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Abstract We consider the following nonlinear Schrödinger equation

−�u + V (x)u = a(x) |u|q−1 u + f (x), x ∈ R
N ,

where V is a non-symmetric bounded potential, a is an indefinite weight, 0 < q < 1 and

f �= 0 is a nonnegative perturbation such that f ∈ L2(RN ) ∩ L
2N
N+2 (RN ). Using variational

methods, we prove the existence of two solutions with negative and positive energies, one of
these solutions being nonnegative.
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1 Introduction

The Schrödinger equation is central in quantum mechanics and it plays the role of Newton’s
laws and conservation of energy in classicalmechanics, that is, it predicts the future behaviour
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of a dynamical system. It is striking to point out that talking about his celebrating equation,
Erwin Schrödinger said: “I don’t like it, and I’m sorry I ever had anything to do with it”.
The linear Schrödinger equation is a central tool of quantum mechanics, which provides a
thorough description of a particle in a non-relativistic setting. Schrödinger’s linear equation
is

�ψ + 8π2m

h̄2
(E − V (x)) ψ = 0,

where ψ is the Schrödinger wave function, m is the mass of the particle, h̄ denotes Planck’s
renormalized constant, E is the energy, and V stands for the potential energy.

Schrödinger also established the classical derivation of his equation, based upon the
analogy between mechanics and optics, and closer to de Broglie’s ideas. He developed a per-
turbation method, inspired by the work of Lord Rayleigh in acoustics, proved the equivalence
between his wave mechanics and Heisenberg’s matrix, and introduced the time dependent
Schrödinger’s equation

i h̄ψt = − h̄2

2m
�ψ + V (x)ψ − γ |ψ |p−1ψ x ∈ R

N (N ≥ 2), (1.1)

where p < 2N/(N − 2) if N ≥ 3 and p < +∞ if N = 2.
In physical problems, a cubic nonlinearity corresponding to p = 3 in equation (1.1) is

common; in this case problem (1.1) is called the Gross–Pitaevskii equation. In the study of
equation (1.1), Floer andWeinstein [26] andOh [36] supposed that the potential V is bounded
and possesses a non-degenerate critical point at x = 0. More precisely, it is assumed that V
belongs to the class (Va) (for some real number a) introduced in Kato [31]. Taking γ > 0
and h̄ > 0 sufficiently small and using a Lyapunov–Schmidt type reduction, Oh [36] proved
the existence of bound state solutions of problem (1.1), that is, a solution of the form

ψ(x, t) = e−i Et/h̄u(x). (1.2)

Using the Ansatz (1.2), we reduce the nonlinear Schrödinger equation (1.1) to the semilinear
elliptic equation

− h̄2

2m
�u + (V (x) − E) u = |u|p−1u.

The change of variable y = h̄−1x (and replacing y by x) yields

− �u + 2m (Vh̄(x) − E) u = |u|p−1u x ∈ R
N , (1.3)

where Vh̄(x) = V (h̄x).
Let us also recall that in his 1928 pioneering paper, Gamow [27] proved the tunneling

effect, which lead to the construction of the electronic microscope and the correct study of
the alpha radioactivity. The notion of “solution” used by him was not explicitly mentioned in
the paper but it is coherent with the notion of weak solution introduced several years later by
other authors such as Leray, Sobolev and Schwartz. Most of the study developed by Gamow
was concerned with the bound states ψ(x, t) defined in (1.2), where u solves the stationary
equation

−�u + V (x)u = λu in R
N ,

for a given potential V (x). Gamow was particularly interested in the Coulomb potential but
he also proposed to replace the resulting potential by a simple potential that keeps the main
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properties of the original one. In this way, if � is a subdomain of RN , Gamow proposed to
use the finite well potential

Vq,�(x) =
{

V (x) if x ∈ �

q if x ∈ R
N\� for some q ∈ R.

It seems that the first reference dealingwith the limit case, the so-called infinite well potential,

V∞(x; R, V0) =
{

V0 if x ∈ �

+∞ if x ∈ R
N\� for some V0 ∈ R,

was the book by the 1977 Nobel Prize Mott [35]. The more singular case in which V0 is
the Dirac mass δ0 is related with the so-called Quantum Dots, see Joglekar [29]. In contrast
with classical mechanics, in quantum mechanics the incertitude appears (the Heisenberg
principle). For instance, for a free particle (i.e. with V (x) ≡ 0), in nonrelativistic quantum
mechanics, if the wave function ψ(·, t) at time t = 0 vanishes outside some compact region
� then at an arbitrarily short time later the wave function is nonzero arbitrarily far away from
the original region �. Thus, the wave function instantaneously spreads to infinity and the
probability of finding the particle arbitrarily far away from the initial region is nonzero for
all t > 0. We refer to Díaz [25] for more details.

2 The main results

In this paper, we consider Schrödinger equations with sublinear nonlinearity and non-
symmetric potentials, which are affected by a nonnegative perturbation. We are interested in
the multiplicity of solutions and we establish several sufficient conditions for the existence
of two solutions.

We point out that sublinear problems on thewhole space do not have necessarily a solution.
In fact, the existence of solutions is in relationship not only with the nonlinearity but also
with the behaviour of a certain potential. Brezis and Kamin [18] pointed out a striking
phenomenon, which asserts that a sublinear problem on the whole space has a solution if and
only if a linear equation depending only on the potential has a solution. They considered the
nonlinear problem

− �u = ρ(x) u p, x ∈ R
n (n ≥ 3), (2.1)

with 0 < p < 1, ρ ∈ L∞
loc(R

n)\{0}, ρ ≥ 0. Brezis and Kamin [18] proved that the nonlinear
problem (2.1) has a bounded positive solution if and only if the linear equation

−�u = ρ(x), x ∈ R
n

has a bounded solution. Their analysis showed that such a solution exists for potentials like

ρ(x) = 1

1 + |x |α or ρ(x) = 1

(1 + |x |2) | log(2 + |x |)|α (α > 2),

while no solution exists if

ρ(x) = 1

1 + |x |α with α ≤ 2.

Consider the following class of sublinear Schrödinger equations

− �u + V (x)u = a(x) |u|q−1 u + f (x), x ∈ R
N , (2.2)
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where

N ≥ 3, 0 < q < 1, f ≥ 0, f �= 0 and f ∈ L2(RN ) ∩ L
2N
N+2 (RN ). (F)

Equation (2.2) arises in the study of solitary waves in nonlinear equations of the Klein-
Gordon or Schrödinger type.

We look for the existence of two solutions for problem (2.2), where the potential V (x) and
theweight a(x) are indefinite, that is, they are sign-changing functions inRN . Such problems,
with indefinite linear and nonlinear terms, present challenging mathematical difficulties.

Equation (2.2) can be considered as a perturbation of the homogeneous problem

− �u + V (x)u = a(x) |u|q−1 u, u ∈ H1(RN ) ∩ Lq+1
(
R

N
)

. (2.3)

Equation (2.3) has been extensively studied in the last few decades, see [6–8,18,20,21,38].
In 2008, using the Nehari manifold method, Chabrowski and Costa [21] proved the existence
of two solutions of problem (2.3), where both a(x) and V (x) change sign in R

N . In [7],
Bahrouni et al. improved this result and established the existence of infinitely many solutions
of problem (2.3) when V (x) and a(x) change sign.

In the case of bounded domains and under Dirichlet boundary conditions, there is a large
literature on existence and a multiplicity of solutions for (2.2), see [3,5,17,19,28,30,32,34]
and the references therein. In a pioneering paper, Ahmad, Lazer and Paul [3] considered the
resonant problem {

−�u − λku = g(x, u) in �

u = 0 on ∂�,
(2.4)

where λk denotes the kth eigenvalue of the Laplace operator. They proved that a sufficient
condition for the existence of a solution is

lim‖u‖→+∞,u∈E0

∫
�

G (x, u(x)) dx = ∓∞,

where G(x, s) = ∫ s
0 g(x, t)dt and E0 = Ker (−� − λk).

Brown [19] proved the existence of two solutions of problem (2.2) when V = f = 0 and
a(x) changes sign.

In the case of unbounded domains, many authors have studied the existence of solutions of
problem (2.2) with superlinear subcritical nonlinearity (1 < q < 2∗ = 2N

N−2 ), see [1,2,4,33].
For instance, Li andWu [33] treated problem (2.2) where f = μh, V = λ and a(x) ∈ (0, 1).
The authors proved the existence of positive numbers ε > 0 and λ0, μ > 0 such that for any

λ > λ0 and μλ
N
4 − p−1

p−2 < ε, problem (2.2) admits multiple positive solutions.
For the sublinear case and especially for the whole space RN , to our best knowledge, few

results are known. We can for example quote the papers [5,14–16]. For instance, Benrhouma
[14] proved the existence of at least three solutions of problem (2.2), provided that a(x) < 0
and V changes sign. As far as we know, the only existence result for problem (2.2) where
both a and V change sign in R

N , is obtained by Tehrani [37]. He considered the equation

−�u + V (x)u = a(x)g(u) + f,

under the following assumptions:

(G1) g ∈ C (R,R) , g(s)s ≥ 0 for all s ∈ R;
(G2) lim|s|→+∞ g(s)

|s|q−1s
= 1, for some 0 < q < 1;
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(G3) ∃A > 0, |g(s)| ≤ A |s|q for all s ∈ R;
(V2) V ∈ L∞(RN ) and lim inf |x |→+∞ V (x) = v∞ > 0;
(H1)

∫
RN

[|∇φ|2 + V (x)φ2
]
dx < 0 for some φ ∈ C∞

c (RN );
(V3) 0 ∈ σ (−� + V );(
A′
0

)
a ∈ L∞(RN ) and lim sup|x |→+∞ a(x) = a∞ < 0;

(F1) f ∈ L2(RN );(
N±) ∫

RN a(x) |ϕ|q+1 > 0 (or < 0) ∀ϕ ∈ Ker (−� + V ) , ϕ �= 0.

Under these assumptions, by using bounded domain approximation techniques, Tehrani
[37] proved the existence of at least one solution.

In this paper, we prove the existence of two solutions for problem (2.2), provided that both
a(x) and V (x) change sign in RN . We consider two classes of assumptions on the indefinite
non-symmetric potentials a(x) and V (x).

First class: We suppose that V satisfies (H1) and the following hypotheses:

(H3) V ∈ L∞(RN ) and there exist R0, β > 0 such that

V (x) ≥ β, ∀ |x | ≥ R0.

(H4) the linear problem {−�u + V (x)u = 0,
u ∈ H1(RN )

has not a nontrivial solution.
We suppose that a satisfies:

(A1) a ∈ L∞(RN )

and there exist α, R1 > 0 such that

a(x) ≤ −α, ∀ |x | ≥ R1.

Second class: We assume that a and V satisfy (H1), (H3),
(
N±)

and the following
conditions:(

A1
)

a ∈ L
2

1−q (RN ), 0 < q < 1.
(H2) 0 ∈ σd (−� + V ),

where σd is the discrete spectrum of L = −� + V (x).
We consider the functional I : Y → R, where Y = H1(RN ) ∩ Lq+1

(
R

N
)
or Y =

H1(RN ). The critical points of I are weak solutions of problem (2.2).
The main results in this paper are the following.

Theorem 2.1 Assume that hypotheses (F) , (A1) , (H1) , (H3) and (H4) hold. Then there
exists m0 > 0 such that if

‖ f ‖22 + ∥∥a+ + χB(0,R1)

∥∥ 2
1−q

2∗
2∗−q−1

< m0,

then problem (2.2) has two solutions U1,U2 ∈ E with I (U1) < 0 and I (U2) > 0. One of
these solutions is nonnegative.

Theorem 2.2 Assume that (F),
(
A1

)
, (H1), (H2), (H3) and

(
N±)

hold. Then there exists
m1 > 0 such that if

‖ f ‖22 + ∥∥a+ + χB(0,R0)

∥∥ 2
1−q
2

1−q
< m1,
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then problem (2.2) admits two solutions V1, V2 ∈ H1(RN ) with I (V1) < 0 and I (V2) > 0.
One of these solutions is nonnegative.

Remark 2.3 In fact, the assumptions

‖ f ‖22 + ∥∥a+ + χB(0,R1)

∥∥ 2
1−q

2∗
2∗−q−1

< m0

and

‖ f ‖22 + ∥∥a+ + χB(0,R0)

∥∥ 2
1−q
2

1−q
< m1

are necessary only to guarantee that I (u) ≥ c > 0 on the sphere in Y (see Lemmas 3.3 and
3.4). Thus these hypotheses can be removed if there are other ways to get I (u) ≥ c > 0 on
the sphere in Y .

We divide our paper into four sections. In Sect. 2, we give some notations and preliminary
results. In Sects. 3 and 4, we prove Theorems 2.1 and 2.2.

The main difficulties that arise in treating this class of nonhomogeneous Schrödinger
equations (2.2) are the following: (i) the lack of compactness due to the unboundedness of
the domain; (ii) the sign-changing of potentials a(x) and V (x). To avoid the first difficulty, we
employ the Del Pino and Felmer method [23]. To overcome the second difficulty, we control
the positive mass in relation to the negative mass of the potentials a(x) and V (x). The key
tool for obtaining the multiplicity of solutions is a suitable recurrent variational method.

3 Notations and preliminaries

We will use the following notations:

‖u‖m = (∫
RN |u|m dx

) 1
m , ∀1 ≤ m < ∞;

B (0, R) denotes the ball centered in zero of radius R > 0 and Bc (0, R) = R
N\B (0, R);

CS is the best Sobolev constant:

∀u ∈ H1(RN ), ‖u‖2∗ ≤ CS ‖∇u‖2 ;
F ′: the Fréchet derivative of F at u.

Let

E = H1(RN ) ∩ Lq+1
(
R

N
)

.

If we equip E with the norm

‖u‖ = ‖∇u‖2 + ‖u‖q+1 ,

then E becomes a reflexive Banach space. On the Sobolev space H1(RN ) we consider the
usual norm

‖u‖H = ‖u‖2 + ‖∇u‖2 .

Define the following energy functional on Y (Y = E or H1(RN )):

I (u) = 1

2

∫
RN

(|∇u|2 + V (x)u2
)
dx − 1

q + 1

∫
RN

a(x) |u|q+1 dx

−
∫
RN

f (x)udx . (3.1)
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Under suitable assumptions on a, V and f (to be fixed later), the functional I is well
defined, of class C1 on Y and any critical point of I is a weak solution of problem (2.2).

We recall that a Palais–Smale sequence for the functional I , for short we write (PS)-
sequence, is a sequence (un)n ∈ Y such that

(I (un))n is bounded and
∥∥I ′(un)

∥∥
Y ′ → 0.

The functional I is said to satisfy the Palais–Smale condition if any (PS)-sequence has a
convergent subsequence in Y .

In the sequel we need the following auxiliary results.

Lemma 3.1 Let x and y be arbitrary real numbers. Then there exists c > 0 such that∣∣|x + y|q+1 − |x |q+1 − |y|q+1
∣∣ ≤ c |x |q y, (3.2)

for 0 < q < 1.

Proof If x = 0, the inequality (3.2) is trivial.
Suppose that x �= 0. Let f : R\ {0} �→ R defined by

f (t) = |1 + t |q+1 − |t |q+1 − 1

|t | .

Then lim|t |→+∞ f (t) = 0 and limt→0± f (t) = ± (q + 1), so there exists constant c > 0
such that | f (t)| ≤ c, ∀t ∈ R\ {0}. In particular

∣∣ f ( y
x

)∣∣ ≤ c, so∣∣∣∣
∣∣∣1 + y

x

∣∣∣q+1 −
∣∣∣ y
x

∣∣∣q+1 − 1

∣∣∣∣ ≤ c
∣∣∣ y
x

∣∣∣ .
Multiplying by |x |q+1, we obtain the desired result. ��
Lemma 3.2 Assume that

(
A1

)
holds. If un ⇀ u weakly in H1(RN ), then there exists a

subsequence of (un) ∈ H1(RN ), also denoted (un), such that

lim
n→+∞

∫
RN

a(x) |un − u|q+1 dx = 0.

Proof Since a ∈ L
2

1−q (RN ), then for every ε > 0 there exists R2 > 0 such that

(∫
|x |>R2

|a(x)| 2
1−q dx

) 1−q
2

< ε.

Since un ⇀ u weakly in H1(RN ), un → u strongly in Ls
loc(R

N ), 2 ≤ s < 2∗, then
(∫

|x |<R2

|un − u|2 dx
) q+1

2

< ε.

Observe that by Hölder’s inequality we have∫
RN

a(x) |un − u|q+1 dx =
∫

|x |≤R2

a(x) |un − u|q+1 dx

+
∫

|x |>R2

a(x) |un − u|q+1 dx < cε,

hence limn→+∞
∫
RN a(x) |un − u|q+1 dx = 0. ��
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Lemma 3.3 Assume that hypotheses (A1) , (H3) and (F) hold. Then there exist ρ0, α0,
m0 > 0 such that I (u) ≥ α0 > 0 for all u ∈ E, ‖u‖ = ρ0 and ‖ f ‖22 +∥∥a+ + χB(0,R1)

∥∥ 2
1−q

2∗
2∗−q−1

< m0.

Proof Let u ∈ E . By Hölder and Sobolev inequalities, we have

‖u‖22 ≤ ‖u‖2rq+1 ‖u‖2(1−r)
2∗ ≤ C2(1−r)

s ‖u‖2rq+1 ‖∇u‖2(1−r)
2

≤ min(α,1)
(q+1)(‖V ‖∞+1) ‖u‖q+1

q+1 + c ‖∇u‖p
2 ,

(3.3)

with

r = (2∗ − 2) (q + 1)

2 (2∗ − q − 1)
∈]0, 1[ and p = 2 (1 − r) (q + 1)

q + 1 − 2r
> 2.

Then from (F), (H3) and (A1) we infer that

I (u) = 1

2

∫
RN

(|∇u|2 + V (x)u2
)
dx − 1

q + 1

∫
RN

(
a+ + χB(0,R1)

)
(x) |u|q+1 dx

+ 1

q + 1

∫
RN

(
a− + χB(0,R1)

)
(x) |u|q+1 dx −

∫
RN

f (x)udx

≥ 1

2

(‖∇u‖22 − (‖V ‖∞ + 1) ‖u‖22
) + min(α, 1)

q + 1
‖u‖q+1

q+1

− 1

q + 1

∥∥a+ + χB(0,R1)

∥∥
2∗

2∗−q−1
‖u‖q+1

2∗ − 1

2
‖ f ‖22

≥ 1

2
‖∇u‖22+

min(α, 1)

2 (q+1)
‖u‖q+1

q+1−c ‖∇u‖p
2 − Cq+1

s

q + 1

∥∥a+ + χB(0,R1)

∥∥ 2∗
2∗−q−1

‖∇u‖q+1
2

− 1

2
‖ f ‖22

≥ 1

4
‖∇u‖22 + min(α, 1)

2 (q + 1)
‖u‖q+1

q+1 − c ‖∇u‖p
2

− (2 (q + 1))
q+1
1−q

(
Cq+1
s

q + 1

) 2
1−q (

1 − q

2

) ∥∥a+ + χB(0,R1)

∥∥ 2
1−q

2∗
2∗−q−1

− 1

2
‖ f ‖22 .

Since p > 2, for ‖∇u‖2 ≤ s (small enough) we have

1

4
‖∇u‖22 − c ‖∇u‖p

2 ≥ 1

8
‖∇u‖22 .

Next, using the inequality

1

2
(x + y)2 ≤ x2 + yq+1 ∀x ≥ 0, 0 ≤ y ≤ 1,

we obtain that for ‖∇u‖2 ≤ s and ‖u‖q+1 ≤ 1, we have

I (u) ≥ ‖∇u‖22
8 + min(α,1)

2(q+1) ‖u‖q+1
q+1 − 1

2 ‖ f ‖22
− (2 (q + 1))

q+1
1−q

(
Cq+1
s
q+1

) 2
1−q (

1−q
2

) ∥∥a+ + χB(0,R1)

∥∥ 2
1−q

2∗
2∗−q−1

≥ c0 ‖u‖2 − 1
2 ‖ f ‖22

− (2 (q + 1))
q+1
1−q

(
Cq+1
s
q+1

) 2
1−q (

1−q
2

) ∥∥a+ + χB(0,R1)

∥∥ 2
1−q

2∗
2∗−q−1

,

(3.4)
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where c0 = min
(

1
16 ,

min(α,1)
4(q+1)

)
.

Set ρ0 = min (s, 1). Then by (3.4) and for

‖ f ‖22 + ∥∥a+ + χB(0,R1)

∥∥ 2
1−q

2∗
2∗−q−1

<
c0

max

(
1, (1 − q) (2 (q + 1))

q+1
1−q

(
Cq+1
s
q+1

) 2
1−q

)ρ2
0 = m0,

we infer that

I (u) ≥ c0
ρ2
0

2
= α0, for ‖u‖ = ρ0.

The proof is completed. ��

Lemma 3.4 Suppose that hypotheses (F),
(
A1

)
and (H3) are satisfied. Then there exist

ρ1, α1, m1 > 0 such that I (u) ≥ α1 > 0 for all u ∈ H1(RN ), ‖u‖H = ρ1 and

‖ f ‖22N
N+2

+ ∥∥a+ + χB(0,R0)

∥∥ 2
1−q
2

1−q
< m1.

Proof Combining hypothesis (H3) with Hölder and Sobolev inequalities, we obtain

∫
RN V−(x)u2dx ≤ ‖V ‖∞

∫
RN

((
a− + χB(0,R0)

)
(x)

) 2r
q+1 u2dx

≤ ‖V ‖∞
(∫

RN

(
a− + χB(0,R0)

)
(x) |u|q+1 dx

) 2r
q+1 ‖u‖2(1−r)

2∗

≤ ‖V ‖∞ C2(1−r)
s

(∫
RN

(
a− + χB(0,R0)

)
(x) |u|q+1 dx

) 2r
q+1 ‖∇u‖2(1−r)

2

≤ 1
(q+1)

∫
RN

(
a− + χB(0,R0)

)
(x) |u|q+1 dx + c ‖∇u‖p

2

(3.5)

and

∫
RN

(|∇u|2 + u2
)
dx = ∫

RN |∇u|2 + ∫
B(0,R0)

u2dx + ∫
Bc(0,R0)

u2dx

≤ ∫
RN |∇u|2 dx + C2

s (meas (B (0, R0)))
2
N

∫
RN |∇u|2 dx

+ 1
β

∫
Bc(0,R0)

V+(x)u2dx

≤ max
{
max

(
1,C2

s (meas (B (0, R0)))
2
N

)
, 1

β

}

×
(∫

RN |∇u|2 + ∫
Bc(0,R0)

V+(x)u2dx
)

.

(3.6)
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Using (3.5), we have

I (u) = 1

2

∫
RN

(|∇u|2 + V+(x)u2
)
dx − 1

2

∫
RN

V−(x)u2dx

+ 1

q + 1

∫
RN

(
a− + χB(0,R0)

)
(x) |u|q+1 dx

− 1

q + 1

∫
RN

(
a+ + χB(0,R0)

)
(x) |u|q+1 dx −

∫
RN

f (x)udx

≥ 1

4
‖∇u‖22 − c ‖∇u‖p

2 + 1

2

∫
Bc
(0,R0)

V+(x)u2dx

+ 1

2 (q + 1)

∫
RN

(
a− + χB(0,R0)

)
(x) |u|q+1 dx

− ∥∥a+ + χB(0,R0)

∥∥ 2
1−q

‖u‖q+1
H − C2

s ‖ f ‖22N
N+2

≥ 1

4
‖∇u‖22 − c ‖∇u‖p

2 + 1

2

∫
Bc(0,R0)

V+(x)u2dx

− ∥∥a+ + χB(0,R0)

∥∥ 2
1−q

‖u‖q+1
H − C2

s ‖ f ‖22N
N+2

.

Using (3.6) and for ‖∇u‖2 ≤ ρ1 (ρ1 small enough), we infer that

I (u) ≥ 1
8

(∫
RN ∇u2dx + ∫

Bc(0,R0)
V+(x)u2dx

)
− ∥∥a+ + χB(0,R0)

∥∥ 2
1−q

‖u‖q+1
H − C2

s ‖ f ‖22N
N+2

≥ c1 ‖u‖2H − 1−q
2

(
2
c1

) q+1
1−q

(
q+1
2

) 1+q
1−q ∥∥a+ + χB(0,R0)

∥∥ 2
1−q
2

1−q
− C2

s ‖ f ‖22N
N+2

,

where

c1 = 1

8max
(
max

(
1,C2

s (meas (B (0, R0)))
2
N

)
, 1

β

) .

Set

m1 = c1

2max

(
2C2

s , (1 − q)
(

2
c1

) 1+q
1−q

(
q+1
2

) 1+q
1−q

) .

If ‖ f ‖22N
N+2

+ ∥∥a+ + χB(0,R0)

∥∥ 2
1−q
2

1−q
< m1, we have

I (u) ≥ c1
2

ρ2
1 = α1, for ‖u‖H = ρ1.

This completes the proof. ��

4 Proof of Theorem 2.1

We split the proof into several steps. We first establish the existence of first solution with
negative energy. Next, we show that problem (2.2) has a weak solution with positive energy.
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4.1 Existence of a nonnegative solution

Consider the minimization problem

M1 = inf
u∈B(0,ρ0)

I (u), (4.1)

where ρ0 is defined in Lemma 3.3.

Lemma 4.1 Assume that hypotheses (A1) , (H3) and (F) hold. Then −∞ < M1 < 0.

Proof By Lemma 3.3 we have M1 > −∞.
Using hypothesis (F), there is a function ψ ∈ E such that

∫
RN f (x)ψdx > 0. For t > 0,

we have

I (tψ) = t2
2

∫
RN

(|∇ψ |2 + V (x)ψ2
)
dx

− tq+1

q+1

∫
RN a(x) |ψ |q+1 dx − t

∫
RN f (x)ψdx

< 0 for t > 0 small enough.

(4.2)

Hence M1 < 0. Thus we conclude the proof. ��
Theorem 4.2 Assume that hypotheses (F) , (A1) and (H3) hold. Then there exists a weak
nonnegative solution U1 ∈ E of problem (2.2), I (U1) = M1.

Proof Let (un)n be a minimizing sequence of problem (4.1). Since (un) ∈ B(0, ρ0), we can
extract a subsequence, also denoted by (un), such that un ⇀ U1 in E , un → U1 in Lm

loc(R
N )

for all 1 ≤ m < 2∗ and un → U1 a.e. in R
N .

Setting vn = un −U1 ⇀ 0 in E , we have

I (un) = 1
2

∫
RN

(|∇vn |2 + V (x)v2n
)
dx + 1

2

∫
RN

(|∇U1|2 + V (x)U 2
1

)
dx

+ ∫
RN (∇vn∇U1 + V (x)vnU1) dx

− 1
q+1

∫
RN a(x)

(|un |q+1 − |U1|q+1) dx − 1
q+1

∫
RN a(x) |U1|q+1 dx

− ∫
RN f (x)vndx − ∫

RN f (x)U1dx .

(4.3)

Since vn ⇀ 0 in E , we obtain∫
RN

(∇vn∇U1 + V (x)vnU1) dx → 0 and
∫
RN

f (x)vndx → 0. (4.4)

By Lemma 3.1 we have∫
RN

|a(x)| ∣∣|un |q+1 − (|U1|q+1 + |vn |q+1)∣∣ dx ≤ c
∫
RN

|a(x)| |U1|q |vn | → 0. (4.5)

From (H3) and (A1), we deduce that∫
RN

V−(x)v2ndx → 0 and
∫
RN

(
a+(x) + χB(0,R1)

) |vn |q+1 dx → 0. (4.6)

Using relations (4.4), (4.5), (4.6) and passing to the limit in (4.3), we get

M1 = I (U1)+ lim
n→+∞

(
1

2

∫
RN

|∇vn |2 + V+(x)v2n + 1

q + 1

(
a−(x) + χB(0,R1)

) |vn |q+1
)
dx

≥ I (U1) + lim
n→+∞

(
1

2
‖∇vn‖22 + min (α, 1)

q + 1
‖vn‖q+1

q+1

)
≥ M1.
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It follows that vn → 0 in E , M1 = I (U1) < 0, U1 ∈ B (0, ρ0), I ′(U1) = 0. Thus U1

is a weak solution of problem (2.2). Since M1 ≤ I (|un |) ≤ I (un), then (|un |) is also a
minimizing sequence of problem (4.1). We deduce that we can suppose that U1 ≥ 0 a.e. in
R

N . ��
4.2 Existence of a second solution with positive energy solution

We start this subsection by showing that the functional I satisfies the Palais–Smale condition.
For this purpose, we need the following auxiliary properties.

Lemma 4.3 Assume that hypotheses (A1), (H3), (H4)and (F)hold. Then any (PS)-sequence
of I is bounded in E.

Proof Let (un) ∈ E be a (PS)-sequence of I . We argue by contradiction, assuming that
‖un‖ = tn → +∞. Re-normalizing, we set vn = un

tn
. Thus up to a subsequence, vn ⇀ v in

E .
We claim that v = 0. For this purpose, we take ϕ ∈ C∞

c (RN ). Since (un) is a (PS)-
sequence of I , we have

〈I ′(un), ϕ〉 = ∫
RN (∇un∇ϕ + V (x)unϕ) dx − ∫

RN a(x) |un |q−1 unϕdx
− ∫

RN f (x)ϕdx = o(1) ‖ϕ‖ .
(4.7)

Dividing relation (4.7) by tn , we obtain∫
RN

(∇vn∇ϕ + V (x)vnϕ) dx −
∫
RN

a(x)
|un |q−1 un

tn
ϕdx −

∫
RN

f (x)ϕ

tn
dx = o(1).

(4.8)

Using (A1) and Hölder’s inequality, we deduce that
∫
RN

a(x)
|un |q−1 un

tn
ϕdx ≤ ‖a‖∞

‖un‖q2∗
tn

‖ϕ‖ 2∗
2∗−q

≤ c ‖a‖∞
‖un‖q
tn

‖ϕ‖ 2∗
2∗−q

.

Thus since 0 < q < 1, we have
∫
RN

a(x)
|un |q−1 un

tn
ϕdx → 0. (4.9)

As a consequence of hypothesis (F), we have∫
RN

f (x)ϕ

tn
dx → 0 as n → +∞. (4.10)

From (4.9), (4.10) and passing to the limit in relation (4.8), we infer that∫
RN

(∇v∇ϕ + V (x)vϕ) dx = 0.

Using now (H4), we conclude that v = 0 a.e. in R
N . This proves our claim.

Substituting ϕ = vn in relation (4.8), we obtain∫
RN

|∇vn |2 dx +
∫
RN

(
V+ + χB(0,R0)

)
(x)v2ndx −

∫
RN

(
V−(x) + χB(0,R0)(x)

)
v2ndx

−
∫
RN

a+(x) |un |q+1

t2n
dx +

∫
RN

a−(x) |un |q+1

t2n
dx −

∫
RN

f (x)vn
tn

= o(1).
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It follows that

‖∇vn‖22 − ∫
RN

(
V−(x) + χB(0,R0)(x)

)
v2ndx

− ∫
RN

a+(x)|un |q+1

t2n
dx − ∫

RN
f (x)vn
tn

≤ o(1).
(4.11)

Using now (A1), (H3) and (F), we obtain
∫
RN

a+(x)|un |q+1

t2n
dx → 0

∫
RN

(
V− + χB(0,R0)

)
(x)v2ndx → 0

∫
RN

f (x)vn
tn

→ 0.

(4.12)

Combining (4.11) and (4.12), we conclude that

lim
n→+∞ ‖∇vn‖2 = 0. (4.13)

On the other hand, since (un) is a (PS)-sequence of I , we have∫
RN

(|∇un |2 + V (x)u2n
)
dx

tq+1
n

=
∫
RN a(x) |un |q+1 dx

tq+1
n

+
∫
RN f (x)un

tq+1
n

+ o(1).

Therefore

o(1) = I (un)

tq+1
n

=
(
1
2 − 1

q+1

) ∫
RN a(x) |vn |q+1 dx − 1

2tqn

∫
RN f (x)vn

=
(

1
q+1 − 1

2

) ∫
RN

(
a− + χB(0,R1)

)
(x) |vn |q+1 dx

−
(

1
q+1 − 1

2

) ∫
RN

(
a+ + χB(0,R1)

)
(x) |vn |q+1 dx

− 1
2tqn

∫
RN f (x)vn .

(4.14)

From (A1), (F) and (4.14), we infer that

lim
n→+∞ ‖vn‖q+1 = 0. (4.15)

Combining (4.13) and (4.15), we conclude that vn → 0 in E as n → +∞, which contradicts
‖vn‖ = 1. The proof is completed. ��
Lemma 4.4 Assume that hypotheses (A1), (H1), (H3), (H4) and (F) hold. Then I satisfies
the (PS) condition.

Proof Let (un) ∈ E be a (PS) sequence such that

I (un) → M2 and I ′(un) → 0 in E ′.

Using Lemma 4.3, (un) is bounded in E . Then up to a subsequence, un ⇀ U2 in E , un → U2

in Lm
loc(R

N ) for all 1 ≤ m < 2∗ and un → U2 a.e. in R
N . According to [23], it is sufficient

to prove that for any ε > 0, there exist R2 > 0 and n0 ∈ N
∗ such that∫

|x |≥R2

(|∇un |2 + |un |q+1) dx ≤ ε, for all R ≥ R2 and n ≥ n0.

Let R ≥ 1 and φR be a smooth cut-off function such that φR = 0 on B
(
0, R

2

)
, φR = 1 on

Bc (0, R), 0 ≤ φR ≤ 1 and there exists c > 0 such that

|∇φR | ≤ c

R
, for all x ∈ R

N . (4.16)
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We remark that for any u ∈ E ,

‖φRu‖ ≤ c ‖u‖ . (4.17)

Since I ′(un) → 0 in E ′ then for any ε > 0 there exists n0 > 0 such that

∣∣〈I ′(un), φRun
〉∣∣ ≤ c

∥∥I ′(un)
∥∥
E ′ ‖un‖ ≤ ε

3
, ∀n ≥ n0.

Thus for n ≥ n0, ∫
RN

(|∇un |2 + (
a− + χB(0,R1)

)
(x) |un |q+1) φRdx

≤ ∫
RN f (x)unφRdx + ∫

RN V−(x)u2nφRdx

− ∫
RN un∇un∇φRdx

+ ∫
RN

(
a+(x) + χB(0,R1)

) |un |q+1 φRdx + ε
3 .

(4.18)

By the Hölder inequality and (4.16), there exists R3 > 0 such that
∫
RN

un∇un∇φRdx ≤ c

R
<

ε

3
, for all R ≥ R3. (4.19)

From (F), (H3) and (A1), there exists R4 > 0 such that
∫
RN f (x)unφRdx + ∫

RN V−(x)u2nφRdx + ∫
RN

(
a+ + χB(0,R1)

)
(x) |un |q+1 dx

≤ c

(
‖ f φR‖2 + ∥∥V−φR

∥∥
N
2

+ ∥∥(
a+ + χB(0,R)

)
φR

∥∥
2∗

2∗−q−1

)

≤ ε
3 for R ≥ R4.

(4.20)

Set R2 = max (R3, R4). Then by (4.18), (4.19) and (4.20) we deduce that

min (1,min (α, 1))
∫
RN

(|∇un |2 + |un |q+1) φRdx ≤ ε, ∀n ≥ n0 and ∀R ≥ R2.

This ends the proof. ��

By (4.2) and (H1), there exists ϕ0 = tφ ∈ Bc (0, ρ0), with t large enough, such that
I (ϕ0) < 0 (ρ0 is fixed by Lemma 3.3).

Consider the problem

M0 = inf
γ∈�

max
t∈[0,1] I (γ (t)),

where

� = {γ ∈ C ([0, 1] , E) , γ (0) = 0 and γ (1) = ϕ0} .

We observe that M0 > 0. Indeed for γ ∈ �, we have γ (0) = 0 and γ (1) /∈ B (0, ρ0). Then
there exists r0 ∈ [0, 1] such that ‖γ (r0)‖ = ρ0. By Lemma 3.3 we have I (γ (r0)) > α0 and
so M0 > 0. Then, by Mountain-Pass theorem [5] and Lemma 4.4, we prove the existence of
U0 ∈ E such that I (U0) = M0 > 0. U0 is a weak solution of problem (2.2).
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5 Proof of Theorem 2.2

We first observe that (H2) and (H3) imply that the Schrödinger operator L = −� + V (x) is
defined on H2(RN ) and 0 is an isolated eigenvalue of finite multiplicity.

Let H−, H0 and H+ denote the negative, null and positive spaces of the quadratic form
associated to the operator L . More precisely,

H− = ⊕λi<0Ker (L − λi I ) , H0 = Ker (L) , H+ = ⊕λi>0Ker (L − λi I ) .

We have the orthogonal decomposition H1(RN ) = H− ⊕ H0 ⊕ H+.

For u ∈ E , we denote by u∓, u0 the orthogonal projections of u on H∓, H0 respectively.
Then u = u− +u0 +u+. Moreover, there is an equivalent norm ‖ · ‖X on H1(RN ) such that

I (u) = 1

2

(∥∥u+∥∥2
X − ∥∥u−∥∥2

X

)
− 1

q + 1

∫
RN

a(x) |u|q+1 dx −
∫
RN

f (x)udx .

For more details, we refer the reader to Costa and Tehrani [22].

5.1 Existence of a nonnegative solution of problem (2.2)

Consider the problem

M ′
0 = inf

u∈B(0,ρ1)
I (u) , (5.1)

where ρ1 is defined in Lemma 3.4.

Remark 5.1 By the same arguments used in the proof of Lemma 4.1, we conclude that
−∞ < M ′

0 < 0.

Theorem 5.2 Assume that hypotheses
(
A1

)
, (H1), (H3) and (F) hold. Then there exists

V0 ∈ H1(RN ) such that I (V0) = M ′
0. V0 is a weak solution of problem 2.2.

Proof It is sufficient to replace Lemma 3.1 by Lemma 3.2 in the proof of Theorem 4.2. ��
5.2 Existence of a second solution of problem (2.2)

Lemma 5.3 Suppose that hypotheses
(
A1

)
, (H2), (H3), (F) and

(
N∓)

hold. Then any
(P-S)-sequence of I is bounded in H1(RN ).

Proof Let (un) be a (PS)-sequence of I .
Case 1. We suppose that a satisfies

(
N+)

. Arguing by contradiction, suppose that
‖un‖X → +∞. Then there exist c > 0 and d > 0 such that for n large enough we have∥∥u∓

n

∥∥
X ≤ c ‖un‖qX + d. (5.2)

Indeed, from
(
A1

)
and for n large enough we obtain

∥∥u+
n

∥∥
X ≥ 〈

I ′ (un) , u+
n

〉 ≥ ∥∥u+
n

∥∥2
X − c ‖a‖ 2

1−q
‖un‖qX

∥∥u+
n

∥∥
X − c ‖ f ‖2

∥∥u+
n

∥∥
X ,

hence ∥∥u+
n

∥∥
X ≤ c ‖a‖ 2

1−q
‖un‖qX + c ‖ f ‖2 .
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Similarly, from
(
A1

)
, we have

− ∥∥u−
n

∥∥
X ≤ 〈

I ′ (un) , u−
n

〉 ≤ −c
∥∥u−

n

∥∥2
X + c ‖a‖ 2

1−q
‖un‖qX

∥∥u−
n

∥∥
X + c ‖ f ‖2

∥∥u−
n

∥∥
X ,

for n sufficiently large. Therefore∥∥u−
n

∥∥
X ≤ c ‖un‖qX + d.

Using (5.2) we deduce∥∥un − u0n
∥∥
X = ∥∥u+

n + u−
n

∥∥
X ≤ c ‖un‖qX + d (5.3)

and

lim
n→+∞

∥∥u0n∥∥X

‖un‖X = 1. (5.4)

On the other hand, combining relations (5.2), (5.3), (5.4), (A1) with the mean value theorem
and the Hölder inequality, we obtain

I (un) = 1
2

∥∥u+
n

∥∥2
X − 1

2

∥∥u−
n

∥∥2
X − 1

q+1

∫
RN a(x)

[
|un |q+1 − ∣∣u0n∣∣q+1

]
dx

− 1
q+1

∫
RN a(x)

∣∣u0n∣∣q+1
dx − ∫

RN f (x)undx

≤ c ‖un‖2qX + d − 1
q+1

∫
RN a(x)

[
|un |q+1 − ∣∣u0n∣∣q+1

]
dx

− 1
q+1

∫
RN a(x)

∣∣u0n∣∣q+1
dx + c ‖ f ‖2 ‖un‖X

(5.5)

and ∣∣∣∫
RN a(x)

[
|un |q+1 − ∣∣u0n∣∣q+1

]
dx

∣∣∣
≤ c ‖a‖ 2

1−q

(‖un‖X + ∥∥u0n∥∥X

)q ∥∥un − u0n
∥∥
X

≤ c
(‖un‖X + ∥∥u0n∥∥X

)q (‖un‖qX + 1
)

≤ c
((‖un‖X + ∥∥u0n∥∥X

)q + ‖un‖2qX + (‖un‖X + ∥∥u0n∥∥X

)2q)
≤ c

(
‖un‖2qX + ‖un‖qX

)
+ c

∥∥u0n∥∥2qX , for n sufficiently large.

(5.6)

Using (5.5) and (5.6) we deduce that

I (un) ≤ c
(
‖un‖2qX + ∥∥u0n∥∥2qX + ‖un‖qX

)

− 1

q + 1

∫
RN

a(x)
∣∣u0n∣∣q+1

dx + c ‖ f ‖2 ‖un‖X + d. (5.7)

As a consequence of
(
N+)

and Lemma 3.2, we obtain for all 0 < d < q + 1

1∥∥u0n∥∥dX
∫
RN

a(x)
∣∣u0n∣∣q+1

dx =
∥∥u0n∥∥q+1

X∥∥u0n∥∥dX
∫
RN

a(x)

( ∣∣u0n∣∣∥∥u0n∥∥X

)q+1

dx → +∞. (5.8)

Let us first assume that 1
2 < q < 1. Relations (5.4) and (5.8) yield

I (un) ≤ ∥∥u0n∥∥2qX
[
c

(
‖un‖2qX∥∥u0n∥∥2qX

+ ‖un‖qX∥∥u0n∥∥2qX
+ 1

)

− 1∥∥u0n∥∥2qX
∫
RN

a(x)
∣∣u0n∣∣q+1

dx + c ‖ f ‖2
‖un‖X∥∥u0n∥∥2qX

]
→ −∞.
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Therefore we reach contradiction and we conclude that the sequence (un) is bounded in
H1(RN ).

Next, we assume that 0 < q < 1
2 . For 1 < d < q+1 and using (5.4) and (5.8), we obtain

I (un) ≤ c
∥∥u0n∥∥dX

(
‖un‖2qX
‖u0n‖d

X

+
∥∥u0n∥∥2qX
‖u0n‖d

X

+ ‖un‖qX
‖u0n‖d

X

)

− ∫
RN a(x)

∣∣u0n∣∣q+1
dx + ‖ f ‖2

∥∥u0n∥∥dX ‖un‖X
‖u0n‖d

X

→ −∞.

This yields to a contradiction and we conclude that the sequence (un) is bounded in H1(RN ).
Case 2. We suppose that a satisfies

(
N−)

. We have

I (un) ≥ − ∥∥u−
n

∥∥2
X − 1

q + 1

∫
RN

a(x)
[
|un |q+1 − ∣∣u0n∣∣q+1

]
dx

− 1

q + 1

∫
RN

a(x)
∣∣u0n∣∣q+1

dx −
∫
RN

f (x)undx

≥ −c ‖un‖2qX − c − c ‖a‖ 2
1−q

(‖un‖X + ∥∥u0n∥∥X

)q ∥∥un − u0n
∥∥
X

− 1

q + 1

∫
RN

a(x)
∣∣u0n∣∣q+1

dx − c ‖ f ‖2 ‖un‖X
and

lim
n→+∞

1∥∥u0n∥∥dX
∫
RN

a(x)
∣∣u0n∣∣q+1

dx = −∞, ∀ 0 < d < q + 1. (5.9)

Using the above inequalities and similar to Case 1, we conclude that (un) is bounded in
H1(RN ). ��
Theorem 5.4 We suppose that hypotheses (A1), (H2), (H3) and (F) hold. Then I satisfies
the (PS) condition.

Proof Let (un) ⊂ H1
(
R

N
)
be a (PS)-sequence such that

I (un) → M ′
1 and I ′ (un) → 0 in

(
H1

(
R

N
))′

.

ByLemma5.3, (un) is bounded in H1
(
R

N
)
. Thus up to a subsequence,un ⇀ V1 in H1

(
R

N
)
,

un → V1 in Lm
loc

(
R

N
)
for all 1 ≤ m < 2∗ and un → V1 a.e. in R

N .
By Del Pino’s argument [23], it is sufficient to prove that for any ε > 0, there exist R2 > 0

and n0 > 0 such that∫
|x |≥R

(|∇un |2 + |un |2
)
dx < ε, for all R ≥ R2 and n ≥ n0.

Let φR be the cut-off function defined in (4.16). Since I ′ (un) → 0 as n → +∞ in H1
(
R

N
)′
,

for ε > 0, there exists n0 > 0 such that
∣∣〈I ′(un), φRun

〉∣∣ ≤ c
∥∥I ′(un)

∥∥ ‖un‖H ≤ ε

3
, ∀n ≥ n0.

It follows that∫
RN

(|∇un |2 + (
V+ + χB(0,R0)

)
(x)u2n

)
φRdx

≤ ∫
RN

(
V− + χB(0,R0)

)
(x)φRu2ndx + ∫

RN a(x)φR |un |q+1 dx
+ ∫

RN f (x)φR(x)undx − ∫
RN un∇un∇φRdx + ε

3 .

(5.10)
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Therefore

min (β, 1)
∫
RN

(|∇un |2 + u2n
)
φRdx

≤ ∫
RN

(
V− + χB(0,R0)

)
(x)φRu2ndx + ∫

RN a(x)φR |un |q+1 dx
+ ∫

RN f (x)φR(x)undx − ∫
RN un∇un∇φRdx + ε

3 ,

(5.11)

From (F), (H3), (A1) and (4.16), there exists R3 > 0 such that

c(‖ f φR‖2 + ∥∥(
V− + χB(0,R0)

)
φR

∥∥
N
2

+ ‖aφR‖ 2
1−q

+ 1

R
) ≤ ε

3
for |x | ≥ R4.

The rest of the proof is similar to the second step of the proof of Lemma 4.4. ��
Using (4.2) in combination with hypothesis (H1), we construct ϕ2 = tφ ∈ Bc (0, ρ1) for

t large enough, such that I (ϕ2) < 0 (ρ1 is fixed by Lemma 3.4). Consider the mini-max
problem

M
′′
0 = inf

γ∈�
′′
0

max
t∈[0,1] I (γ (t)),

where

�
′′
0 = {γ ∈ C([0, 1], H1(RN )), γ (0) = 0 and γ (1) = ϕ2}.

Combining the mountain pass theorem [5] and Lemma 5.4, we deduce the existence of
W0 ∈ H1(RN ) such that M

′′
0 = I (W0), I (W0) > 0 and W0 is a weak solution of problem

(2.2).

5.3 Concluding remarks

The content of this paper is in relationship with the recent contributions of Bégout and Díaz
[9–13] for the understanding of the nonlinear stationary Schrödinger equation. We expect
that the methods developed by Díaz [24,25] in the case of an unbounded potential V (x) of
Hardy type can be applied to show that the nonnegative solutions of problem (2.2) established
in Theorems 2.1 and 2.2 have a compact support (if f (x) is also with compact support). This
case corresponds to the abstract setting of infinite well type potentials.
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