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Explosive solutions of semilinear elliptic systems with
gradient term

Marius Ghergu and Vicentiu R adulescu

Abstract. We study the existence of boundary blow-up solutions to the nonlinear elliptic system
Au+ |Vu| = p(Jz|) f(v), Av + |Vo| = q(|z|)g(w) in Q. HereQ is either a bounded domain B or

it denotes the whole space. The nonlinearifiemndg are positive and continuous, while the nonnegative
potentialsp and ¢ are continuous and satisfy appropriate growth conditions at infinity. We show that
boundary blow-up positive solutions fail to existfifandg are sublinear. This result holds bothifis
bounded, and if2 is the whole space bgtandg have slow decay at infinity. We establish the existence of
infinitely many entire blow-up solutions in the case whewendgq are of fast decay and jf andg satisfy

a sublinear type growth condition at infinity.

Soluciones explosivas de sistemas elipticos semilineales con t érminos
gradientes

Resumen. Estudiamos la existencia de soluciones del sistermia no linealAu + |Vu| =

p(|z]) f(v), Av + |Vv| = ¢(|z])g(u) enQ que explotan en el borde. Agfe es un dominio acotado de

RY o el espacio total. Las nolinealidadgy g son funciones continuas positivas mientras que los poten-
cialesp y ¢ son funciones continuas que satisfacen apropiadas condiciones de crecimiento en el infinito.
Demostramos que las soluciones explosivas en el borde dejan de exfsfigysson sublineales. Esto se
tiene o bien si2 es acotado o cuand® es el espacio total pemy q decaen lentamente en el infinito.
Mostramos la existencia de infinitas soluciones enteras explosivas cpandalecaen @apidamente y
cuandof y g satisfacen una condim de tipo sublineal en el infinito.

1. Introduction and the main results
Existence and nonexistence of solutions of the semilinear elliptic system

Au = f(z,u,v) inQ, 1
Av =g(z,u,v) n (1)

have received much attention recently. See, for example, Chen and Luifgle&€and Rdulescu [4],
Clément, Maasevich and Mitidieri [5], Dalmasso [6], De Figueiredo and Jianfu [7], Lair and Shaker [14],
Serrin and Zou [18, 19], Yarur [20], Wang and Wood [21], and the references therein. Most of these results
have to do with the nonexistence of positive solutions, the existence of radial solutions, or the asymptotic
behavior of solutions.
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We are concerned in this paper with the study of positive solutions to the following class of semilinear
elliptic systems with gradient term

{Au+|w|=p(|wl)f(v> in €, )
Av+ Vol =q(|z|)g(u) inQ,

whereQ2 ¢ RV (N > 1) denotes either a bounded open seRih or the whole ofRY. Throughout this
paper we assume thatqg # 0 are nonnegative dlder functions. We also assume ttfaindg are Holder,
positive and non-decreasing functions(@nco).

We are mainly interested in finding propertieslafge (explosive, blow-up) solutior (2), that is
positive solutiongu, v) satisfyingu(z) — 400 andv(z) — +oo asdist (z, 9Q) — 0 (if © is bounded), or
u(z) — +oo andv(x) — +oc as|z| — oo (if 2 = RY). In the latter case such solutions are catiedre
large (explosive, blow-up) solutioné& geometric motivation in that sense can be found in [3, 12, 15]. We
also point out the pioneering work of Keller [10] and Osserman [16].

The corresponding equation that leads us to the system (2) is

Au+ |Vul|* =p(x)f(u), 2€Q, 0<a<2,

which was treated in [1, 8] (in the case whefeis bounded) and in [9, 13] (fof2 = RY). Problems
of this type arise in stochastic control theory and have been first studied in Lasry and Lions [11]. The
corresponding parabolic equation was considered in Quittner [17]. In terms of the dynamic programming
approach, an explosive solution of (2) corresponds to a value function (or Bellman function) associated to
an infinite exit cost (see [11]).

Our first result asserts that(f is bounded and if botli andg are sublinear at infinity, then problem (2)
has no positive boundary blow-up solution. More precisely, the following hold

Theorem 1 Suppose&? C RY is a bounded domain and, g satisfy

max{supf(t), supg(t)} < 4o00. (A1)
i>1 b g>1 t

Then problem (2) has no positive large solution.

The same conclusion holds{¥ = R, but under natural additional assumptions related to the behavior
of p andgq at infinity. In order to state the result in this case, let us first define, for-any,

/T etV " Ip(t)dt /r et "Lq(t)dt
P(T):OGTW’ Q(T)ZOeTT- 3)

Theorem 2 LetQ = RY. Assume thatA;) holds and
/ P(r)dr < 400, / Q(r)dr < +o0. 4)
1 1

Then problem (2) has no positive entire large solution.

Theorem 3 LetQ) = RY. Assume that

/OO P(r)dr = 400, /OO Q(r)dr = 0. (5)
1 1

0)
t—00 t

then problem (2) has infinitely many positive entire large solutions.

=0, forallconstantsa > 1, (A2)
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We point out that ConditioiiA2) has been introduced in [4].

Remark 1 Using the fact that

k

/ e"thdt = kle” Z(—l)’“‘st—' for all integers k > 1, (6)
0 1 St

we observe that the following functions verify (4) or (5):

. o . 1 1 1

(i) condition (4) holds provided thagi(t) = il >landgq(t) = e 0 > 3

(i) condition (5) holds provided thap(t) = t7, q(t) =t°, v,6 >0. R

Remark 2 We give in what follows some examples of nonlinearitfesndg that satisfy( A,):

0 @) = 22:1 ajti, g(t) = S, bt t > 0 with aj,by, 7,0, > 0 and v < 1, wherey =
maxy<;<i Vg 0= maxi<k<m 9k

(ll) f(t) = (1 + t’Yl)’Y2, g(t) = (1 + t01)02’ Where’yl,"}@,el, 6> >0 and ’)/1’)/20102 < 1.

@iy f(t) =1In(1 +17), g(t) = In(1 + %), ~,0 > 0.

(V) fF(t) =In(1+t7), g(t) =€, 7> 0,0 € (0,1). W

2. Proof of Theorem 1

Suppose thatu, v) is a positive large solution of (2) and let(z) = In(1 + u(x) + v(x)), = € . Then
w is a positive function andv(z) — oo as dist (x,9Q) — 0. A simple calculation yields

N

Z(uwz + U$i)2

- AU+ Av i=1

Aw = —
YT T ut o (I1+u+v)?

in Q.

Taking into account the assumptidr; ) we have

Aw < Au + Av

14+u+ov
[P |z ) f(v) + [l || L () 9(w)
1+u+o

< (I llzee(e) + lla I ))

< (Ip s~ + 14 2= ) (

IN

for some constanf’ > 0. Hence
A(w(x) — K|z|*) <0, forall z € Q.
Let z(z) = w(z) — K|z|?, z € Q. Then
Az <0 inQ (7)

and
z(z) — oo as dist(z,00Q) — 0. (8)

Fix zo € Q and M > 0. At this point, to reach a contradiction we will show thatzy) > M. Suppose
z(zg) < M. Forall § > 0, we set

Qs = {z € Q] dist(z,90) > d}.
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Since z(z) — oo as dist(x, 92) — 0, we can choose > 0 such thatz(z) > M forall z € 2\ Qs.
Obviously, zy € Q5. Moreover,M — z(zg) > 0 and(M — z) |aq; < 0. Therefore we can find € Q5
such that

max(M — z(z)) = M — 2(z) <0.
Qs

It follows that A(M — z)(z) < 0, thatis Az(Z) > 0 which contradicts (7). Hence (2) has no positive
large solutions. This completes the proo

Remark 3 We can employ the same method as above to show that the system

{ Au+ Vo[ = p(|jz[)f(v)  nQ,
Av+ |[Vul = g(|z])g(u)  inQ,

has no positive large solutionsffandg satisfy(A4;). W

3. Proof of Theorem 2

Arguing by contradiction, let us assume that the system (2) has the positive entire large s@lytion
Consider the spherical averagewfand v defined by

1
U = —- ’ . >
u(r) s / u(z)doy, >0 9)
|z|=r
() = — / v(@)dos, T3>0 (10)
T oeyrN-1 O =
|z|=r

where cy is the surface area of the unit sphereRfY. Sinceu and v are positive entire large solutions it

follows that @, v are positive andlim @(r) = lim o(r) = +o0. By the change of variable — ry, we
rT—00 T™—00

have

1
a(r)=— u(ry)doy, r>0
cN
lyl=1
and |
w(r)=— Vu(ry) -ydoy,, r>0. (11)
CN
ly|=1
The above relation may be rewritten as
_, 1 ou 1 ou
u (T) = a E(Ty) dO'y = W / E(I) dO’x,
lyl=1 |z|=r
that is )
ey L ~o
a'(r) o / Au(x)do,, forall »>0 (12)
|z|=r
Similarly we have
_ 1
v'(r) = et / Av(x)do,, forall r > 0. (13)
|z|=r
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Due to the presence of the gradient term in (2), we cannot infershat- 0 in RV and so we do not
know if @’ > 0 (or @ > 0)in [0, 00). In order to overcome this lack of monotonicity, set

U(r) = max a(r), V(r)= max o(r). (14)

Now it is easy to see thdf, V' are positive and non-decreasing functions. More@ver @, V' > o and
U(r),V(r) — +oo asr — oo.
By (A;), that there exists\/ > 0 such that

max{f(t),g(t)} < M(1+¢), forall ¢t>0. (15)
Now (11), (12) and (15) lead to

No1 1
a +a _
r — cyrN-1

/

,a// _|_

/ (Au() + [Vl ()] do

|z|=r

1
= o) [ el
1

|z|=r

IN

M) [ (@) o,
|z|=r

= Mp(r) (1 +0(r))
< Mp(r)(1+V(r)),

forall » > 0. It follows that
(erleTfL')/ < MmN Tp(r) (1 +V(r)) forall 7> 0.

So, forallr > rg > 0,

) < atra) + 01 [t e o4 Vi) dsde

< a(rg) + M/ e N1+ V(1) / e*s™N p(s)dsdt
T0 0

<a(ro) + M1+ V(r)) /T e N /t e* sV p(s)dsdt,

0 0
that is i
a(r) < a(ro) + M(1+ V(r))/ P(t)dt, forall r>ry>0. (16)

To

Since/ P(r)dr < oo and/ Q(r)dr < oo, we can choose, > 1 such that
1 1

oo oo 1
max{/ro P(r)dr, /TO Q(r)dr} <5 a7
From (14) and the fact thatim @(r) = lim o(r) = oo, we can findr; > ¢ such that
U(r) = r[f%%}g(ra(r)’ V(r) = 7‘%%2(7‘17(7")7 forall r > ry. (18)

Thus (16) and (18) yield

U(r) <aro) + M1+ V(r)) / P(t)dt, forall r>r.

70
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Furthermore, by (17) we obtain

1
U(r) <a(rg) + 1+ Vir) forall r > rq,
and so )
Ulr)<Ci+ §V(7“) forall r > rq, (19)
1 .
whereC; = 3 + @(ro) > 0. In a similar way we get

V(r) <Cs+ %U(T‘) forall r>rq, (20)
By addition, (19) and (20) lead to
U(r)+V(r)<2(C;i+Cy) forall r>ry. (21)

This means that/ and V' are bounded and so and v are bounded which is a contradiction. It follows
that (2) has no positive entire large solutions and the proof is now compliike.

4. Proof of Theorem 3
We start by showing that (2) has positive radial solutions. On this purpose we¥i®¥ andb > 0 and we
show that the system
o = p(r)f(u(r), >0,
,
N -1
v+ ——— ' + 0 = q(r)g(u(r)), r>0, (22)

,
v, v" >0 on]0,0),
u(0) =a >0, v(0) =b>0,

has solutions. The®/ (z) = u(|z|), V(z) = v(|z|) are positive solutions of (2).
Integrating (22) we have

/ et N/ e*sN"lp(s) f(v(s))dsdt Y1 >0, (23)

\

St / e q(s)g(u(s))dsdt Vr > 0. (24)

Define vy = b and let (ug)k>1, (Uk)k21 given by

T t
up(r) =a —|—/ e_ttl_N/ e* sV p(s) flok_1(s))dsdt Yr >0, (25)
0 0

ve(r) =b+ /T ettt N /t e*sN 1 q(s)g(ur(s))dsdt Yr > 0. (26)
0 0

Since vy (r) > b, it follows that uy(r) > wuy(r) for all » > 0 which yields vo(r) > v1(r) and so
us(r) > ug(r) forall » > 0. Repeating such arguments we deduce that

up(r) < ugs1(r) and vg(r) < wvggi(r), forall r >0,k > 1.
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Let us now prove that the non-decreasing sequerfeg$.>1 and (v;)r>1 are bounded from above on
bounded sets. We first observe that (25) and (26) yield

up(r) < ugy1(r) < a+ floe(r)) /OTP(t)dt7 Vr>0,k>1 (27)

and
ve(r) < b+ glug(r)) /T Q)dt, VYr>0k>1 (28)
0

Let R > 0 be arbitrary. From (27) and (28) we get

R R
up(R) <a-+f <b+g(uk(R)) /O Q(t)dt) /O P(t)dt, Vk>1.

This imply

R
. f<b+g(uk(R))/0 Q(t)dt) .
R)

< @ o P(t)dt, Vk>1. (29)

0

Taking into account the monotonicity @t (R))x>1, there existsL(R) := limg_, 00 ug(R).

We claim that L(R) is finite. Indeed, if not, we lett — oo in (29) and the assumptiofA,) leads us
to a contradiction. Thud.(R) is finite. Sinceuy,v; are increasing functions, it follows that the map
(0,00) > R — L(R) is non-decreasing of0, cc) and

up(r) <up(R) < L(R), Vrel0,R],Vk<1,

R

ve(r) < b+ g(L(R)) Q(t)dt, Vre|0,R],Vk<1.

S—

Furthermore, there existimg_.., L(R) = L € (0,00] and the sequence@iy),>1 and (v)r>1 are
bounded from above on bounded sets.

Let u(r) := limp— oo ur(r), v(r) = limg_o vx(r) for all » > 0. By standard elliptic regularity
theory we deduce that, v) is a positive solution of (22).

In order to conclude the proof, it is enough to show thatv) is a large solution of (22). Let us remark
that (23), (24) imply

w(r) > a+ f(b) /OTP(t)dt, Vi >0,

v(r) > b+ g(a) /OT Q(t)dt, Vr>0.

Since f, g are positive functions ang, ¢ satisfy (5) we can conclude thét, v) is a large solution of (22)

and so(U, V) is a positive entire large solution of (2). Hence any large solution of (22) provides a positive
entire large solution(U, V) of (2) with U(0) = @ and V(0) = b. Since (a,b) € (0,00) x (0,00)

was chosen arbitrarily, it follows that (2) has infinitely many positive entire large solutions. The proof of
theorem is now complete. B

Remark 4 The condition (5) is sufficient but not necessary for the existence of positive entire large solu-

. . r3 4+ (N + 2)r? r+ N
t for (2). Indeed, let dei(t) = Vt, g(t) = t, =4 =2 .
ions for (2). Indeed, let us considgi(t) = /¢, g(t) p(r) Wi q(r) -
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Using (6) we get/ P(r)dr = +00 and/ Q(r)dr < +o0. However, the corresponding system to (2)
. J1 J1

IS

[af? + (V + 2)laf?

Au+|Vu| =4 e Vv o inRY,
N

Av+|Vv|:2M~u in RV,
[t +1

which has the positive entire large solutigm|* + 1, [z +1). ®H
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