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Abstract

We prove existence results for non autonomous perturbations of critical singular elliptic bound-
ary value problems. The non singular case was treated by Tarantello (Ann. Inst. H. Poincar5e,
Analyse Non-lin5eaire 9 (1992) 281) for bounded domains; here the singular weight allows for
unbounded domains as cones and give rise to a di8erent non compactness picture (as was "rst
remarked by Caldiroli and Musina (Calc. Variations PDE 8 (1999) 365)).
? 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Let � be an open set in RN ; N¿ 2 and let �∈ (0; 2). For any �∈C∞
c (�), de"ne

‖�‖� =
(∫

�
|x|�|∇�|2 dx

)1=2

:

Let H 1
0 (�; |x|�) be the closure of C∞

c (�) with respect to the ‖ · ‖�-norm. It turns out
that H 1

0 (�; |x|�) is a Hilbert space with respect to the inner product

〈u; v〉� =
∫
�
|x|�∇u · ∇v dx; ∀u; v∈H 1

0 (�; |x|�):

If � = RN we set H 1(RN ; |x|�) = H 1
0 (RN ; |x|�). We remark that if �1 and �2 are

arbitrary open sets in RN such that �1 ⊂ �2 then H 1
0 (�; |x|�) ,→ H 1

0 (�2; |x|�), with
continuous embedding. We also point out that since we allow the cases 0∈ B� or �
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unbounded then there is no inclusion relationship between H 1
0 (�; |x|�) and the standard

Sobolev space H 1
0 (�). However, the Ca8arelli–Kohn–Nirenberg inequality [4] (see also

[6]) asserts that H 1
0 (�; |x|�) is continuously embedded in L2

∗
� (�), where 2∗� =2N=(N −

2 + �). More precisely, there exists C�¿ 0 such that(∫
�
|u|2∗� dx

)1=2∗�
6C�

(∫
�
|x|�|∇u|2dx

)1=2

;

for any u∈H 1
0 (�; |x|�).

Consider the problem


−div(|x|�∇u) = |u|2∗� −2u in �;

u¿ 0; u �≡ 0 in �;

u= 0 on @�:

(1)

We observe that degeneracy occurs in (1) if 0∈ B� or if � is unbounded. We also point
out that if 2∗� in problem (1) is replaced by a subcritical exponent p∈ [2; 2∗�) then the
corresponding equation is characterized by local compactness, and existence results are
carried out in an easier way.
Consider the quotient

S�(u;�) =

∫
� |x|�|∇u|2dx(∫
� |u|2∗� dx)2=2∗� ;

and denote

S�(�) = inf
u∈H 1

0 (�;|x|�)\{0}
S�(u;�): (2)

It is obvious that if u∈H 1
0 (�; |x|�) satis"es∫

�
|x|�|∇u|2dx = S�(�) and

∫
�
|u|2∗� dx = 1;

then the function U (x) = [S�(�)]1=(2
∗
� −2)u(x) is a solution of (1).

Caldiroli and Musina [5] studied the critical case and they showed that some con-
centration phenomena may occur in (1), due to the action of the non compact group
of dilations in RN . They proved in [5] that if �∈ (0; 2) then, in certain cases, S�(�) is
attained in H 1

0 (�; |x|�) by a positive function, so problem (1) has a solution. We point
out (see [10, Theorem III.1.2]) that S�(�) is never attained in H 1

0 (�) in the limiting
case �=0 and if � �= RN . For the study of further Critical Singular problems we also
refer to [7,9].
Let H−1(�; |x|�) be the dual space of H 1

0 (�; |x|�) and denote by ‖ · ‖−1 the norm
in H−1(�; |x|�). For any f∈H−1(�; |x|�), consider the perturbed problem{−div(|x|�∇u) = |u|2∗� −2u+ f in �;

u= 0 on @�:
(3)
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We say that a function u∈H 1
0 (�; |x|�) is a solution of problem (3) if u is a critical

point of the energy functional

J (u) =
1
2

∫
�
|x|�|∇u|2dx − 1

2∗�

∫
�
|u|2∗� dx −

∫
�
fu dx:

We observe that the Ca8arelli–Kohn–Nirenberg inequality ensures that J is well de"ned
on the space H 1

0 (�; |x|�). Moreover, by the continuity of the embedding H 1
0 (�) ,→

L2
∗
� (�), the functional J is Fr5echet di8erentiable on H 1

0 (�; |x|�).
Perturbations of critical semilinear boundary value problems on bounded domains

were initially studied by Tarantello in [11]. Our purpose is to prove a corresponding
multiplicity result for the degenerate problem (3). Notice that in our case, � will be
unbounded. We "rst need some preliminaries. Set

s0�(�) = lim
r→0

S�(� ∩ Br)

and

s∞� (�) = lim
r→∞ S�(� \ Br):

These limits are well de"ned because the mappings r �→ S�(�∩Br) and r �→ S�(�\Br)
are easily seen to be, respectively, nonincreasing and nondecreasing.

Condition C. We say that � ⊂ RN (N¿ 2) satis8es Condition C provided that � is
a cone in RN , or � = RN , or

S�(�)¡min{s0�(�); s∞� (�)}: (4)

We recall that � ⊂ RN is a cone if � has Lipschitz boundary and if �x∈� for
every �¿ 0 and x∈�. If � is a cone then

S�(�) = s0�(�) = s∞� (�);

so equality holds in (4) (see [5, Leemma 3.9]). We also point out (see Caldiroli–Musina
[5]) the following situations in which property (4) is ful"lled:

(i) �=�0∪�1, where �0 is a cone and �1 is an open bounded set such that 0 �∈ �1;
(ii) �= I ×RN−1, where I =R, or I =(0;+∞), or I =(−∞; 0), or I is bounded and

0 �∈ BI .

Denote by E+ the positive cone of E=H−1(�; |x|�). This means that f∈E+ if and
only if f �= 0 and∫

�
fu dx¿ 0;

for any u∈H 1
0 (�; |x|�) such that u¿ 0 a.e. in �.
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Our main result is the following

Theorem 1.1. Assume that �∈ (0; 2) and � satis8es Condition C. Then, for each
g∈E+, there exists �0¿ 0 such that for all 0¡�6 �0, problem (3) with f= �g has
at least two positive solutions.

Remark 1.2. (a) In the previous theorem, �0 can be chosen uniformly for g in a
compact subset of E+.
(b) The existence of at least two solutions (not necessarily positive) when g belongs

to E instead of E+ is less clear. The sign condition can easily be weakened, but we
think the general case should require some additional assumption.

2. The �rst solution

We "rst recall that if c is a real number, X is a Banach space and F : X → R is
a C1-functional then F satis"es condition (PS)c if any sequence (un) in X such that
F(un) → c and ‖F ′(un)‖X∗ → 0 as n → ∞, is relatively compact. It is obvious that
if a Palais–Smale, sequence converges strongly, then its limit is a critical point. Our
"rst result shows that if a (PS)c sequence of J is weakly convergent then its limit is
a solution of problem (3).

Lemma 2.1. Let (un) ⊂ H 1
0 (�; |x|�) be a (PS)c sequence of J , for some c∈R. Assume

that (un) converges weakly to some u0. Then u0 is a solution of problem (3).

Proof. Consider an arbitrary function �∈C∞
0 (�) and set ! = supp(�). Obviously

J ′(un) → 0 in H 1
0 (�; |x|�) implies 〈J ′(un); �〉 → 0 as n → ∞, that is

lim
n→∞

(∫
!
|x|�∇un · ∇� dx −

∫
!
|un|2∗� −2un� dx −

∫
!
f� dx

)
= 0: (5)

Since un * u0 in H 1
0 (�; |x|�) it follows that

lim
n→∞

∫
!
|x|�∇un · ∇� dx =

∫
!
|x|�∇u0 · ∇� dx: (6)

The boundedness of (un) in H 1
0 (�; |x|�) and the Ca8arelli–Kohn–Nirenberg inequal-

ity imply that |un|2∗� −2un is bounded in L2
∗
� =(2

∗
� −1)(�; |x|�). Combining this with the

convergence (up to be a sequence)

|un|2∗� −2un → |u0|2∗� −2u0 a:e: in �

we deduce (see [1]) that |u0|2∗� −2u0 is the weak limit of the sequence |un|2∗� −2un in the
space L2

∗
� =(2

∗
� −1)(�; |x|�). So

lim
n→∞

∫
!
|un|2∗� −2un� dx =

∫
!
|u0|2∗� −2u0� dx: (7)
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From (5)–(7) we deduce that∫
!
|x|�∇u0 · ∇� dx −

∫
!
|u0|2∗� −2u0� dx −

∫
!
f� dx = 0:

By density, this equality holds for any �∈H 1
0 (�; |x|�) which means that J ′(u0)=0.

Lemma 2.2. There exists �1¿ 0 such that problem (3) has at least one solution u0
provided that f �= 0 and ‖f‖−1¡�1. Moreover, u0 is positive if f∈E+.

Proof. The idea is to show that there exist c0¡ 0 and R¿ 0 such that J has the
(PS)c0 property, where

c0 = inf{J (u); u∈H 1
0 (�; |x|�) and ‖u‖6R}: (8)

Then we prove that c0 is achieved by some u0 ∈H 1
0 (�; |x|�) and, furthermore, J ′(u0)=0.

Applying the Ca8arelli–Kohn–Nirenberg inequality we have

J (u) =
1
2
‖u‖2 − 1

2∗�

∫
�
|u|2∗� dx −

∫
�
fu dx

¿
1
2
‖u‖2 − 1

2∗�

∫
�
|u|2∗� dx − ‖f‖−1 · ‖u‖

¿
(
1
2
− �2

2

)
‖u‖2 − C‖u‖2∗� − C�‖f‖2−1:

Fixing �∈ (0; 1) we "nd R¿ 0, �1¿ 0 and '¿ 0 such that J (u)¿ ' if ‖u‖ = R and
‖f‖−1¡�1.
Let c0 be de"ned in (8). Since f �= 0, c0¡J (0) = 0. The set

BBR := {u∈H 1
0 (�; |x|�); ‖u‖6R}

becomes a complete metric space with respect to the distance

dist(u; v) = ‖u− v‖ for any u; v∈ BBR:

On the other hand, J is lower semi-continuous and bounded from below on BBR. So,
by Ekeland’s variational principle [8, Theorem 1.1], for any positive integer n there
exists un such that

c06 J (un)6 c0 +
1
n
; (9)

and

J (w)¿ J (un)− 1
n
‖un − w‖ for all w∈ BBR: (10)
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We claim that ‖un‖¡R for n large enough. Indeed, if ‖un‖=R for in"nitely many n,
we may assume, without loss of generality, that ‖un‖=R for all n¿ 1. It follows that
J (un)¿ '¿ 0. Combining this with (9) and letting n → ∞, we have 0¿ c0¿ '¿ 0
which is a contradiction.
We now prove that ‖J ′(un)‖−1 → 0. Indeed, for any u∈H 1

0 (�; |x|�) with ‖u‖ = 1,
let wn = un + tu. For a "xed n, we have ‖wn‖6 ‖un‖ + t ¡R, where t ¿ 0 is small
enough. Using (10) we obtain

J (un + tu)¿ J (un)− t
n
‖u‖

that is

J (un + tu)− J (un)
t

¿− 1
n
‖u‖=−1

n
:

Letting t ↘ 0, we deduce that 〈J ′(un); u〉¿ − 1=n and a similar argument for t ↗ 0
produces |〈J ′(un); u〉|6 1=n for any u∈H 1

0 (�; |x|�) with ‖u‖= 1. So,

‖J ′(un)‖−1 = sup
‖u‖=1

|〈J ′(un); u〉|6 1
n

→ 0 as n → ∞:

We have obtained the existence of a (PS)c0 sequence, i.e. a sequence (un) ⊂ H 1
0 (�; |x|�)

with

J (un) → c0 and ‖J ′(un)‖−1 → 0: (11)

But ‖un‖6R shows that (un) converges weakly in H 1
0 (�; |x|�), up to a subsequence.

Therefore, by (11) and Lemma 2.1 we "nd that for some u0 ∈H 1
0 (�; |x|�),

un * u0 in H 1
0 (�; |x|�); un → u0 a:e in RN (12)

and

J ′(u0) = 0: (13)

We now prove that J (u0) = c0. By (11) and (12) we have

o(1) = 〈J ′(un); un〉=
∫
�
|x|�|∇un|2 dx −

∫
�
|un|2∗� dx −

∫
�
fun dx:

Therefore

J (un) =
(
1
2
− 1

2∗�

)∫
�
|un|2∗� dx −

(
1− 1

2∗�

)∫
�
fun dx + o(1):

By (11)–(13) and Fatou’s lemma we have

c0 = lim inf
n→∞ J (un)¿

(
1
2
− 1

2∗�

)∫
�
|x|�|u0|2∗� dx −

(
1− 1

2∗�

)∫
�
fu0 dx = J (u0):

Since u0 ∈ BBR, it follows that J (u0) = c0. If f∈E+, u0 can be replaced by |u0|, and
the proof is complete.
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3. A priori estimates for the second solution

Set

I(u) =
1
2

∫
�
|x|�|∇u|2 dx − 1

2∗�

∫
�
|u|2∗� dx

and denote

S = {u∈H 1
0 (�; |x|�) \ {0}; 〈I ′(u); u〉= 0}:

We "rst justify that S �= ∅. Indeed, "x u0 ∈H 1
0 (�; |x|�)\{0} and set, for any �¿ 0,

+(�) = 〈I ′(�u0); �u0〉= �2
∫
�
|x|�|∇u0|2 dx − �2

∗
�

∫
�
|u0|2∗� dx:

Since 2∗� ¿ 2, it follows that +(�)¡ 0 for � large enough and +(�)¿ 0 for � suP-
ciently close to zero.
Hence there exists �0 ∈ (0;∞) such that +(�0) = 0. This means that �0u0 ∈ S.

Lemma 3.1. Let I∞ = inf{I(u); u∈ S}. Then there exists Bu∈H 1
0 (�; |x|�) such that

I∞ = I( Bu) = sup
t¿0

I(t Bu): (14)

Proof. We "rst claim that

I∞(u) = sup
t¿0

I(tu) ∀u∈ S: (15)

Indeed, for some "xed ’∈H 1
0 (�; |x|�) \ {0}, denote

f(t) = I(t’) =
t2

2

∫
�
|x|�|∇u|2 dx − t2

∗
�

2∗�

∫
�
|’|2∗� dx:

We have

f′(t) = t
∫
�
|x|�|∇u|2 dx − t2

∗
� −1

∫
�
|’|2∗� dx;

which vanishes for

t0 = t0(’) =

{∫
� |x|�|∇u|2 dx∫
� |’|2∗� | dx

}1=(2∗� −2)

:

Hence

f(t0) = I(t0’) = sup
t¿0

I(t’) =
2− �
2N

{ ∫
� |x|�|∇u|2 dx(∫

� |’|2∗� dx)(N−2+�)=N

}N=(2−�)

:

It follows that

inf
’∈H 1

0 (�;|x|�)\{0}
sup
t¿0

I(t’) =
2− �
2N

[S�(�)]N=(2−�): (16)



1160 V. R-adulescu, D. Smets /Nonlinear Analysis 54 (2003) 1153–1164

We now easily observe that for every u∈ S we have t0(u) = 1. So, by (16), we
"nd (15).
By Caldiroli–Musina [5, Theorems 2.2 and 3.1] the minimum is achieved in (2)

by some function U ∈H 1
0 (�; |x|�). We prove in what follows that the function Bu :=

[S�(�)]1=(2
∗
� −2)U satis"es (14). We "rst observe that Bu∈ S and

I( Bu) =
2− �
2N

[S�(�)]N=(2−�): (17)

So, by (15) and (17),

I∞ = inf
u∈S

I(u) = inf
u∈S

sup
t¿0

I(tu)¿ inf
u∈H 1

0 (�;|x|�)\{0}
sup
t¿0

I(tu)

=
2− �
2N

[S�(�)]N=(2−�) = I( Bu);

which concludes our proof.

Lemma 3.2. Assume (un) is a (PS)c sequence of J that converges weakly to u0 in
H 1

0 (�; |x|�). Then either (un) converges strongly in H 1
0 (�; |x|�), or c¿ J (u0) + I∞.

Proof. Since (un) is a (PS)c sequence and un * u0 in H 1
0 (�; |x|�) we have

J (un) = c + o(1) and 〈J ′(un); un〉= o(1): (18)

Set vn = un − u0. Then vn * 0 in H 1
0 (�; |x|�) which implies∫

�
|x|�∇vn · ∇u0 dx → 0 as n → ∞;

∫
�
fvn dx → 0 as n → ∞:

We rewrite the above relations as

‖un‖2 = ‖u0‖2 + ‖vn‖2 + o(1);

J (vn) = I(vn) + o(1): (19)

The Brezis–Lieb Lemma (see [2]) combined with the Ca8arelli–Kohn–Nirenberg In-
equality yield∫

�
(|un|2∗� − |vn|2∗� ) dx =

∫
�
|u0|2∗� dx + o(1): (20)

From (18)–(20) and Lemma 2.1 we "nd

o(1) + c = J (un) = J (u0) + J (vn) + o(1) = J (u0) + I(vn) + o(1);

o(1) = 〈J ′(un); un〉= 〈J ′(u0); u0〉+ 〈J ′(vn); vn〉+ o(1)

= 〈I ′(vn); vn〉+ o(1): (21)
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If vn → 0 in H 1
0 (�; |x|�), then un → u0 in H 1

0 (�; |x|�) and J (u0)=limn→∞ J (un)=c.
If vn 9 0 in H 1

0 (�; |x|�), then combining this with the fact that vn * 0 in H 1
0 (�; |x|�)

we may assume that ‖vn‖ → l¿ 0. Then, by (21),

c = J (u0) + I(vn) + o(1) (22)

.n = 〈I ′(vn); vn〉=
∫
�
|x|�|∇vn|2 dx −

∫
�
|vn|2∗� dx = �n − /n; (23)

where limn→∞ .n=0, �n=
∫
� |x|�|∇vn|2 dx¿ ‖vn‖2 and /n=

∫
� |vn|2∗� dx¿ 0. In virtue

of (22), it remains to show that I(vn)¿ I∞ + o(1). For t ¿ 0, we have

〈I ′(tvn); tvn〉= t2
∫
�
|x|�|∇vn|2 dx − t2

∗
�

∫
�
|vn|2∗� dx:

If we prove the existence of a sequence (tn) with tn → 1 and 〈I ′(tnvn); tnvn〉= 0, then

I(vn) = I(tnvn) +
1− t2n
2

�n − 1− t2
∗
�
n

2∗�
‖vn‖2

∗
�

L2
∗
�
= I(tnvn) + o(1)¿ I∞ + o(1)

and the conclusion follows. To do this, let t=1+' with '¿ 0 small enough and using
(23) we obtain

〈I ′(tvn); tvn〉= (1 + ')2�n − (1 + ')2
∗
� /n = (1 + ')2�n − (1 + ')2

∗
� (�n − .n)

= �n(2'− 2∗�'+ o(')) + (1 + ')2
∗
� .n = �n(2− 2∗�)'+ �no(')

+ (1 + ')2
∗
� .n:

Since �n → Bl¿ l2¿ 0, limn→∞ .n = 0 and 2∗� ¿ 2 then, for n large enough, we can
de"ne the sequence 'n = 2|.n|=�n(2∗� − 2)¿ 0 and 'n → 0. Then

〈I ′((1 + 'n)vn); (1 + 'n)vn〉¡ 0 〈I ′((1− 'n)vn); (1− 'n)vn〉¿ 0: (24)

From (24) we deduce the existence of tn ∈ (1− 'n; 1 + 'n) such that

tn → 1 and 〈I ′(tnvn); tn; vn〉= 0:

This concludes our proof.

Fix Bu∈H 1
0 (�; |x|�) such that (14) holds. Since 2¡ 2∗� , there exists t0¿ 0 such that

I(t Bu)¡ 0 if t¿ t0

J (t Bu)¡ 0 if t¿ t0:

Set

P= {0∈C([0; 1]; H 1
0 (�; |x|�)); 0(0) = 0; 0(1) = t0 Bu} (25)

c1 = inf
0∈P

sup
u∈0

J (u): (26)

In the next result c0, resp. c1, are those de"ned in (8), resp. (26).
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Lemma 3.3. Given g∈E+, ‖g‖−1 = 1, there exist R¿ 0 and �2 = �2(R)¿ 0 such that
c1¡c0 + I∞, for all f = �g with �6 �2.

Proof. We "rst remark that

I∞ + c0¿ 0; (27)

provided that �1 and R given in the proof of Lemma 2.2 are suPciently small. Indeed,
let u0 be the solution obtained in Lemma 2.2. Then, by Cauchy–Schwarz,

c0 =
(
1
2
− 1

2∗�

)∫
�
|x|�|∇u0|2 dx −

(
1− 1

2∗�

)∫
�
fu0 dx

¿
(
1
2
− 1

2∗�

)∫
�
|x|�|∇u0|2 dx −

(
1− 1

2∗�

)
‖f‖−1 · ‖u0‖: (28)

Applying the inequality

�/6
�2

2
+
/2

2
∀�; /¿ 0

We "nd(
1− 1

2∗�

)
‖f‖−1 · ‖u0‖6

(
1
2
− 1

2∗�

)
‖u0‖2 + (N − �+ 2)2

16N (2− �)
‖f‖2−1: (29)

So, by (28) and (29),

c0¿− (N − �+ 2)2

16N (2− �)
‖f‖2−1: (30)

It follows that the negative number c0 is close enough to 0 if ‖f‖−1 is small. But, by
Lemma 3.1,

I∞ =
2− �
2N

[S�(�)]N=(2−�)¿ 0;

so (27) follows obviously.
In order to conclude the proof we observe, by the de"nition of c1, that if suPces to

show that

sup
t¿0

J (t Bu)¡c0 + I∞; (31)

if ‖f‖−1 is suPciently small.
Next, using (27), the continuity of J and J (0)=0, we obtain some T0¿ 0 which is

uniform with respect to all f satisfying 0¡ ‖f‖−1¡�1 such that, for some �′¡�1,

c0 + I∞¿ sup
t∈[0;T0]

J (t Bu);

if ‖f‖−1¡�′. So, in order to prove (31), it suPcies to show that if ‖f‖−1 is small
then

c0 + I∞¿ sup
t¿T0

J (t Bu): (32)
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But

J (t Bu) =
t2

2

∫
�
|x|�|∇ Bu|2 dx − t2

∗
�

2∗�

∫
�
| Bu|2∗� dx − t

∫
�
f Bu dx

6
t2

2

∫
�
|x|�|∇ Bu|2 dx − t2

∗
�

2∗�

∫
�
| Bu|2∗� dx − T0

∫
�
f Bu dx;

for any t¿T0. But, by Lemma 3.1,

I( Bu) =
2− �
2N

[S�(�)]N=(2−�):

Hence, using an argument similar to that used for proving (28), we "nd

sup
t¿T0

J (t Bu)6 sup
t¿T0

(
t2

2

∫
�
|x|�|∇ Bu|2 dx − t2

∗
�

2∗�

∫
�
| Bu|2∗� dx

)
− T0

∫
�
f Bu dx

6 I∞ − T0

∫
�
f Bu dx¡ I∞ + c0;

if f = �g with �6 �′′. Indeed, it follows (30) that c0 is quadratic in � while
∫
f Bu is

linear. Letting �2 = min{�′; �′′}, we conclude the proof.

4. Proof of Theorem 1.1 concluded

Let �0 = min{�1; �2}. Hence, by Lemma 2.2, we obtain the existence of a positive
solution u0 ∈H 1

0 (�; |x|�) of (3) such that J (u0) = c0.
On the other hand, since J (|u|)6 J (u) when f∈E+, it follows from the Mountain

Pass Theorem without the Palais–Smale condition [3, Theorem 2.2] that there exists a
positive (PS)c1 sequence (un) of J , that is

J (un) = c1 + o(1) and ‖J ′(un)‖−1 → 0:

This implies

c1 +
1
2∗�

‖J ′(un)‖−1 · ‖un‖+ o(1)¿ J (un)− 1
2∗�

〈J ′(un); un〉

¿
(
1
2
− 1

2∗�

)
‖un‖2

−
(
1− 1

2∗�

)
‖f‖−1 · ‖un‖: (33)

Hence {un} is a bounded sequence H 1
0 (�; |x|�). So, up to a subsequence, we may

assume that un * u1¿ 0 in H 1
0 (�; |x|�). Lemma 2.1 implies that u1 is a solution

of (3).
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We prove in what follows that u0 �= u1. For this aim we shall prove that J (u0) �=
J (u1). Indeed, by Lemma 3.2, either un → u1 in H 1

0 (�; |x|�) which gives

J (u1) = lim
n→∞ J (un) = c1¿ 0¿c0 = J (u0)

and the conclusion follows, or

c1 = lim
n→∞ J (un)¿ J (u1) + I∞:

If we suppose that J (u1) = J (u0) = c0, then c1¿ c0 + I∞ which contradicts Lemma
3.3. This concludes our proof.
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