inequality and taking in mind that
m > p one can conclude the Il is unbounded from below.

Step 2. For every l > 0 the functional Il ¼ F� lCf satisfies the ðPSÞ-condition.
Indeed, let fungn � W

1;p
0 ðWÞ be such that fIlðunÞgn is bounded and I 0lðunÞ ! 0

in W�1;pðWÞ. A classical argument assures the existence of some M > 0 such that
for n a N large enough

M þ 1

m
kunkb IlðunÞ þ

1

m
kI 0lðunÞkW �1; pðWÞkunk

b IlðunÞ �
1

m
I 0lðunÞðunÞ

¼
Z
W

Aðx;‘unðxÞÞ �
1

m

Z
W

Aðx;‘unÞ � ‘un dx

� l

Z
W

�
Fðx; unÞ �

1

m
f ðx; unðxÞÞunðxÞ

�
dx:

Hence, if we put hnðxÞ ¼ F ðx; unÞ � 1
m
f ðx; unðxÞÞunðxÞ, thanks to ðAÞ(iii) and (2.4)

one achieves

M þ 1

m
kukb

�a1
p
� a2

m

�
kukp � l

Z
fx AW:juðxÞj<Rg

hnðxÞ dx

� l

Z
fx AW:juðxÞjbRg

hnðxÞ dx:

Observe that condition (AR) implies that the third term in the right hand side
is positive, while, in view of ðGf ;a; s;qÞ, the second term is bounded by a constant

independent from n. Thus, from a1
p
� a2

m
> 0 it follows that fungn is bounded.

At this point, the reflexivity of W 1;p
0 ðWÞ, the compactness of C 0

f Lemma 2.1 and
some standard techniques, see for example [8], lead to the existence of a subse-
quence of fungn that strongly converges, namely the ðPSÞ-condition holds.

Step 3. There exist r > 0 and ~uu a W
1;p
0 ðWÞ such that

supFðuÞar Cf ðuÞ
r

<
Cf ð~uuÞ
Fð~uuÞ :ð3:5Þ

Put

r ¼ a1jWjp=p
�

pT p
d p;ð3:6Þ
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and define the function ~uu a W
1;p
0 ðWÞ as follows

~uuðxÞ ¼
0 if x a WnBðx0; rðx0ÞÞ
2c

rðx0Þ ðrðx0Þ � jx� x0jÞ if x a Bðx0; rðx0ÞÞnBðx0; rðx0Þ=2Þ
c if x a Bðx0; rðx0Þ=2Þ:

8><
>:ð3:7Þ

Condition (2.4) implies

a1

p
kukp

aFðuÞa a2

p
kukpð3:8Þ

for every u a W
1;p
0 ðWÞ. Hence,

fu a W
1;p
0 ðWÞ : FðuÞa rg � u a W

1;p
0 ðWÞ : kuka

�pr
a1

�1=p� �
:ð3:9Þ

Condition (2.7) and the Hölder inequality lead to

Cf ðuÞa
bs

s

Z
W

aðxÞjuðxÞjs dxþ bq

q

Z
W

aðxÞjuðxÞjq dxð3:10Þ

a
bs

s
kakakuk

s
a 0 þ

bq

q
kakakuk

q
a 0q

a
bs

s
kakaT sjWjðp

��a 0sÞ=ðp�a 0Þkuks þ bq

q
kakaT qjWjðp

��a 0qÞ=ðp�a 0Þkukq

for every u a W
1;p
0 . Thus, in view of (3.9), condition (3.10) implies

sup
FðuÞar

Cf ðuÞa
bs

s
kakaT sjWjðp

��a 0sÞ=ðp�a 0Þ
�pr
a1

�s=p

þ bq

q
kakaT qjWjðp

��a 0qÞ=ðp�a 0Þ
�pr
a1

�q=p
;

from which we deduce that

sup
FðuÞar

Cf ðuÞ
r

a kaka
p

a1
T pjWjðp

��a 0pÞ=ðp�a 0Þð3:11Þ

�
"
bs

s

� T ppr

a1jWjp=p�

�ðs�pÞ=p
þ bq

q

� T ppr

a1jWjp=p�

�ðq�pÞ=p
#

¼ kaka
p

a1
T pjWjðp

��a 0pÞ=ðp�a 0Þ
�bs
s
d s�p þ bq

q
d q�p

�

¼ 1

l� :
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A direct computation shows that

k~uukp ¼
� 2

rðx0Þ

�p

c pjBðx0; rðx0ÞÞnBðx0; rðx0Þ=2Þj ¼
�rðx0Þ

2

�N�p

ð2N � 1ÞjB1jc p:

Hence, in view of (3.8)

Fð~uuÞa a2

p

�rðx0Þ
2

�N�p

ð2N � 1ÞjB1jc p:ð3:12Þ

Moreover, assumption ( j) assures that, one has

Cf ð~uuÞ ¼
Z
W

F ðx; ~uuðxÞÞ dxb
Z
Bðx0;rðx0Þ=2Þ

Fðx; cÞ dx:ð3:13Þ

The previous (3.12) and (3.13) permit to emphasize that

Cf ð~uuÞ
Fð~uuÞ b

p

a2ð2N � 1ÞjB1j

� 2

rðx0Þ

�N�p
R
Bðx0;rðx0Þ=2Þ Fðx; cÞ dx

c p
¼ 1

l�
:ð3:14Þ

The proof of Step 3 is concluded in view of (3.11) and (3.14) once observed
that assumption ( jj) implies that 1

l� < 1
l�
.

Step 4. For r and ~uu as in (3.6) and (3.7) one has 0 < Fð~uuÞ < r.
Indeed, put

~KK ¼ a1

a2

2N�p

½rðx0Þ�N�pð2N � 1ÞjB1j

" #1=p
jWj1=p

�

T
;

and observe that

~KK p
bK

Z
Bðx0;rðx0Þ=2Þ

aðxÞ dx:

In fact, a direct computation shows that

~KK p

K
¼ kakajWj1=a

0

and clearly Z
Bðx0;rðx0Þ=2Þ

aðxÞ dxa kak1 a jWj1=a
0
kaka:

Now we claim that

c < ~KKd:ð3:15Þ

829non-homogeneous dirichlet problems with concave-convex reaction



Suppose (3.15) false. Then, since from ðGf ;a; s;qÞ we have already observed that
jF ðx; cÞja aðxÞ

�
bs
s
cs þ bq

q
cq
	
for a.a. x a W, recalling that c < d, end exploiting

assumption ( jj), one has

bs
s
d s þ bq

q
d q

d p
b ~KK p

bs
s
d s þ bq

q
d q

c p
> ~KK p

bs
s
cs þ bq

q
cq

c p

¼
~KK pR

Bðx0;rðx0Þ=2Þ aðxÞ dx

Z
Bðx0;rðx0Þ=2Þ

aðxÞ
bs
s
cs þ bq

q
cq

c p
dx

bK

R
Bðx0;rðx0Þ=2Þ Fðx; cÞ dx

c p

>

bs
s
d s þ bq

q
d q

d p
;

and we obtain a contradiction. Finally, from (3.12) and (3.15) one has

Fð~uuÞ < a2

p

�rðx0Þ
2

�N�p

ð2N � 1ÞjB1j ~KK pd p ¼ r

and the proof of Step 4 is complete.
Putting together Step 1–Step 4 we can apply Theorem 2.1. In particular, from

(3.11) and (3.14) it is obvious that �l�; l�½ � Fð~uuÞ
Cf ð~uuÞ ;

r
supFðuÞar Cf ðuÞ

i h
. Hence, for every

l a �l�; l�½ the functional Il ¼ F� lCf admits at least two non-zero critical
points, namely, in view of (2.10), our proof is complete. r

Remark 3.1. Condition (AR) is crucial in the proof of Step 1 and Step 2.
Namely, as usual, it is the main tool in order to assure that the energy functional
associated to the problem is unbounded and satisfies the ðPSÞ-condition.

Remark 3.2. When f is a non zero function such that f ðx; tÞb 0 for a.a. x a W
and every tb 0 the solutions established in Theorem 3.1 are positive. Indeed, we
make use of classical truncation arguments and consider the functions

fþðx; tÞ ¼
f ðx; tÞ if ðx; tÞ a W� ½0;þl½
f ðx; 0Þ if ðx; tÞ a W� ��l; 0½

�

and Fþðx; tÞ ¼
R t

0 fþðx; xÞ dx for every ðx; tÞ a W� R. At this point, we can apply
Theorem 3.1 to the function fþðx; tÞ. Hence, problem

�divAðx;‘uÞ ¼ lfþðx; uÞ in W;

u ¼ 0 on qW

�
ð3:16Þ

admits at least two nontrivial weak solutions. But, since ~ff is non negative, it is
simple to verify that every weak solution of (3.16) is non negative. Thus the solu-
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tions of (3.16) solve also ðPlÞ. Finally, the classical regularity theory assures that
the weak solutions of ðPlÞ are continuous (see [20]) and by the strong maximum
principle, [34, Theorem 11.1], we achieve the announced positivity.

Remark 3.3. Taking into account Remark 3.1, condition (AR) can be required
only for positive t provided f , as considered in Remark 3.2, is such that
f ðx; tÞb 0 for a.a. x a W and every tb 0. Indeed, also in this case, because
of the definitions of fþ and Fþ, coming back to the proof of Theorem 3.1, the
energy functional F� lCfþ is unbounded from below and satisfies the ðPSÞ-
condition.

Remark 3.4. A direct computation shows that if 1 < q < p� and N > p,
then

Np

Np�Nqþ pq
>

N

p
if and only if p < q:

Indeed,

Np

Np�Nqþ pq
>

N

p
, p2 > Np�Nqþ pq , qðN � pÞ > pðN � pÞ:

Hence, Theorem 3.1 represents a kind of counterpart of [8, Theorem 3.1] where
the nonlinear term f ðx; �Þ is assumed to satisfy a global growth condition that,
compared with our ðGf ;a; s;qÞ, looks at the complementary case q < p under the
condition a > N=p.

A simple autonomous version of Theorem 3.1 can be stated as follows.

Corollary 3.1. Let f : R ! R be a continuous and nonnegative function such
that

j f ðtÞja bsjtjs�1 þ bqjtjq�1ð3:17Þ

for every t a R, with bs; bq > 0, 1a sa p and p < q < p�. Put F ðtÞ ¼
R t

0 f ðxÞ dx
for every t a R, and assume that there exist c; d > 0 with c < d such that

�bs
s
d s�p þ bq

q
d q�p

�
< H

FðcÞ
c p

;ð3:18Þ

where H ¼ a1
a2

1

T pð2N�1ÞjWjð p��pÞ=p�
�rðx0Þ

2

	p
and rðx0Þ ¼ maxx AW rðxÞ. In addition sup-

pose that there exist m > ða2=a1Þp and R > 0 such that

0 < mFðtÞa tf ðtÞðAR 0Þ

for all tbR.
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Then, for every l a a1

pT pjWjð p��pÞ=p�
1
H

c p

F ðcÞ ;
a1

pT pjWjð p ��pÞ=p �
1

bs
s
d s�pþbq

q
d q�p

� �
the problem

�divAðx;‘uÞ ¼ lf ðuÞ in W;

u ¼ 0 on qW;

�

admits at least two positive weak solutions.

Proof. Simply apply Theorem 3.1 with aC 1, a ¼ l, a 0 ¼ 1 (see also Remark
3.2 and Remark 3.3). r

As a particular case of Theorem 3.1 a multiplicity result can be derived when-
ever F ðx; �Þ is p-sublinear at zero.

Theorem 3.2. Assume that f : W� R ! R satisfies both conditions ðGf ;a; s;qÞ
and (AR). Moreover suppose that there exists x0 a W such that

( j 0) there exists d > 0 such that F ðx; tÞb 0 a.e. in Bðx0; rðx0ÞÞ and for all
t a �0; d½;

( jjj) lim supt!0þ
Fðx; tÞ
t p

¼ þl uniformly a.e. in Bðx0; rðx0Þ=2Þ.

Put

s� ¼ a1

kakapT pjWjðp��a 0pÞ=ðp�a 0Þ

� s

bs

�q�p
q�s q� p

q� s

� q

bq

p� s

q� p

�ðp�sÞ=ðq�sÞ
:

Then, for every l a �0; s�½ problem ðPlÞ admits at least two non trivial weak
solutions.

Proof. First observe that s� ¼ maxd>0 l
�ðdÞ, where l�ðdÞ is defined in (3.3).

Indeed, if we put hðdÞ ¼ bs
s
d s�p þ b2

q
d q�p for every d > 0, a direct computation

shows that

hðdÞ ¼
�bs
s

�ðq�pÞ=ðq�sÞ q� s

q� p

�bq
q

q� p

p� s

�ðp�sÞ=ðq�sÞ
¼ min

d>0
hðdÞ

with d ¼
�
q
s

bsðp�sÞ
bqðq�pÞ

	1=ðq�sÞ
. Hence, in conclusion,

s� ¼ a1

kakapT pjWjðp��a 0pÞ=ðp�a 0Þ
1

hðdÞ
¼ l�ðdÞ ¼ max

d>0
l�ðdÞ:

Fix l a �0; s�½, and choose d > 0 such that l < l�ðdÞ. From assumption ( jjj) one
has

K
a1

kakapT pjWjðp��a 0pÞ=ðp�a 0Þ lim sup
t!0þ

R
Bðx0Þ;rðx0Þ=2 Fðx; tÞ dx

t p
¼ þl;
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with K as introduced in (3.1). Hence, there is c a �0;minfd; dg½ such that

K
a1

kakapT pjWjðp��a 0pÞ=ðp�a 0Þ

R
Bðx0Þ;rðx0Þ=2 Fðx; cÞ dx

c p
>

1

l
>

1

l�ðdÞ ;

that is

l�ðcÞ < l < l�ðdÞ:

Thus, taking also in mind ( j 0) and the choice of c, all the assumptions of Theorem
3.1 are satisfied and the conclusion follows at once. r

Remark 3.5. I we assume

( jjj 0) limt!0þ
f ðx; tÞ
t p�1 ¼ þl

then ( j 0) and ( jjj) hold. So, condition ( jjj 0) ensures the conclusion of Theorem 3.2.

In the same spirit of Corollary 3.1 we now present an autonomous version of
Theorem 3.2.

Theorem 3.3. Let f : ½0;þl½ ! R be a continuous function satisfying the
growth condition (3.17), as well as (AR 0). Put FðtÞ ¼

R t

0 f ðsÞ ds for every t a
½0;þl½ and assume that

lim
t!0þ

FðtÞ
t p

¼ þl:ð3:19Þ

Then, if

t� ¼ a1

pT pjWjðp��pÞ=ðp�Þ

� s

bs

�q�p
q�s q� p

q� s

� q

bq

p� s

q� p

�ðp�sÞ=ðq�sÞ
;

for every l a �0; t�½ the problem

�divAðx;‘uÞ ¼ lf ðuÞ in W;

u ¼ 0 on qW;

�
ð3:20Þ

admits at least two positive solutions.

Proof. Apply Theorem 3.2 with aðxÞC 1, a ¼ l and a 0 ¼ 1 (see also Remarks
3.2 and 3.5). r

In [13], the problem

�divAðx;‘uÞ ¼ lðaðxÞjujp�2
uþ f ðx; uÞÞ in W;

u ¼ 0 on qW;

�
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has been studied when f satisfies condition ðGf ;a;1;qÞ, with 1 < q < p in addition
to a ðp� 1Þ-superlinear behaviour at zero, so that the whole nonlinear reaction
term is asymptotically ðp� 1Þ-linear both at zero and at infinity. More recently,
in [8] the same problem has been considered under di¤erent conditions on f
which are compatible with a ðp� 1Þ-superlinearity at zero and still require its
ðp� 1Þ-sublinearity at infinity. Here, we wish to point out that the complemen-
tary case when the nonlinear term is of concave-convex type can be addressed.

Theorem 3.4. Let g a LlðWÞ and z a LaðWÞ be two functions with a > Np
Np�Nqþpq

and 1a s < pa a2
a1
p < q < q� and minfessinfx AW gðxÞ; essinfx AW zðxÞg > 0. Put

a ¼ maxf1; zg and let

w� ¼ a1

kakapT pjWjðp��a 0pÞ=ðp�a 0Þ

� s

kgkl

�q�p
q�s q� p

q� s

�
q
p� s

q� p

�ðp�sÞ=ðq�sÞ
:

Then, for every l a �0; w�½ problem

�divAðx;‘uÞ ¼ lðgðxÞjujs�2
uþ zðxÞjujq�2

uÞ in W;

u ¼ 0 on qW;

�

admits at least two positive weak solutions.

Proof. Let f : W� R ! R be the function defined by

f ðx; tÞ ¼ gðxÞjtjs�2
tþ zðxÞjtjq�2

t if tb 0;

0 if t < 0;

�

for every x a W. Clearly, f satisfies ðGf ;a; s;qÞ with bs ¼ kgkl, bq ¼ 1. Indeed

j f ðx; tÞja kgkljtjs�1 þ zðxÞjtjq�1
amaxf1; zðxÞgðkgkljtjs�1 þ jtjq�1Þ

for every t a R and a.a. x a W. Moreover, since

F ðx; tÞ ¼
gðxÞ
s
jtjs þ zðxÞ

q
jtjq if tb 0;

0 if t < 0

(

a direct computation shows that if m a a1
a2
p; q

i h
,

tf ðx; tÞ � mF ðx; tÞ
jtjs ¼ zðxÞ

�
1� m

q

�
jtjq�s � m

s
gðxÞ þ gðxÞ

b essinfx AW z
�
1� m

q

�
jtjq�s � m

s
kgkl

a.e. in W and for every t > 0. Thus, condition (AR) holds for t > 0 large enough.
Observe that

F ðx; tÞ
t p

b
gðxÞts
st p

b ðessinfW gðxÞÞ 1
s
ts�p

834 g. bonanno, r. livrea and v. d. rădulescu



a.e. in W and for every t > 0, namely

lim
t!0þ

F ðx; tÞ
t p

¼ þl

uniformly a.e. in W. Finally, since w� ¼ s� (recall the choice of bs and bq), for
all l a �0; w�½, arguing as in the proof of Theorem 3.2, taking also into account
Remarks 3.2 and 3.3, the problem under consideration has at least two nontrivial
solutions that, in view of the structure of f and the strong maximum principle are
positive. r

We conclude by showing a consequence of the previous result when a concave
and convex nonlinearity is still considered.

Corollary 3.2. Assume that the assumptions of Theorem 3.4 are satisfied. Put

h� ¼
� a1

kakapT pjWjðp��a 0pÞ=ðp�a 0Þ

�q�s

q�p s

kgkl
ðq� pÞq

p�s
q�p

�ðp� sÞ p�s

ðq� sÞq�s

�1=ðq�pÞ
:

Then, for every y a �0; h�½ the problem

�divAðx;‘uÞ ¼ ygðxÞjujs�2
uþ zðxÞjujq�2

u in W;

u ¼ 0 on qW;

�
ð3:21Þ

admits at least two positive weak solutions.

Proof. Fix y a �0; h�½. We apply Theorem 3.4 considering the function yg a
LlðWÞ. Therefore, the problem

�divAðx;‘uÞ ¼ lðygðxÞjujs�2
uþ zðxÞjujq�2

uÞ in W;

u ¼ 0 on qW;

�

admits at least two positive weak solutions for each l a �0; s�½, where

s� ¼ a1

kakapT pjWjðp��a 0pÞ=ðp�a 0Þ

� s

ykgkl

�q�p
q�s q� p

q� s

�
q
p� s

q� p

�ðp�sÞ=ðq�sÞ
:

Taking into account that from y < h� one has that 1 a �0; s�½, the conclusion is
achieved. r

Remark 3.6. Starting from [1, 3, 4] a great interest has been devoted to the
study of the existence of at least two solutions for di¤erential problems involv-
ing the p-Laplacian both for semilinear equations, namely p ¼ 2, and nonlinear
equations, that is pA 2 (see also [7, 16, 18, 22, 23] as well as [25, 32], where a
non-homogeneous operator is considered). In comparison with the present litera-
ture, the previous Theorem 3.2 covers the case when a more general operator
than the p-Laplacian is considered. However, we explicitly point out that in
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presenting Theorem 3.2 our investigation does not consider the best interval for
which the problem under examination admits at least to positive solutions. We
simply emphasized that the existence of multiple positive solutions can be easily
derived from the more general theorems previously proved.
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