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Abstract
We consider a nonlinear Robin problem driven by the 𝑝-Laplacian. In the reaction

we have the competing effects of two nonlinearities. One term is parametric, strictly

(𝑝 − 1)-sublinear and the other one is (𝑝 − 1)-linear and resonant at any nonprinci-

pal variational eigenvalue. Using variational tools from the critical theory (critical

groups), we show that for all big values of the parameter 𝜆 the problem has at least

five nontrivial smooth solutions.
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1 INTRODUCTION

Let Ω ⊆ 𝐑𝑁 be a bounded domain with a 𝐶2-boundary 𝜕Ω. In this paper, we study the following parametric nonlinear Robin

problem:

⎧⎪⎨⎪⎩
−Δ𝑝𝑢(𝑧) = 𝜆𝑔(𝑧, 𝑢(𝑧)) + 𝑓 (𝑧, 𝑢(𝑧)) in Ω,
𝜕𝑢

𝜕𝑛𝑝
+ 𝛽(𝑧)|𝑢|𝑝−2𝑢 = 0 on 𝜕Ω,

⎫⎪⎬⎪⎭ (𝑃𝜆)

where 𝜆 is a positive parameter.

In this problem, Δ𝑝 denotes the 𝑝-Laplace differential operator defined by

Δ𝑝𝑢 = div
(|𝐷𝑢|𝑝−2𝐷𝑢

)
for all 𝑢 ∈ 𝑊 1,𝑝(Ω), 1 < 𝑝 < ∞.

In the reaction (the right-hand side) of problem (𝑃𝜆), 𝑔(𝑧, 𝑥) and 𝑓 (𝑧, 𝑥) are Carathéodory functions (that is, for all 𝑥 ∈ 𝐑, the

mappings 𝑧 → 𝑔(𝑧, 𝑥) and 𝑧 → 𝑓 (𝑧, 𝑥) are measurable, while for almost all 𝑧 ∈ Ω, the mappings 𝑥 → 𝑔(𝑧, 𝑥) and 𝑥 → 𝑓 (𝑧, 𝑥)
are continuous functions). These two nonlinearities exhibit different growth near±∞ and 0. More precisely, for almost all 𝑧 ∈ Ω,
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𝑔(𝑧, ⋅) is (𝑝 − 1)-sublinear both near 0 and near ±∞, while 𝑓 (𝑧, ⋅) is (𝑝 − 1)-linear near 0 and ±∞. In fact, we permit resonance

at ±∞ with respect to any nonprincipal variational eigenvalue of −Δ𝑝 with Robin boundary condition.

The coefficient 𝛽(⋅) that appears in the boundary condition is strictly positive. This is needed in order to be able to use strong

comparison techniques, which in the case of the 𝑝-Laplace differential operator are difficult to apply.

We denote by
𝜕𝑢

𝜕𝑛𝑝
the conormal derivative of 𝑢, which is defined by extension of the map

𝐶1(Ω) ∋ 𝑢 →
𝜕𝑢

𝜕𝑛𝑝
= |𝐷𝑢|𝑝−2(𝐷𝑢, 𝑛)𝐑𝑁 = |𝐷𝑢|𝑝−2 𝜕𝑢

𝜕𝑛
,

with 𝑛(⋅) being the outward unit normal on 𝜕Ω.

Using variational tools from the critical point theory, together with suitable truncation and strong comparison techniques

and Morse theory (critical groups), we show that for big values of the positive parameter 𝜆, problem (𝑃𝜆) admits at least five

nontrivial smooth solutions.

Multiplicity results proving three solutions theorems for nonresonant Dirichlet 𝑝-Laplacian equations were established by

Gasinski & Papageorgiou [9], Guo & Liu [13], and Jiu & Su [15], Liu [18]. Resonant 𝑝-Laplacian equations were investigated

by Gasinski & Papageorgiou [7,8], Mugnai & Papageorgiou [20], Papageorgiou & Rădulescu [22] (Neumann problems), and

Papageorgiou & Rădulescu [21] (Robin problems). In all the above works, the resonance was with respect to the principal

eigenvalue. Resonance with respect to higher variational eigenvalues was allowed in the recent works of Papageorgiou, Răd-

ulescu & Repovš [25,26], which dealt with nonparametric equations. None of the aforementioned works produces more than

three solutions. Abstract methods closely related with the content of this paper have been developed in the recent monograph of

Papageorgiou, Rădulescu & Repovš [27].

2 MATHEMATICAL BACKGROUND AND HYPOTHESES

Let 𝑋 be a Banach space and let 𝑋∗ be its topological dual. We denote by ⟨⋅, ⋅⟩ the duality brackets for the pair (𝑋∗, 𝑋). Given

𝜑 ∈ 𝐶1(𝑋,𝐑), we say that 𝜑(⋅) satisfies the “Cerami condition” (the “C-condition” for short), if the following property holds:

“Every sequence {𝑢𝑛}𝑛≥1 ⊆ 𝑋 such that{
𝜑(𝑢𝑛)

}
𝑛≥1 ⊆ 𝐑 is bounded and

(
1 + ||𝑢𝑛||𝑋)𝜑′(𝑢𝑛) → 0 in 𝑋∗ as 𝑛 → ∞,

admits a strongly convergent subsequence”.

This compactness-type condition on the functional 𝜑(⋅) leads to a deformation theorem, which is the main analytical tool in

deriving the minimax theory of the critical values of 𝜑. One of the main results in that theory is the so-called “mountain pass

theorem”, which we recall here.

Theorem 2.1. If 𝜑 ∈ 𝐶1(𝑋,𝐑) satisfies the PS-condition, 𝑢0, 𝑢1 ∈ 𝑋, ||𝑢1 − 𝑢0|| > 𝜌 > 0,

max
{
𝜑(𝑢0), 𝜑(𝑢1)

}
< inf

{
𝜑(𝑢) ∶ ||𝑢 − 𝑢0|| = 𝜌

}
= 𝑚𝜌

and

𝑐 = inf
𝛾∈Γ

max
0≤𝑡≤1 𝜑(𝛾(𝑡)) with Γ =

{
𝛾 ∈ 𝐶([0, 1], 𝑋) ∶ 𝛾(0) = 𝑢0, 𝛾(1) = 𝑢1

}
,

then 𝑐 ≥ 𝑚𝜌 and 𝑐 is a critical value of 𝜑 (that is, we can find 𝑢̂ ∈ 𝑋 such that 𝜑′(𝑢̂) = 0 and 𝜑(𝑢̂) = 𝑐).

The following spaces will play a central role in the analysis of problem (𝑃𝜆):

𝑊 1,𝑝(Ω), 𝐶1(Ω) and 𝐿𝑝(𝜕Ω).

We denote by || ⋅ || the norm of the Sobolev space 𝑊 1,𝑝(Ω). We know that

||𝑢|| = (||𝑢||𝑝
𝑝
+ ||𝐷𝑢||𝑝

𝑝

) 1
𝑝

for all 𝑢 ∈ 𝑊 1,𝑝(Ω).
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The space 𝐶1(Ω) is an ordered Banach space with positive (order) cone

𝐶+ =
{
𝑢 ∈ 𝐶1(Ω) ∶ 𝑢(𝑧) ≥ 0 for all 𝑧 ∈ Ω

}
.

This cone has a nonempty interior which is given by

𝐷+ =
{
𝑢 ∈ 𝐶+ ∶ 𝑢(𝑧) > 0 for all 𝑧 ∈ Ω

}
.

In fact, 𝐷+ is the interior of 𝐶+ when the latter is furnished with the weaker 𝐶
(
Ω
)
-norm topology.

On 𝜕Ω we consider the (𝑁 − 1)-dimensional Hausdorff (surface) measure 𝜎(⋅). Using this measure on 𝜕Ω, we can define in

the usual way the boundary Lebesgue spaces 𝐿𝑞(𝜕Ω), 1 ≤ 𝑞 ≤ ∞. We know that there exists a unique continuous linear map

𝛾0 ∶ 𝑊 1,𝑝(Ω) → 𝐿𝑝(𝜕Ω), known as the “trace map”, such that

𝛾0(𝑢) = 𝑢|𝜕Ω for all 𝑢 ∈ 𝑊 1,𝑝(Ω) ∩ 𝐶
(
Ω
)
.

The trace map defines boundary values for all Sobolev functions. We know that 𝛾0(⋅) is a compact map into 𝐿𝑞(𝜕Ω) for all

𝑞 ∈
[
1, (𝑁−1)𝑝

𝑁−𝑝

)
when 𝑝 < 𝑁 , and into 𝐿𝑞(𝜕Ω) for all 1 ≤ 𝑞 < ∞ when 𝑁 ≤ 𝑝. We have

im 𝛾0 = 𝑊
1
𝑝′ ,𝑝(𝜕Ω) and ker 𝛾0 = 𝑊

1,𝑝
0 (Ω).

Recall that 𝑝′ denotes the conjugate exponent of 𝑝 (that is,
1
𝑝
+ 1

𝑝′
= 1). In what follows, for the sake of notational simplicity,

we drop the use of trace map 𝛾0. All restrictions of Sobolev functions on 𝜕Ω are understood in the sense of traces.

Our hypotheses on the boundary coefficient 𝛽(⋅) are the following:

𝐻(𝛽): 𝛽 ∈ 𝐶0,𝛼(𝜕Ω) with 0 < 𝛼 < 1 and 𝛽(𝑧) > 0 for all 𝑧 ∈ 𝜕Ω.

In the sequel, we denote by 𝜏 ∶ 𝑊 1,𝑝(Ω) → 𝐑 the 𝐶1-functional defined by

𝜏(𝑢) = ||𝐷𝑢||𝑝
𝑝
+ ∫𝜕Ω 𝛽(𝑧)|𝑢|𝑝d𝜎.

By Proposition 2.4 of Gasinski & Papageorgiou [11], we know that 𝜏(⋅)
1
𝑝 is an equivalent norm on 𝑊 1,𝑝(Ω). So, there exist

𝑐1, 𝑐2 > 0 such that

𝑐1||𝑢||𝑝 ≤ 𝜏(𝑢) ≤ 𝑐2||𝑢||𝑝 for all 𝑢 ∈ 𝑊 1,𝑝(Ω). (2.1)

Let 𝑓0 ∶ Ω × 𝐑 → 𝐑 be a Carathéodory function such that

|𝑓0(𝑧, 𝑥)| ≤ 𝑎0(𝑧)
(
1 + |𝑥|𝑟−1) for almost all 𝑧 ∈ Ω and all 𝑥 ∈ 𝐑,

with 𝑎0 ∈ 𝐿∞(Ω), 1 < 𝑟 ≤ 𝑝∗, where 𝑝∗ is the Sobolev critical exponent corresponding to 𝑝, hence

𝑝∗ =
⎧⎪⎨⎪⎩

𝑁𝑝

𝑁 − 𝑝
if 𝑝 < 𝑁,

+∞ if 𝑁 ≤ 𝑝.

We set 𝐹0(𝑧, 𝑥) = ∫ 𝑥

0 𝑓0(𝑧, 𝑠) 𝑑𝑠 and consider the 𝐶1-functional 𝜑0 ∶ 𝑊 1,𝑝(Ω) → 𝐑 defined by

𝜑0(𝑢) =
1
𝑝
𝜏(𝑢) − ∫Ω 𝐹0(𝑧, 𝑢) d𝑧 for all 𝑢 ∈ 𝑊 1,𝑝(Ω).

The next proposition is a special case of a more general result of Papageorgiou & Rădulescu [23]. The proposition is essentially

an outgrowth of the nonlinear regularity theory of Lieberman [17].

Proposition 2.2. Assume that 𝑢0 ∈ 𝑊 1,𝑝(Ω) is a local 𝐶1(Ω)-minimizer of 𝜑0, that is, there exists 𝜌0 > 0 such that

𝜑0(𝑢0) ≤ 𝜑0(𝑢0 + ℎ) for all ℎ ∈ 𝐶1(Ω) with ||ℎ||
𝐶1
(
Ω
) ≤ 𝜌0,
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Then 𝑢0 ∈ 𝐶1,𝛼(Ω) for some 𝛼 ∈ (0, 1) and 𝑢0 is also a local 𝑊 1,𝑝(Ω)-minimizer of 𝜑0, that is, there exists 𝜌1 > 0 such that

𝜑0(𝑢0) ≤ 𝜑0(𝑢0 + ℎ) for all ℎ ∈ 𝑊 1,𝑝(Ω) with ||ℎ|| ≤ 𝜌1.

It is well-known that in the nonlinear case (𝑝 ≠ 2), it is difficult to produce strong comparison results and more restrictive

conditions are needed on the data of the problem. The next proposition is a special case of a more general result of Gasinski &

Papageorgiou [11, Proposition 3.4].

Proposition 2.3. If ℎ1, ℎ2 ∈ 𝐿∞(Ω), ℎ1(𝑧) ≤ ℎ2(𝑧) for almost all 𝑧 ∈ Ω, ℎ1 ≢ ℎ2 and 𝑢1, 𝑢2 ∈ 𝐶1(Ω) satisfy 𝑢1 ≤ 𝑢2 and

−Δ𝑝𝑢1(𝑧) = ℎ1(𝑧) for almost all 𝑧 ∈ Ω,
𝜕𝑢1
𝜕𝑛

||||𝜕Ω < 0,

−Δ𝑝𝑢2(𝑧) = ℎ2(𝑧) for almost all 𝑧 ∈ Ω,
𝜕𝑢2
𝜕𝑛

||||𝜕Ω < 0,

then 𝑢2 − 𝑢1 ∈ int 𝐶̂+ =
{
𝑢 ∈ 𝐶1(Ω) ∶ 𝑢

|||Ω > 0, 𝜕𝑢
𝜕𝑛

|||𝑢−1(0) < 0
}

.

Let 𝐴 ∶ 𝑊 1,𝑝(Ω) → 𝑊 1,𝑝(Ω)∗ be the nonlinear map defined by

⟨𝐴(𝑢), ℎ⟩ = ∫Ω |𝐷𝑢|𝑝−2(𝐷𝑢,𝐷ℎ)𝐑𝑁 d𝑧 for all 𝑢, ℎ ∈ 𝑊 1,𝑝(Ω).

The next proposition is a special case of Problem 2.192 of Gasinski & Papageorgiou [10, p. 279].

Proposition 2.4. The map 𝐴(⋅) is bounded (that is, it maps bounded sets to bounded sets), continuous, monotone (thus, maximal
monotone, too) and of type (𝑆)+, that is,

if 𝑢𝑛
𝑤
←←←←←←←←→ 𝑢 𝑖𝑛 𝑊 1,𝑝(Ω) 𝑎𝑛𝑑 lim sup

𝑛→∞
⟨𝐴(𝑢𝑛), 𝑢𝑛 − 𝑢⟩ ≤ 0, 𝑡ℎ𝑒𝑛 𝑢𝑛 → 𝑢 in 𝑊 1,𝑝(Ω).

We will need some basic facts about the spectrum of the negative 𝑝-Laplacian with Robin boundary condition. So, we consider

the following nonlinear eigenvalue problem:

⎧⎪⎨⎪⎩
−Δ𝑝𝑢(𝑧) = 𝜆̂|𝑢(𝑧)|𝑝−2𝑢(𝑧) in Ω,
𝜕𝑢

𝜕𝑛𝑝
+ 𝛽(𝑧)|𝑢|𝑝−2𝑢 = 0 on 𝜕Ω.

⎫⎪⎬⎪⎭ (2.2)

We say that 𝜆̂ ∈ 𝐑 is an “eigenvalue” of (2.2), if the problem admits a nontrivial solution 𝑢̂ ∈ 𝑊 1,𝑝(Ω), known as an eigen-

function corresponding to 𝜆̂. The nonlinear regularity theory of Lieberman [17, Theorem 2], implies that 𝑢̂ ∈ 𝐶1(Ω). There is

a smallest eigenvalue 𝜆̂1 which has the following properties:

• 𝜆̂1 is isolated (that is, we can find 𝜀 > 0 such that the open interval
(
𝜆̂1, 𝜆̂1 + 𝜀

)
contains no eigenvalues);

• 𝜆̂1 is simple (that is, if 𝑢̂, 𝑢̃ are eigenfunctions corresponding to 𝜆̂1, then 𝑢̂ = 𝜉𝑢̃ for some 𝜉 ∈ 𝐑∖{0});

• we have

𝜆̂1 = inf

{
𝜏(𝑢)||𝑢||𝑝

𝑝

∶ 𝑢 ∈ 𝑊 1,𝑝(Ω), 𝑢 ≠ 0

}
>0 (see (2.1)). (2.3)

The infimum in (2.3) is realized on the corresponding one-dimensional eigenspace. From the above properties it follows

that the elements of this eigenspace do not change sign and they, of course, belong in 𝐶1(Ω). Let 𝑢̂1 denote the positive,

𝐿𝑝-normalized (that is, ||𝑢̂1||𝑝 = 1) eigenfunction corresponding to 𝜆̂1. We have 𝑢̂1 ∈ 𝐶+∖{0} and in fact, by the nonlinear

Hopf’s boundary point theorem (see Gasinski & Papageorgiou [6, p. 738]), we have 𝑢̂1 ∈ 𝐷+.

Let 𝜎̂(𝑝) denote the set of eigenvalues of (2.2). It is easy to check that the set 𝜎̂(𝑝) ⊆ (0,+∞) is closed. So, the second

eigenvalue of (2.2) is well-defined by

𝜆̂2 = min
{
𝜆̂ ∈ 𝜎̂(𝑝) ∶ 𝜆̂ ≠ 𝜆̂1

}
.
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The Ljusternik–Schnirelmann minimax scheme gives us in addition to 𝜆̂1 and 𝜆̂2, a whole strictly increasing sequence{
𝜆̂𝑘
}
𝑘∈𝐍 of distinct eigenvalues of (2.2) such that 𝜆̂𝑘 → +∞. These are known as “variational eigenvalues”. Depending on

the index used in the Ljusternik–Schnirelmann minimax scheme, we produce a corresponding sequence of variational eigenval-

ues. We know that these sequences coincide in the first two elements. However, we do not know if the variational eigenvalues

are independent of the index used or they exhaust 𝜎̂(𝑝). This is the case if 𝑝 = 2 (linear eigenvalues problem). Here we consider

the sequence of variational eigenvalues generated by the Fadell–Rabinowitz cohomological index (see [5]). In this way we can

use the results of Cingolani & Degiovanni [4] (see also Papageorgiou, Rădulescu & Repovš [25, Proposition 12]). Note that if

𝜆̂ ≠ 𝜆̂1, then the eigenfunctions are sign-changing.

The following lemma is a simple consequence of the above properties of 𝜆̂1 > 0 (see Papageorgiou, Rădulescu & Repovš [25,

Lemma 14]).

Lemma 2.5. If 𝜗 ∈ 𝐿∞(Ω), 𝜗(𝑧) ≤ 𝜆̂1 for almost all 𝑧 ∈ Ω, 𝜗 ≢ 𝜆̂1, then there exists 𝑐3 > 0 such that

𝑐3||𝑢||𝑝 ≤ 𝜏(𝑢) − ∫Ω 𝜗(𝑧)|𝑢|𝑝d𝑧 for all 𝑢 ∈ 𝑊 1,𝑝(Ω).

Next, we recall some basic definitions and facts from the theory of critical groups. So, let 𝑋 be a Banach space and let

𝜑 ∈ 𝐶1(𝑋,𝐑), 𝑐 ∈ 𝐑. We introduce the following sets:

𝐾𝜑 = {𝑢 ∈ 𝑋 ∶ 𝜑′(𝑢) = 0}, 𝐾𝑐
𝜑
=
{
𝑢 ∈ 𝐾𝜑 ∶ 𝜑(𝑢) = 𝑐

}
, 𝜑𝑐 = {𝑢 ∈ 𝑋 ∶ 𝜑(𝑢) ≤ 𝑐}.

Given a topological pair (𝑌1, 𝑌2) such that 𝑌2 ⊆ 𝑌1 ⊆ 𝑋, we denote by 𝐻𝑘(𝑌1, 𝑌2) (𝑘 ∈ 𝐍0) the 𝑘th relative singular homology

group with integer coefficients. Recall that 𝐻𝑘(𝑌1, 𝑌2) = 0 for all 𝑘 ∈ −𝐍. Suppose that 𝑢 ∈ 𝐾𝑐
𝜑

is isolated. The critical groups

of 𝜑 at 𝑢 are defined by

𝐶𝑘(𝜑, 𝑢) = 𝐻𝑘

(
𝜑𝑐 ∩ 𝑈,𝜑𝑐 ∩ 𝑈∖{𝑢}

)
for all 𝑘 ∈ 𝐍0,

with 𝑈 a neighborhood of 𝑢 such that 𝐾𝜑 ∩ 𝜑𝑐 ∩ 𝑈 = {𝑢}. The excision property of singular homology implies that this defini-

tion is independent of the choice of the isolating neighborhood 𝑈 .

Suppose that 𝜑 satisfies the 𝐶-condition and inf 𝜑
(
𝐾𝜑

)
> −∞. Then the critical groups of 𝜑 at infinity are defined by

𝐶𝑘(𝜑,∞) = 𝐻𝑘(𝑋,𝜑𝑐) for all 𝑘 ∈ 𝐍0,

with 𝑐 < inf 𝜑
(
𝐾𝜑

)
. This definition is independent of the choice of the level 𝑐 < inf 𝜑

(
𝐾𝜑

)
. Indeed, suppose that

𝑐′ < 𝑐 < inf 𝜑
(
𝐾𝜑

)
. Then the second deformation theorem (see, for example, Gasinski & Papageorgiou [6, p. 628]) implies

that 𝜑𝑐′ is a strong deformation retract of 𝜑𝑐 . Therefore

𝐻𝑘(𝑋,𝜑𝑐) = 𝐻𝑘

(
𝑋,𝜑𝑐′) for all 𝑘 ∈ 𝐍0

(see Motreanu, Motreanu & Papageorgiou [19, Corollary 6.15, p. 145]).

Assume that 𝜑 ∈ 𝐶1(𝑋,𝐑) satisfies the C-condition and that 𝐾𝜑 is finite. We introduce the following items:

𝑀(𝑡, 𝑢) =
∑
𝑘≥0

rank 𝐶𝑘(𝜑, 𝑢)𝑡𝑘 for all 𝑡 ∈ 𝐑, 𝑢 ∈ 𝐾𝜑,

𝑃 (𝑡,∞) =
∑
𝑘≥0

rank 𝐶𝑘(𝜑,∞)𝑡𝑘 for all 𝑡 ∈ 𝐑.

Then the Morse relation says that there exists 𝑄(𝑡) =
∑

𝑘≥0 𝛽𝑘𝑡𝑘 a formal series in 𝑡 ∈ 𝐑 with nonnegative integer coefficients

𝛽𝑘 such that ∑
𝑢∈𝐾𝜑

𝑀(𝑡, 𝑢) = 𝑃 (𝑡, 𝑢) + (1 + 𝑡)𝑄(𝑡) for all 𝑡 ∈ 𝐑. (2.4)

Now let us fix some basic notation which we will use throughout this work. So, for 𝑥 ∈ 𝐑, we set 𝑥± = max{±𝑥, 0}. Then

for 𝑢 ∈ 𝑊 1,𝑝(Ω) we define

𝑢±(⋅) = 𝑢(⋅)±.
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We know that

𝑢± ∈ 𝑊 1,𝑝(Ω), 𝑢 = 𝑢+ − 𝑢−, |𝑢| = 𝑢+ + 𝑢−.

If 𝑢, 𝑣 ∈ 𝑊 1,𝑝(Ω) and 𝑣 ≤ 𝑢, then by [𝑣, 𝑢] we denote the ordered interval in 𝑊 1,𝑝(Ω) defined by

[𝑣, 𝑢] =
{
𝑦 ∈ 𝑊 1,𝑝(Ω) ∶ 𝑣(𝑧) ≤ 𝑦(𝑧) ≤ 𝑢(𝑧) for almost all 𝑧 ∈ Ω

}
.

By int
𝐶1
(
Ω
)[𝑣, 𝑢], we denote the interior in the 𝐶1(Ω)-norm topology of [𝑣, 𝑢] ∩ 𝐶1(Ω). We also define

[𝑢) =
{
𝑦 ∈ 𝑊 1,𝑝(Ω) ∶ 𝑢(𝑧) ≤ 𝑦(𝑧) for almost all 𝑧 ∈ Ω

}
.

For 𝑢, 𝑣 ∈ 𝑊 1,𝑝(Ω) with 𝑣(𝑧) ≠ 0 for almost all 𝑧 ∈ Ω, we define

𝑅(𝑢, 𝑣)(𝑧) = |𝐷𝑢(𝑧)|𝑝 − |𝐷𝑣(𝑧)|𝑝−2(𝐷𝑣(𝑧), 𝐷
(

𝑢𝑝

𝑣𝑝−1

)
(𝑧)

)
𝐑𝑁

, 𝑧 ∈ Ω.

From the nonlinear Picone’s identity of Allegretto & Huang [2], we have the following property.

Proposition 2.6. If 𝑢, 𝑣 ∶ Ω → 𝐑 are differentiable functions with 𝑢(𝑧) ≥ 0 and 𝑣(𝑧) > 0 for all 𝑧 ∈ Ω, then 𝑅(𝑢, 𝑣)(𝑧) ≥ 0 for
almost all 𝑧 ∈ Ω and equality holds if and only if 𝑢 = 𝜉𝑣 with 𝜉 ≥ 0.

Finally, if 𝑘, 𝑚 ∈ 𝐍0, then by 𝛿𝑘,𝑚 we denote the Kronecker symbol, that is,

𝛿𝑘,𝑚 =
{
1 if 𝑘 = 𝑚,

0 if 𝑘 ≠ 𝑚.

Next, we introduce our hypotheses on the two nonlinearities in the reaction of (𝑃𝜆).

𝐻(𝑔) ∶ 𝑔 ∶ Ω × 𝐑 → 𝐑 is a Carathéodory function such that 𝑔(𝑧, 0) = 0 for almost all 𝑧 ∈ Ω and

(i) for every 𝜌 > 0, there exists 𝑎𝜌 ∈ 𝐿∞(Ω) such that

|𝑔(𝑧, 𝑥)| ≤ 𝑎𝜌(𝑧) for almost all 𝑧 ∈ Ω and all |𝑥| ≤ 𝜌,

0 < 𝑔(𝑧, 𝑥)𝑥 for almost all 𝑧 ∈ Ω and all 𝑥 ∈ 𝐑∖{0};

(ii) lim𝑥→0
𝑔(𝑧,𝑥)|𝑥|𝑝−2𝑥 = 0 and there exists 1 < 𝜏 < 𝑝 such that lim𝑥→±∞

𝑔(𝑧,𝑥)|𝑥|𝜏−2𝑥 = 0 uniformly for almost all 𝑧 ∈ Ω.

𝐻(𝑓 ) ∶ 𝑓 ∶ Ω × 𝐑 → 𝐑 is a Carathéodory function such that 𝑓 (𝑧, 0) = 0 for almost all 𝑧 ∈ Ω and

(i) for every 𝜌 > 0, there exists 𝑎̂𝜌 ∈ 𝐿∞(Ω) such that

|𝑓 (𝑧, 𝑥)| ≤ 𝑎̂𝜌(𝑧) for almost all 𝑧 ∈ Ω and all |𝑥| ≤ 𝜌;

(ii) lim𝑥→±∞
𝑓 (𝑧,𝑥)|𝑥|𝑝−2𝑥 = 𝜆̂𝑚 uniformly for almost all 𝑧 ∈ Ω for some 𝑚 ∈ 𝐍, 𝑚 ≥ 2 and if 𝐹 (𝑧, 𝑥) = ∫ 𝑥

0 𝑓 (𝑧, 𝑠) d𝑠 then

lim inf𝑥→±∞
𝑝𝐹 (𝑧,𝑥)−𝑓 (𝑧,𝑥)𝑥|𝑥|𝜏 > 0 uniformly for almost all 𝑧 ∈ Ω;

(iii) there exists 𝜗 ∈ 𝐿∞(Ω) such that

𝜗(𝑧) ≤ 𝜆̂1 for almost all 𝑧 ∈ Ω, 𝜗 ≢ 𝜆̂1,

lim sup
𝑥→0

𝑓 (𝑧, 𝑥)|𝑥|𝑝−2𝑥 ≤ 𝜗(𝑧) uniformly for almost all 𝑧 ∈ Ω.

𝐻0 ∶ For almost all 𝑧 ∈ Ω and every 𝜆 > 0, the mapping 𝑥 → 𝜆𝑔(𝑧, 𝑥) + 𝑓 (𝑧, 𝑥) is strictly increasing.

Remark 2.7. Hypothesis 𝐻(𝑔)(𝑖𝑖) implies that 𝑔(𝑧, ⋅) is strictly sublinear near ±∞ and 0. On the other hand, hypothesis 𝐻(𝑓 )(𝑖𝑖)
implies that 𝑓 (𝑧, ⋅) is (𝑝 − 1)-linear near ±∞. Note that hypotheses 𝐻(𝑔)(𝑖𝑖),𝐻(𝑓 )(𝑖𝑖) imply that problem (𝑃𝜆) at ±∞ is
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resonant with respect to a nonprincipal variational eigenvalue of the Robin 𝑝-Laplacian. Clearly, the above hypotheses

imply that

|𝑔(𝑧, 𝑥)|, |𝑓 (𝑧, 𝑥)| ≤ 𝑐4
(
1 + |𝑥|𝑝−1) for almost all 𝑧 ∈ Ω and all 𝑥 ∈ 𝐑 (2.5)

with 𝑐4 > 0. In the sequel, we shall denote 𝐺(𝑧, 𝑥) = ∫ 𝑥

0 𝑔(𝑧, 𝑠) d𝑠.

Example 2.8. The following functions satisfy hypotheses 𝐻(𝑔),𝐻(𝑓 ). For the sake of simplicity, we drop the z-dependence.

𝑔(𝑥) =
{|𝑥|𝑟−2𝑥 if |𝑥| ≤ 1,|𝑥|𝑠−2𝑥 if 1 < |𝑥|, 1 < 𝑠 < 𝑝 < 𝑟;

𝑓 (𝑥) =
{
𝜗|𝑥|𝑝−2𝑥 if |𝑥| ≤ 1,
𝜆̂𝑚|𝑥|𝑝−2𝑥 +

(
𝜆̂𝑚 − 𝜗

)|𝑥|𝑞−2𝑥 if 1 < |𝑥|, 𝑠 < 𝑞 < 𝑝, 𝜗 < 𝜆̂1.

3 SOLUTIONS OF CONSTANT SIGN

On account of hypotheses 𝐻(𝑔)(𝑖𝑖),𝐻(𝑓 )(𝑖𝑖) and (2.5), we see that given 𝜆 > 0, 𝜖 > 0 and 𝑟 ∈ (𝑝, 𝑝∗), we can find 𝑐5 > 0 such

that

[𝜆𝑔(𝑧, 𝑥) + 𝑓 (𝑧, 𝑥)]𝑥 ≤ [𝜗(𝑧) + (1 + 𝜆)𝜀]|𝑥|𝑝 + 𝑐5|𝑥|𝑟 for almost all 𝑧 ∈ Ω and all 𝑥 ∈ 𝐑. (3.1)

This unilateral growth restriction on the reaction of problem (𝑃𝜆) leads to the following auxiliary parametric nonlinear Robin

problem

⎧⎪⎨⎪⎩
−Δ𝑝𝑢(𝑧) = (𝜗(𝑧) + (1 + 𝜆)𝜀)|𝑢(𝑧)|𝑝−2𝑢(𝑧) + 𝑐5|𝑢(𝑧)|𝑟−2𝑢(𝑧) in Ω,
𝜕𝑢

𝜕𝑛𝑝
+ 𝛽(𝑧)|𝑢|𝑝−2𝑢 = 0 on 𝜕Ω.

⎫⎪⎬⎪⎭ (7𝜆)

Proposition 3.1. If hypothesis 𝐻(𝛽) holds and 𝜆 > 0, then for every sufficiently small 𝜀 > 0 problem (7𝜆) admits a positive
solution

𝑢̃𝜆 ∈ 𝐷+.

Moreover, since (7𝜆) is odd, 𝑣̃𝜆 = −𝑢̃𝜆 ∈ −𝐷+ is a negative solution of problem (7𝜆).

Proof. Let Ψ+
𝜆
∶ 𝑊 1,𝑝(Ω) → 𝐑 be the 𝐶1-functional defined by

Ψ+
𝜆
(𝑢) = 1

𝑝
𝜏(𝑢) − 1

𝑝 ∫Ω[𝜗(𝑧) + (1 + 𝜆)𝜀](𝑢+)𝑝d𝑧 −
𝑐5
𝑟
||𝑢+||𝑟

𝑟
for all 𝑢 ∈ 𝑊 1,𝑝(Ω).

We have

Ψ+
𝜆
(𝑢) ≥ 𝑐6||𝑢−||𝑝 + 1

𝑝

(
𝜏(𝑢+) − ∫Ω 𝜗(𝑧)(𝑢+)𝑝d𝑧

)
− (1 + 𝜆)𝜀

𝑝
||𝑢+||𝑝 − 𝑐7||𝑢||𝑟

for some 𝑐6, 𝑐7 > 0 (see (2.1))

≥ 𝑐6||𝑢−||𝑝 + 1
𝑝

[
𝑐8 − (1 + 𝜆)𝜀

]||𝑢+||𝑝 − 𝑐7||𝑢||𝑟 for all 𝑢 ∈ 𝑊 1,𝑝(Ω), some 𝑐8 > 0.

Choosing 𝜀 ∈
(
0, 𝑐8

1+𝜆

)
, we consider that

Ψ+
𝜆
(𝑢) ≥ 𝑐9||𝑢||𝑝 − 𝑐7||𝑢||𝑟 for all 𝑢 ∈ 𝑊 1,𝑝(Ω), some 𝑐9 > 0. (3.3)
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Since 𝑟 > 𝑝, it follows from (3.3) that

𝑢 = 0 is a local minimizer of Ψ+
𝜆
.

Then we can find small 𝜌 ∈ (0, 1) such that

Ψ+
𝜆
(0) = 0 < inf

{
Ψ+
𝜆
(𝑢) ∶ ||𝑢|| = 𝜌

}
= 𝑚+

𝜆

(see Aizicovici, Papageorgiou & Staicu [1], proof of Proposition 29).

For 𝑡 > 0, we have

Ψ+
𝜆
(𝑡𝑢̂1) =

𝑡𝑝

𝑝
𝜏(𝑢̂1) −

𝑡𝑝

𝑝 ∫Ω[𝜗(𝑧) + (1 + 𝜆)𝜀]𝑢̂𝑝1d𝑧 − 𝑡𝑟

𝑟
||𝑢̂1||𝑟𝑟

≤ 𝑡𝑝

𝑝 ∫Ω
[
𝜆̂1 − 𝜗(𝑧)

]
𝑢̂
𝑝

1d𝑧 − 𝑡𝑟

𝑟
||𝑢̂1||𝑟𝑟

≤ 𝑐10𝑡
𝑝 − 𝑐11𝑡

𝑟 for some 𝑐10, 𝑐11 > 0. (3.4)

However, 𝑟 > 𝑝. So, from (3.4) we have

Ψ+
𝜆
(𝑡𝑢̂1) → −∞ as 𝑡 → +∞. (3.5)

Let 𝑘𝜆(𝑧, 𝑥) be the Carathéodory function defined by

𝑘𝜆(𝑧, 𝑥) = [𝜗(𝑧) + (1 + 𝜆)𝜀]|𝑥|𝑝−2𝑥 + 𝑐5|𝑥|𝑟−2𝑥.
We set

𝐾𝜆(𝑧, 𝑥) = ∫
𝑥

0
𝑘𝜆(𝑧, 𝑠) d𝑠 = 1

𝑝
[𝜗(𝑧) + (1 + 𝜆)𝜀]|𝑥|𝑝 + 𝑐5

𝑟
|𝑥|𝑟.

Recall that 𝑝 < 𝑟 and let 𝑞 ∈ (𝑝, 𝑟). For sufficiently big 𝑀 > 0 we have

0 < 𝑞𝐾𝜆(𝑧, 𝑥) ≤ 𝑘𝜆(𝑧, 𝑥)𝑥 for almost all 𝑧 ∈ Ω and all |𝑥| ≥ 𝑀,

⇒ 𝑘𝜆(𝑧, ⋅) satisfies the Ambrosetti–Rabinowitz condition (see [19, p. 341])

⇒ Ψ+
𝜆
(⋅) satisfies the C-condition (see [19, p. 343]). (3.6)

Then (3.5) and (3.6) permit the use of Theorem 2.1 (the mountain pass theorem). So, we can find 𝑢̃𝜆 ∈ 𝑊 1,𝑝(Ω) such that

𝑢̃𝜆 ∈ 𝐾Ψ+
𝜆

and Ψ+
𝜆
(0) = 0 < 𝑚+

𝜆
≤ Ψ+

𝜆
(𝑢̃𝜆).

Evidently, 𝑢̃𝜆 ≠ 0 and we have

⟨𝐴(𝑢̃𝜆), ℎ⟩ + ∫𝜕Ω 𝛽(𝑧)|𝑢̃𝜆|𝑝−2𝑢̃𝜆ℎ d𝜎

= ∫Ω
{
[𝜗(𝑧) + (1 + 𝜆)𝜖](𝑢̃+𝜆)𝑝−1 + 𝑐5(𝑢̃+𝜆 )

𝑟−1}ℎ d𝑧 for all ℎ ∈ 𝑊 1,𝑝(Ω). (3.7)

In (3.7) we choose ℎ = −𝑢̃−
𝜆
∈ 𝑊 1,𝑝(Ω). Then

𝜏
(
𝑢̃−
𝜆

)
= 0, ⇒ 𝑢̃𝜆 ≥ 0, 𝑢̃𝜆 ≠ 0 (see (2.1)).

Then by (3.7) we have

−Δ𝑝𝑢̃𝜆(𝑧) = [𝜗(𝑧) + (1 + 𝜆)𝜀]𝑢̃𝜆(𝑧)𝑝−1 + 𝑐5𝑢̃𝜆(𝑧)𝑟−1 for almost all 𝑧 ∈ Ω,

𝜕𝑢̃𝜆

𝜕𝑛𝑝
+ 𝛽(𝑧)𝑢̃𝑝−1

𝜆
= 0 on 𝜕Ω (see Papageorgiou & Rădulescu [21]). (3.8)



2464 PAPAGEORGIOU ET AL.

By (3.8) and Proposition 2.10 of Papageorgiou & Rădulescu [23], we have

𝑢̃𝜆 ∈ 𝐿∞(Ω).

So, we can apply Theorem 2 of Lieberman [17] and conclude that

𝑢̃𝜆 ∈ 𝐶+∖{0}.

It follows from (3.8) that

Δ𝑝𝑢̃𝜆(𝑧) ≤ 0 for almost all 𝑧 ∈ Ω, ⇒ 𝑢̃𝜆 ∈ 𝐷+ (see Gasinski & Papageorgiou [6, p. 738]).

Since problem (7𝜆) is odd, we can deduce that 𝑣̃𝜆 = −𝑢̃𝜆 ∈ −𝐷+ is a negative solution of problem (7𝜆). □

Next, we produce a uniform lower bound 𝑐 > 0 for the solutions 𝑢̃𝜆 of (7𝜆) for 𝜆 > 0. It follows that −𝑐 < 0 is an upper bound

for the negative solutions 𝑣̃𝜆.

Proposition 3.2. If hypothesis 𝐻(𝛽) holds, then there exists 𝑐 > 0 such that

𝑐 ≤ 𝑢̃𝜆(𝑧) and 𝑣̃𝜆(𝑧) ≤ −𝑐 for all 𝑧 ∈ Ω, 𝜆 > 0.

Proof. We consider the following nonlinear Robin problem

⎧⎪⎨⎪⎩
−Δ𝑝𝑢(𝑧) = 𝑐5|𝑢(𝑧)|𝑟−2𝑢(𝑧) in Ω,

𝜕𝑢

𝜕𝑛𝑝
+ 𝛽(𝑧)|𝑢|𝑝−2𝑢 = 0 on 𝜕Ω.

⎫⎪⎬⎪⎭ (3.9)

We first show that problem (3.9) has a positive solution. So, let 𝜉 ∶ 𝑊 1,𝑝(Ω) → 𝐑 be the 𝐶1-functional defined by

𝜉(𝑢) = 1
𝑝
𝜏(𝑢) −

𝑐5
𝑟
||𝑢+||𝑟

𝑟
for all 𝑢 ∈ 𝑊 1,𝑝(Ω).

Using (2.1) we have

𝜉(𝑢) ≥ 𝑐12||𝑢||𝑝 − 𝑐13||𝑢||𝑟 for some 𝑐12, 𝑐13 > 0, all 𝑢 ∈ 𝑊 1,𝑝(Ω),

⇒ 𝑢 = 0 is an isolated local minimizer of 𝜉(⋅) (recall that 𝑟 > 𝑝).

So, we can find 𝜌 ∈ (0, 1) small such that

𝜉(0) = 0 < inf{𝜉(𝑢) ∶ ||𝑢|| = 𝜌} = 𝑚𝜉. (3.10)

Also, if 𝑢 ∈ 𝐷+, then

𝜉(𝑡𝑢) → −∞ as 𝑡 → +∞ (again use the fact that 𝑟 > 𝑝). (3.11)

Finally, since the reaction 𝑓 (𝑥) = 𝑐5(𝑥+)𝑝−1 satisfies the Ambrosetti–Rabinowitz condition on 𝐑+ = [0,+∞), we can infer

that

𝜉(⋅) satisfies the C-condition. (3.12)

Then (3.10), (3.11), (3.12) permit the use of Theorem 2.1 (the mountain pass theorem) and obtain 𝑢 ∈ 𝑊 1,𝑝(Ω) such

that

𝑢 ∈ 𝐾𝜉 and 𝜉(0) = 0 < 𝑚𝜉 ≤ 𝜉(𝑢). (3.13)
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From (3.13) we can infer that 𝑢 ≠ 0 and

𝜉′(𝑢) = 0, ⇒ ⟨𝐴(𝑢), ℎ⟩ + ∫𝜕Ω 𝛽(𝑧)|𝑢|𝑝−2𝑢ℎ d𝜎 = 𝑐5∫Ω(𝑢
+)𝑝−1ℎ d𝑧 for all ℎ ∈ 𝑊 1,𝑝(Ω).

We choose ℎ = −𝑢− ∈ 𝑊 1,𝑝(Ω). Then

𝜏(𝑢−) = 0, ⇒ 𝑢 ≥ 0, 𝑢 ≠ 0 (see (2.1)).

So, 𝑢 is a positive solution of (3.9). As before, the nonlinear regularity theory and the nonlinear Hopf boundary point theorem

(see [6, p. 738]) imply that 𝑢 ∈ 𝐷+.

Next, we show that there is a smallest positive solution for problem (3.9). We first observe that from Papageorgiou, Rădulescu

& Repovš [24] (see the proof of Proposition 7), we know that the set 𝑆+ of positive solutions of (3.9) is downward directed (that

is, if 𝑢1, 𝑢2 ∈ 𝑆+, then we can find 𝑢 ∈ 𝑆+ such that 𝑢 ≤ 𝑢1, 𝑢 ≤ 𝑢2). Invoking Lemma 3.10 of Hu & Papageorgiou [14, p. 178],

we can find a decreasing sequence
{
𝑢𝑛
}
𝑛≥1 ⊆ 𝑆+ ⊆ 𝐷+ such that

inf 𝑆+ = inf
𝑛≥1 𝑢𝑛.

We have

⟨𝐴(𝑢𝑛), ℎ⟩ + ∫𝜕Ω 𝛽(𝑧)𝑢𝑝−1
𝑛

ℎ d𝜎 = 𝑐5 ∫Ω 𝑢
𝑟−1
𝑛

ℎ d𝑧 for all ℎ ∈ 𝑊 1,𝑝(Ω), 𝑛 ∈ 𝐍. (3.14)

It follows from (3.14) that {𝑢𝑛}𝑛≥1 ⊆ 𝑊 1,𝑝(Ω) is bounded. So, we may assume that

𝑢𝑛
𝑤
←←←←←←←←→ 𝑢∗ in 𝑊 1,𝑝(Ω), 𝑢𝑛 → 𝑢∗ in 𝐿𝑟(Ω) and 𝐿𝑝(𝜕Ω). (3.15)

Suppose that 𝑢∗ ≡ 0. Let 𝑦𝑛 =
𝑢𝑛||𝑢𝑛|| , 𝑛 ∈ 𝐍. Then ||𝑦𝑛|| = 1 for all 𝑛 ∈ 𝐍 and so we may assume that

𝑦𝑛
𝑤
←←←←←←←←→ 𝑦 in 𝑊 1,𝑝(Ω), 𝑦𝑛 → 𝑦 in 𝐿𝑝(Ω) and 𝐿𝑝(𝜕Ω). (3.16)

From (3.14) we have

⟨𝐴(𝑦𝑛), ℎ⟩ + ∫𝜕Ω 𝛽(𝑧)𝑦𝑝−1
𝑛

ℎ d𝜎 = 𝑐5 ∫Ω 𝑢
𝑟−𝑝
𝑛

𝑦
𝑝−1
𝑛

ℎ d𝑧 for all ℎ ∈ 𝑊 1,𝑝(Ω), 𝑛 ∈ 𝐍.

Choosing ℎ = 𝑦𝑛 − 𝑦 ∈ 𝑊 1,𝑝(Ω), passing to the limit as 𝑛 → ∞, and using (3.16) and the fact that 𝑢∗ = 0, we obtain

lim
𝑛→∞

⟨𝐴(𝑦𝑛), 𝑦𝑛 − 𝑦⟩ = 0, ⇒ 𝑦𝑛 → 𝑦 in 𝑊 1,𝑝(Ω), ||𝑦|| = 1. (see Proposition 2.4). (3.17)

Passing to the limit as 𝑛 → ∞ in (3.16), and using (3.17) and the fact that 𝑢∗ = 0, we obtain

⟨𝐴(𝑦), ℎ⟩ + ∫𝜕Ω 𝛽(𝑧)(𝑧)𝑦𝑝−1ℎ d𝜎 = 0 for all ℎ ∈ 𝑊 1,𝑝(Ω),

⇒ 𝜏(𝑦) = 0,

⇒ 𝑦 = 0 (see (2.1)), contradicting (3.17).

So, 𝑢∗ ≠ 0. In (3.14) we choose ℎ = 𝑢𝑛 − 𝑢∗ ∈ 𝑊 1,𝑝(Ω), pass to the limit as 𝑛 → ∞, and use (3.15) and Proposition 2.4. Then

𝑢𝑛 → 𝑢∗ in 𝑊 1,𝑝(Ω).

Hence, in the limit as 𝑛 → ∞ in (3.14), we obtain

⟨𝐴(𝑢∗), ℎ⟩ + ∫𝜕Ω 𝛽(𝑧)𝑢𝑝−1∗ ℎ d𝜎 = 𝑐5 ∫Ω 𝑢
𝑟−1
∗ ℎ d𝑧 for all ℎ ∈ 𝑊 1,𝑝(Ω) ⇒ 𝑢∗ ∈ 𝑆+ and 𝑢∗ = inf 𝑆+.
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Now let 𝑢̃𝜆 ∈ 𝐷+ be a solution of (7𝜆) (see Proposition 3.1). We consider the Carathéodory function 𝛾(𝑧, 𝑥) defined by

𝛾(𝑧, 𝑥) =
{
𝑐5(𝑥+)𝑟−1 if 𝑥 ≤ 𝑢̃𝜆(𝑧),
𝑐5𝑢̃𝜆(𝑧)𝑟−1 if 𝑢̃𝜆(𝑧) < 𝑥.

(3.18)

We set Γ(𝑧, 𝑥) = ∫ 𝑥

0 𝛾(𝑧, 𝑠) d𝑠 and consider the 𝐶1-functional 𝜉 ∶ 𝑊 1,𝑝(Ω) → 𝐑 defined by

𝜉(𝑢) = 1
𝑝
𝜏(𝑢) − ∫Ω Γ(𝑧, 𝑢) d𝑧 for all 𝑢 ∈ 𝑊 1,𝑝(Ω).

It follows by (2.1) and (3.18) that 𝜉(⋅) is coercive. Also, it is sequentially weakly lower semicontinuous. So, we can find

𝑢 ∈ 𝑊 1,𝑝(Ω) such that

𝜉(𝑢) = inf
{
𝜉(𝑢) ∶ 𝑢 ∈ 𝑊 1,𝑝(Ω)

}
. (3.19)

As before, since 𝑟 > 𝑝, we have 𝜉(𝑢) < 0 = 𝜉(0), hence 𝑢 ≠ 0. From (3.19) we have

⟨𝐴(𝑢), ℎ⟩ + ∫𝜕Ω 𝛽(𝑧)|𝑢|𝑝−2𝑢ℎ d𝜎 = ∫Ω 𝛾(𝑧, 𝑢)ℎ d𝑧 for all ℎ ∈ 𝑊 1,𝑝(Ω). (3.20)

In (3.20) we first choose ℎ = −𝑢− ∈ 𝑊 1,𝑝(Ω). We obtain

𝜏(𝑢−) = 0 (see (3.18)), ⇒ 𝑢 ≥ 0, 𝑢 ≠ 0 (see (2.1)).

Next, we choose ℎ =
(
𝑢 − 𝑢̃𝜆

)+ ∈ 𝑊 1,𝑝(Ω) in (3.20). Then

⟨
𝐴
(
𝑢
)
,
(
𝑢 − 𝑢̃𝜆

)+⟩ + ∫𝜕Ω 𝛽(𝑧)𝑢𝑝−1
(
𝑢 − 𝑢̃𝜆

)+d𝜎 = ∫Ω 𝑐5𝑢̃
𝑟−1
𝜆

(
𝑢 − 𝑢̃𝜆

)+d𝑧

≤ ∫Ω
(
[𝜗(𝑧) + (1 + 𝜆)𝜀]𝑢̃𝑝−1

𝜆
+ 𝑐5𝑢̃

𝑟−1
𝜆

)(
𝑢 − 𝑢̃𝜆

)+d𝑧

=
⟨
𝐴
(
𝑢̃𝜆
)
,
(
𝑢 − 𝑢̃𝜆

)+⟩ + ∫𝜕Ω 𝛽(𝑧)𝑢̃𝑝−1
𝜆

(
𝑢 − 𝑢̃𝜆

)+d𝜎

⇒ 𝑢 ≤ 𝑢̃𝜆 (by Proposition 2.4).

So, we have proved that

𝑢 ∈
[
0, 𝑢̃𝜆

]
, 𝑢 ≠ 0.

It follows by (3.18), (3.20) and the above relation that 𝑢 ∈ 𝑆+ ⊆ 𝐷+. Therefore

0 < 𝑐 = min
Ω

𝑢∗ ≤ 𝑢̃𝜆 for all 𝜆 > 0.

The oddness of (3.9) implies that 𝑣̃𝜆 ≤ −𝑐 < 0 for all 𝜆 > 0. □

Now we are ready to produce two nontrivial constant sign solutions when 𝜆 > 0 is big enough.

Proposition 3.3. If hypotheses 𝐻(𝛽),𝐻(𝑔),𝐻(𝑓 ),𝐻0 hold, then for sufficiently large 𝜆 > 0 problem (𝑃𝜆) has two constant sign
solutions

𝑢0 ∈ int
𝐶1(Ω)

[
0, 𝑢̃𝜆

]
, 𝑣0 ∈ int

𝐶1(Ω)
[
𝑣̃𝜆, 0

]
,

with 𝑢̃𝜆 ∈ 𝐷+ and 𝑣̃𝜆 ∈ −𝐷+ constant sign solutions of (7𝜆).

Proof. We introduce the following truncation of the reaction in problem (𝑃𝜆):

𝜂+
𝜆
(𝑧, 𝑥) =

{
𝜆𝑔(𝑧, 𝑥+) + 𝑓 (𝑧, 𝑥+) if 𝑥 ≤ 𝑢̃𝜆(𝑧),
𝜆𝑔
(
𝑧, 𝑢̃𝜆(𝑧)

)
+ 𝑓

(
𝑧, 𝑢̃𝜆(𝑧)

)
if 𝑢̃𝜆(𝑧) < 𝑥.

(3.21)
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This is a Carathéodory function. We set𝐻+
𝜆
(𝑧, 𝑥) = ∫ 𝑥

0 𝜂+
𝜆
(𝑧, 𝑠) ds and consider the𝐶1-functional 𝑑+

𝜆
∶ 𝑊 1,𝑝(Ω) → 𝐑 defined

by

𝑑+
𝜆
(𝑢) = 1

𝑝
𝜏(𝑢) − ∫Ω𝐻+

𝜆
(𝑧, 𝑢) dz for all 𝑢 ∈ 𝑊 1,𝑝(Ω).

From (2.1) and (3.21) we see that 𝑑+
𝜆
(⋅) is coercive. Also, it is sequentially weakly lower semicontinuous. So, we can find

𝑢0 ∈ 𝑊 1,𝑝(Ω) such that

𝑑+
𝜆
(𝑢0) = inf

{
𝑑+
𝜆
(𝑢) ∶ 𝑢 ∈ 𝑊 1,𝑝(Ω)

}
. (3.22)

Let 𝑐 ∈ (0, 𝑐) with 𝑐 > 0 as in Proposition 3.2. Then for all 𝜆 > 0, we have

𝑑+
𝜆
(𝑐) = 𝑐𝑝

𝑝 ∫𝜕Ω 𝛽(𝑧) d𝜎 − 𝜆∫Ω𝐺(𝑧, 𝑐) d𝑧 − ∫Ω 𝐹 (𝑧, 𝑐) d𝑧.

Note that ∫Ω 𝐹 (𝑧, 𝑐) d𝑧 > 0 (see hypothesis 𝐻(𝑔)(𝑖)). So,

𝑑+
𝜆
(𝑐) < 0 for sufficiently large 𝜆 > 0,

⇒ 𝑑+
𝜆
(𝑢0) < 0 = 𝑑+

𝜆
(0) for sufficiently large 𝜆 > 0,

⇒ 𝑢0 ≠ 0.

From (3.22) we have

⟨𝐴(𝑢0), ℎ⟩ + ∫𝜕Ω 𝛽(𝑧)|𝑢0|𝑝−2𝑢0ℎ d𝜎 = ∫Ω 𝜂+
𝜆
(𝑧, 𝑢0)ℎ dz for all ℎ ∈ 𝑊 1,𝑝(Ω). (3.23)

In (3.23) we first choose ℎ = −𝑢−0 ∈ 𝑊 1,𝑝(Ω) and obtain

𝑢0 ≥ 0, 𝑢0 ≠ 0.

Then in (3.23) we choose ℎ =
(
𝑢0 − 𝑢̃𝜆

)+ ∈ 𝑊 1,𝑝(Ω). As in the proof of Proposition 3.2, using this time (3.1), we obtain

𝑢0 ≤ 𝑢̃𝜆.

So, we have proved that

𝑢0 ∈
[
0, 𝑢̃𝜆

]
, 𝑢0 ≠ 0. (3.24)

By (3.21), (3.23), (3.24) and Theorem 2 of Lieberman [17], we have

𝑢0 ∈ 𝐶+∖{0} is a positive solution of (𝑃𝜆), 𝜆 > 0 big.

Therefore we have

Δ𝑝𝑢0(𝑧) ≤ 0 for almost all 𝑧 ∈ Ω, ⇒ 𝑢0 ∈ 𝐷+ (see Gasinski & Papageorgiou [6, p. 738]).

Also, we have

−Δ𝑝𝑢0(𝑧) = 𝜆𝑔(𝑧, 𝑢0(𝑧)) + 𝑓 (𝑧, 𝑢0(𝑧))

≤ 𝜆𝑔
(
𝑧, 𝑢̃𝜆(𝑧)

)
+ 𝑓

(
𝑧, 𝑢̃𝜆(𝑧)

)
(see (3.24) and hypothesis 𝐻0)

≤ [𝜗(𝑧) + (1 + 𝜆)𝜀]𝑢̃𝜆(𝑧)𝑝−1 + 𝑐5𝑢̃𝜆(𝑧)𝑟−1 (see (3.1))

= −Δ𝑝𝑢̃𝜆(𝑧) for almost all 𝑧 ∈ Ω,

⇒ 𝑢̃𝜆 − 𝑢0 ∈ int 𝐶̂+ (see Proposition 2.3).



2468 PAPAGEORGIOU ET AL.

We conclude that

𝑢0 ∈ int
𝐶1(Ω)

[
0, 𝑢̃𝜆

]
.

For the negative solution, we introduce the Carathéodory function 𝜂−
𝜆
(𝑧, 𝑥) defined by

𝜂−
𝜆
(𝑧, 𝑥) =

{
𝜆𝑔
(
𝑧, 𝑣̃𝜆(𝑧)

)
+ 𝑓

(
𝑧, 𝑣̃𝜆(𝑧)

)
if 𝑥 < 𝑣̃𝜆(𝑧),

𝜆𝑔(𝑧,−𝑥−) + 𝑓 (𝑧,−𝑥−) if 𝑣̃𝜆(𝑧) ≤ 𝑥.

We set 𝐻−
𝜆
(𝑧, 𝑥) = ∫ 𝑥

0 𝜂−
𝜆
(𝑧, 𝑠) d𝑠 and consider the 𝐶1-functional 𝑑−

𝜆
∶ 𝑊 1,𝑝(Ω) → 𝐑 defined by

𝑑−
𝜆
(𝑢) = 1

𝑝
𝜏(𝑢) − ∫Ω𝐻−

𝜆
(𝑧, 𝑢) d𝑧 for all 𝑢 ∈ 𝑊 1,𝑝(Ω).

Working as above, this time with the functional 𝑑−
𝜆
(⋅), we produce a solution 𝑣0 of (𝑃𝜆) for large enough 𝜆 > 0 such that

𝑣0 ∈ −𝐷+, 𝑣0 ∈ int
𝐶1
(
Ω
)[𝑣̃𝜆, 0].

The proof is now complete. □

Using 𝑢0 ∈ 𝐷+ and 𝑣0 ∈ −𝐷+ from Proposition 3.3, we will produce two more constant sign solutions.

Proposition 3.4. If hypotheses 𝐻(𝛽),𝐻(𝑔),𝐻(𝑓 ),𝐻0 hold, then for 𝜆 > 0 big enough, problem (𝑃𝜆) admits two more constant
sign solutions 𝑢̂ ∈ 𝐷+ and 𝑣̂ ∈ −𝐷+ such that

𝑢̂ − 𝑢0 ∈ int 𝐶+, 𝑣0 − 𝑣̂ ∈ int 𝐶+

with 𝑢0 ∈ 𝐷+ and 𝑣0 ∈ −𝐷+ the solutions from Proposition 3.3.

Proof. We introduce the following truncation of the reaction in problem (𝑃𝜆):

𝑖+
𝜆
(𝑧, 𝑥) =

{
𝜆𝑔(𝑧, 𝑢0(𝑧)) + 𝑓 (𝑧, 𝑢0(𝑧)) if 𝑥 ≤ 𝑢0(𝑧),
𝜆𝑔(𝑧, 𝑥) + 𝑓 (𝑧, 𝑥) if 𝑢0(𝑧) < 𝑥.

(3.25)

This is a Carathéodory function. We set 𝐼+
𝜆
(𝑧, 𝑥) = ∫ 𝑥

0 𝑖+
𝜆
(𝑧, 𝑠) ds and consider the 𝐶1-functional 𝜒+

𝜆
∶ 𝑊 1,𝑝(Ω) → 𝐑 defined

by

𝜒+
𝜆
(𝑢) = 1

𝑝
𝜏(𝑢) − ∫Ω 𝐼+

𝜆
(𝑧, 𝑢) 𝑑𝑧 for all 𝑢 ∈ 𝑊 1,𝑝(Ω).

Claim 3.5. 𝜒+
𝜆
(⋅) satisfies the 𝐶-condition.

We consider a sequence {𝑢𝑛}𝑛≥1 ⊆ 𝑊 1,𝑝(Ω) such that

|||𝜒+
𝜆
(𝑢𝑛)

||| ≤ 𝑀1 for some 𝑀1 > 0 and all 𝑛 ∈ 𝐍, (3.26)

(1 + ||𝑢𝑛||)(𝜒+
𝜆

)′(𝑢𝑛) → 0 in 𝑊 1,𝑝(Ω)∗ as 𝑛 → ∞. (3.27)

From (3.27) we have||||⟨𝐴(𝑢𝑛), ℎ⟩ + ∫𝜕Ω 𝛽(𝑧)|𝑢𝑛|𝑝−2𝑢𝑛ℎ d𝜎 − ∫Ω 𝑖+
𝜆
(𝑧, 𝑢𝑛)ℎ d𝑧

|||| ≤ 𝜖𝑛||ℎ||
1 + ||𝑢𝑛|| for all ℎ ∈ 𝑊 1,𝑝(Ω), with 𝜖𝑛 → 0+. (3.28)

In (3.28) we choose ℎ = −𝑢−
𝑛
∈ 𝑊 1,𝑝(Ω). Then

𝜏
(
𝑢−
𝑛

) ≤ 𝑐14||𝑢−𝑛 || for some 𝑐14 > 0 and all 𝑛 ∈ 𝐍 (see (3.25) and hypotheses 𝐻(𝑔)(𝑖),𝐻(𝑓 )(𝑖)),

⇒
{
𝑢−
𝑛

}
𝑛≥1 ⊆ 𝑊 1,𝑝(Ω) is bounded (see (2.2)). (3.29)
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Using (3.29) in (3.28), we obtain||||⟨𝐴(𝑢+𝑛 ), ℎ⟩ + ∫𝜕Ω 𝛽(𝑧)
(
𝑢+
𝑛

)𝑝−1
ℎ d𝜎 − ∫Ω 𝑖+

𝜆

(
𝑧, 𝑢+

𝑛

)
d𝑧
|||| ≤ 𝑐15||ℎ|| (3.30)

for some 𝑐15 > 0 and all ℎ ∈ 𝑊 1,𝑝(Ω), 𝑛 ∈ 𝐍.

We will show that
{
𝑢+
𝑛

}
𝑛≥1 ⊆ 𝑊 1,𝑝(Ω) is bounded, too. Arguing by contradiction, suppose that ||𝑢+

𝑛
|| → ∞ as 𝑛 → ∞. Let

𝑦𝑛 =
𝑢+𝑛||𝑢+𝑛 || , 𝑛 ∈ 𝐍. Then ||𝑦𝑛|| = 1, 𝑦𝑛 ≥ 0 for all 𝑛 ∈ 𝐍 and so we may assume that

𝑦𝑛
𝑤
→ 𝑦 in 𝑊 1,𝑝(Ω) and 𝑦𝑛 → 𝑦 in 𝐿𝑝(Ω) and 𝐿𝑝(𝜕Ω), 𝑦 ≥ 0. (3.31)

From (3.30) we have|||||⟨𝐴(𝑦𝑛), ℎ⟩ + ∫𝜕Ω 𝛽(𝑧)𝑦𝑝−1
𝑛

ℎ d𝜎 − ∫Ω
𝑖+
𝜆

(
𝑧, 𝑢+

𝑛

)
||𝑢+𝑛 ||𝑝−1 ℎ d𝑧

||||| ≤ 𝑐15||ℎ||||𝑢+𝑛 ||𝑝−1 for all 𝑛 ∈ 𝐍, ℎ ∈ 𝑊 1,𝑝(Ω). (3.32)

From (2.5) and (3.25), we see that{
𝑖+
𝜆

(
⋅, 𝑢+

𝑛
(⋅)
)

||𝑢+𝑛 ||𝑝−1
}

𝑛≥1
⊆ 𝐿𝑝′ (Ω) is bounded

(
1
𝑝
+ 1

𝑝′
= 1

)
. (3.33)

Passing to a subsequence if necessary, and using hypotheses 𝐻(𝑔)(𝑖𝑖),𝐻(𝑓 )(𝑖𝑖), we have

𝑖+
𝜆

(
⋅, 𝑢+

𝑛
(⋅)
)

||𝑢+𝑛 ||𝑝−1 𝑤
→ 𝜆̂𝑚𝑦

𝑝−1 in 𝐿𝑝′ (Ω) (3.34)

(see Aizicovici, Papageorgiou & Staicu [1], proof of Proposition 4.8).

In (3.32) we choose ℎ = 𝑦𝑛 − 𝑦 ∈ 𝑊 1,𝑝(Ω), pass to the limit as 𝑛 → ∞, and use (3.31) and (3.33). Then

lim
𝑛→∞

⟨𝐴(𝑦𝑛), 𝑦𝑛 − 𝑦⟩ = 0, ⇒ 𝑦𝑛 → 𝑦 in 𝑊 1,𝑝(Ω) (see Proposition 2.4) and so ||𝑦|| = 1, 𝑦 ≥ 0. (3.35)

So, if in (3.32) we pass to the limit as 𝑛 → ∞, and use (3.34) and (3.35) to obtain

⟨𝐴(𝑦), ℎ⟩ + ∫𝜕Ω 𝛽(𝑧)𝑦𝑝−1ℎ d𝜎 = 𝜆̂𝑚 ∫Ω 𝑦𝑝−1ℎ d𝑧 for all ℎ ∈ 𝑊 1,𝑝(Ω),

⇒ −Δ𝑝𝑦(𝑧) = 𝜆̂𝑚𝑦(𝑧)𝑝−1 for almost all 𝑧 ∈ Ω, 𝜕𝑦

𝜕𝑛𝑝
+ 𝛽(𝑧)𝑦𝑝−1 = 0 on 𝜕Ω (3.36)

(see Papageorgiou & Rădulescu [21]).

Since 𝑚 ≥ 2, it follows by (3.36) that 𝑦(⋅) must be nodal, a contradiction to (3.35). Therefore{
𝑢+
𝑛

}
𝑛≥1 ⊆ 𝑊 1,𝑝(Ω) is bounded, ⇒ {𝑢𝑛}𝑛≥1 ⊆ 𝑊 1,𝑝(Ω) is bounded (see (3.29)).

So, we may assume that

𝑢𝑛
𝑤
→ 𝑢 in 𝑊 1,𝑝(Ω) and 𝑢𝑛 → 𝑢 in 𝐿𝑝(Ω) and in 𝐿𝑝(𝜕Ω). (3.37)

In (3.28) we choose ℎ = 𝑢𝑛 − 𝑢 ∈ 𝑊 1,𝑝(Ω), pass to the limit as 𝑛 → ∞, and use (3.37) and the fact that{
𝑖+
𝜆
(⋅, 𝑢𝑛(⋅))

}
𝑛≥1 ⊆ 𝐿𝑝′ (Ω) is bounded (see (2.5) and (3.25)). We obtain

lim
𝑛→∞

⟨𝐴(𝑢𝑛), 𝑢𝑛 − 𝑢⟩ = 0, ⇒ 𝑢𝑛 → 𝑢 in 𝑊 1,𝑝(Ω) (see Proposition 2.4).

So 𝜒+
𝜆
(⋅) satisfies the 𝐶-condition. This proves Claim 3.5.
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Claim 3.6. We may assume that 𝑢0 ∈ 𝐷+ is a local minimizer of 𝜒+
𝜆
(⋅).

For sufficiently large 𝜆 > 0, as in Proposition 3.3, let 𝑢̃𝜆 ∈ 𝐷+ be a solution of (7𝜆) (see Proposition 3.1). From Proposition 3.3

we know that

𝑢̃𝜆 − 𝑢0 ∈ int 𝐶+. (3.38)

We introduce the following truncation of 𝑖+
𝜆
(𝑧, ⋅):

𝑗+
𝜆
(𝑧, 𝑥) =

{
𝑖+
𝜆
(𝑧, 𝑥) if 𝑥 ≤ 𝑢̃𝜆(𝑧)

𝑖+
𝜆

(
𝑧, 𝑢̃𝜆(𝑧)

)
if 𝑢̃𝜆(𝑧) < 𝑥.

(3.39)

This is a Carathéodory function. We set 𝐽+
𝜆
(𝑧, 𝑥) = ∫ 𝑥

0 𝑗+
𝜆
(𝑧, 𝑠) 𝑑𝑠 and consider the 𝐶1-functional 𝜒̂+

𝜆
∶ 𝑊 1,𝑝(Ω) → 𝐑 defined

by

𝜒̂+
𝜆
(𝑢) = 1

𝑝
𝜏(𝑢) − ∫Ω 𝐽+

𝜆
(𝑧, 𝑢) 𝑑𝑧 for all 𝑢 ∈ 𝑊 1,𝑝(Ω).

By (2.1) and (3.39), it is clear that 𝜒̂+
𝜆
(⋅) is coercive. Also, it is sequentially weakly lower semicontinuous. Hence we can find

𝑢̂0 ∈ 𝑊 1,𝑝(Ω) such that

𝜒̂+
𝜆
(𝑢̂0) = inf

{
𝜒̂+
𝜆
(𝑢) ∶ 𝑢 ∈ 𝑊 1,𝑝(Ω)

}
. (3.40)

Using (3.39), the nonlinear regularity theory and the nonlinear maximum principle, we can easily show that

𝐾𝜒̂+
𝜆
⊆
[
𝑢0, 𝑢̃𝜆

]
∩𝐷+. (3.41)

Evidently, 𝑢̃𝜆 ∉ 𝐾𝜒̂+
𝜆

(see (3.1)). So, from (3.40) and (3.41), we have

𝑢̂0 ∈
[
𝑢0, 𝑢̃𝜆

]
∩𝐷+, 𝑢̂0 ≠ 𝑢̃𝜆.

If 𝑢̂0 ≠ 𝑢0, then this is the desired second positive solution of (𝑃𝜆) for sufficiently large 𝜆 > 0, and using Proposition 2.3, we

have

𝑢̂0 − 𝑢0 ∈ int 𝐶+.

Therefore we are done.

So, we may assume that 𝑢̂0 = 𝑢0 ∈ 𝐷+. Note that

𝜒+
𝜆

|||[0,𝑢̃𝜆] = 𝜒̂+
𝜆

|||[0,𝑢̃𝜆] (see (3.39)). (3.42)

From Proposition 3.3, we have

𝑢0 ∈ int
𝐶1
(
Ω
)[0, 𝑢̃𝜆]. (3.43)

Then it follows from (3.40), (3.41), (3.42) that

𝑢0 is a local 𝐶1(Ω)-minimizer of 𝜒+
𝜆
(⋅), ⇒ 𝑢0 is a local 𝑊 1,𝑝(Ω)-minimizer of 𝜒+

𝜆
(⋅) (see Proposition 2.2).

This proves Claim 3.6.

Using (3.25), we can show that

𝐾𝜒+
𝜆
⊆
[
𝑢0
)
∩𝐷+.
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So, we may assume that 𝐾𝜒+
𝜆

is finite, or otherwise we already have an infinity of positive solutions of (𝑃𝜆) (for large enough

𝜆 > 0) strictly bigger than 𝑢0 and so we are done. Then on account of Claim 3.6, we can find sufficiently small 𝜌 ∈ (0, 1) such

that

𝜒+
𝜆
(𝑢0) < inf

{
𝜒+
𝜆
(𝑢) ∶ ||𝑢 − 𝑢0|| = 𝜌

}
= 𝑚̃+

𝜆
(see [1]). (3.44)

From hypotheses 𝐻(𝑔)(𝑖𝑖),𝐻(𝑓 )(𝑖𝑖) and since 𝑚 ≥ 2, we have

𝜒+
𝜆

(
𝑡𝑢̂1

)
→ −∞ as 𝑡 → +∞. (3.45)

Then (3.44), (3.45) and Claim 3.5 permit the use of Theorem 2.1 (the mountain pass theorem). So, we can find 𝑢̂ ∈ 𝑊 1,𝑝(Ω)
such that

𝑢̂ ∈ 𝐾𝜒+
𝜆
⊆ [𝑢0) ∩𝐷+ and 𝑚̃+

𝜆
≤ 𝜒+

𝜆
(𝑢̂). (3.46)

It follows from (3.44), (3.46) and (3.25) that

𝑢̂ ∈ 𝐷+ is a second positive solution of (𝑃𝜆) for sufficiently large 𝜆 > 0, 𝑢0 ≤ 𝑢̂, 𝑢0 ≠ 𝑢̂.

We have

− Δ𝑝𝑢0(𝑧) = 𝜆𝑔(𝑧, 𝑢0(𝑧)) + 𝑓 (𝑧, 𝑢0(𝑧))

≤ 𝜆𝑔(𝑧, 𝑢̂(𝑧)) + 𝑓 (𝑧, 𝑢̂(𝑧)) (see (3.46) and hypothesis 𝐻0)

= −Δ𝑝𝑢̂(𝑧) for almost all 𝑧 ∈ Ω. (3.47)

Note that 𝜆𝑔(⋅, 𝑢0(⋅)) + 𝑓 (⋅, 𝑢0(⋅)) ≠ 𝜆𝑔(⋅, 𝑢̂(⋅)) + 𝑓 (⋅, 𝑢̂(⋅)) (see hypothesis 𝐻0). So, from (3.47) and Proposition 2.3, we can

infer that

𝑢̂ − 𝑢0 ∈ int 𝐶̂+.

Similarly, for the second negative solution, we use 𝑣0 ∈ −𝐷+ from Proposition 3.3. So, we define

𝑖−
𝜆
(𝑧, 𝑥) =

{
𝜆𝑔(𝑧, 𝑥) + 𝑓 (𝑧, 𝑥) if 𝑥 ≤ 𝑣0(𝑧),
𝜆𝑔(𝑧, 𝑣0(𝑧)) + 𝑓 (𝑧, 𝑣0(𝑧)) if 𝑣0(𝑧) < 𝑥.

This is a Carathéodory function. We set 𝐼−
𝜆
(𝑧, 𝑥) = ∫ 𝑥

0 𝑖−
𝜆
(𝑧, 𝑠) 𝑑𝑠 and consider the 𝐶1-functional 𝜒−

𝜆
∶ 𝑊 1,𝑝(Ω) → 𝐑 defined

by

𝜒−
𝜆
(𝑢) = 1

𝑝
𝜏(𝑢) − ∫Ω 𝐼−

𝜆
(𝑧, 𝑢) 𝑑𝑧 for all 𝑢 ∈ 𝑊 1,𝑝(Ω).

Working as above, this time with 𝜒−
𝜆

and truncating at 𝑣̃𝜆 ∈ −𝐷+ to produce 𝜒̂−
𝜆
(⋅), we generate a second negative solution 𝑣̂ of

problem (𝑃𝜆) for sufficiently large 𝜆 > 0, such that

𝑣̂ ∈ −𝐷+ and 𝑣0 − 𝑣̂ ∈ int 𝐶̂+.

This completes the proof. □

4 THE FIFTH SOLUTION

So far we have four nontrivial smooth solutions, all with sign information (two positive and two negative). In this section, using

the theory of critical groups, we establish the existence of a fifth nontrivial smooth solution distinct from the other four.

Proposition 4.1. If hypotheses 𝐻(𝛽),𝐻(𝑔),𝐻(𝑓 ),𝐻0 hold and 𝜆 > 0 is sufficiently large, then 𝐶𝑘

(
𝜒±
𝜆
,∞

)
= 0 for all 𝑘 ∈ 𝐍0.
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Proof. We present the proof for the functional 𝜒+
𝜆
(⋅), the proof for 𝜒−

𝜆
(⋅) being similar.

Let 𝜆 ∈
(
𝜆̂𝑚, 𝜆̂𝑚+1

)
∖𝜎̂(𝑝) (recall that 𝜎̂(𝑝) denotes the set of eigenvalues of −Δ𝑝 with Robin boundary condition) and consider

the 𝐶1-functional 𝜓+
𝜆
∶ 𝑊 1,𝑝(Ω) → 𝐑 defined by

𝜓+
𝜆
(𝑢) = 1

𝑝
𝜏(𝑢) − 𝜆

𝑝
||𝑢+||𝑝

𝑝
for all 𝑢 ∈ 𝑊 1,𝑝(Ω).

We consider the following homotopy

ℎ+
𝜆
(𝑡, 𝑢) = (1 − 𝑡)𝜒+

𝜆
(𝑢) + 𝑡𝜓+

𝜆
(𝑢) for all (𝑡, 𝑢) ∈ [0, 1] ×𝑊 1,𝑝(Ω).

Claim 4.2. We can find 𝜂0 ∈ 𝐑 and 𝛿0 > 0 such that

ℎ+
𝜆
(𝑡, 𝑢0) ≤ 𝜂0 ⇒ (1 + ||𝑢||)‖‖‖(ℎ+𝜆 )′𝑢(𝑡, 𝑢)‖‖‖∗ ≥ 𝛿0 for all 𝑡 ∈ [0, 1].

To prove Claim 4.2, we argue indirectly. So, suppose Claim 4.2 is not true. Evidently, ℎ+
𝜆
(⋅, ⋅) maps bounded sets to bounded

ones. Hence we can find {𝑡𝑛}𝑛≥1 ⊆ [0, 1] and {𝑢𝑛}𝑛≥1 ⊆ 𝑊 1,𝑝(Ω) such that

𝑡𝑛 → 𝑡, ||𝑢𝑛|| → ∞, ℎ+
𝜆
(𝑡𝑛, 𝑢𝑛) → −∞ and (1 + ||𝑢𝑛||)(ℎ+𝜆 )′𝑛(𝑡𝑛, 𝑢𝑛) → 0. (4.1)

From the last convergence in (4.1), we have

||||⟨𝐴(𝑢𝑛), ℎ⟩ + ∫𝜕Ω 𝛽(𝑧)|𝑢𝑛|𝑝−2𝑢𝑛ℎ d𝜎 − (1 − 𝑡𝑛)∫Ω 𝑖+
𝜆
(𝑧, 𝑢𝑛)ℎ 𝑑𝑧 − 𝜆𝑡𝑛 ∫Ω

(
𝑢+
𝑛

)𝑝−1
ℎ 𝑑𝑧

||||
≤ 𝜖𝑛||ℎ||

1 + ||𝑢𝑛|| for all ℎ ∈ 𝑊 1,𝑝(Ω), with 𝜖𝑛 → 0+. (4.2)

In (4.2) we choose ℎ = −𝑢−
𝑛
∈ 𝑊 1,𝑝(Ω). Then

𝜏
(
𝑢−
𝑛

) ≤ 𝑐16||𝑢−𝑛 || for some 𝑐16 > 0 and all 𝑛 ∈ 𝐍 (see (3.25)), ⇒
{
𝑢−
𝑛

}
𝑛≥1 ⊆ 𝑊 1,𝑝(Ω) is bounded (see (2.1)). (4.3)

From (4.1) and (4.3) it follows that ||||||𝑢+𝑛 |||||| → +∞.

We set 𝑦𝑛 =
𝑢+𝑛||𝑢+𝑛 || , 𝑛 ∈ 𝐍. Then ||𝑦𝑛|| = 1, 𝑦𝑛 ≥ 0 for all 𝑛 ∈ 𝐍. So, we may assume that

𝑦𝑛
𝑤
→ 𝑦 in 𝑊 1,𝑝(Ω) and 𝑦𝑛 → 𝑦 in 𝐿𝑝(Ω) and in 𝐿𝑝(𝜕Ω), 𝑦 ≥ 0. (4.4)

From (4.2) and (4.3) it follows that

|||||⟨𝐴(𝑦𝑛), ℎ⟩ + ∫𝜕Ω 𝛽(𝑧)𝑦𝑝−1
𝑛

ℎ 𝑑𝜎 − (1 − 𝑡𝑛)∫𝜆
𝑖+
𝜆
(𝑧, 𝑢+

𝑛
)||𝑢+𝑛 ||𝑝−1ℎ 𝑑𝑧 − 𝜆𝑡𝑛 ∫𝜆 𝑦

𝑝−1
𝑛

ℎ 𝑑𝑧
||||| ≤ 𝜖′

𝑛
||ℎ||

for all ℎ ∈ 𝑊 1,𝑝(Ω), with 𝜖′
𝑛
→ 0+. (4.5)

From (2.5) and (3.25), we see that {
𝑖+
𝜆
(⋅, 𝑢+

𝑛
(⋅))||𝑢+𝑛 ||𝑝−1

}
𝑛≥1

⊆ 𝐿𝑝′ (Ω) is bounded. (4.6)
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Passing to a subsequence if necessary and using hypotheses 𝐻(𝑔)(𝑖𝑖) and 𝐻(𝑓 )(𝑖𝑖) we have

𝑖+
𝜆
(⋅, 𝑢+

𝑛
(⋅))||𝑢+𝑛 ||𝑝−1 𝑤

→ 𝜆̂𝑚𝑦
𝑝−1 in 𝐿𝑝′ (Ω) (see [1]). (4.7)

In (4.5) we choose ℎ = 𝑦𝑛 − 𝑦 ∈ 𝑊 1,𝑝(Ω), pass to the limit as 𝑛 → ∞, and use (4.4), (4.6). Then

lim
𝑛→∞

⟨𝐴(𝑦𝑛), 𝑦𝑛 − 𝑦⟩ = 0, ⇒ 𝑦𝑛 → 𝑦 in 𝑊 1,𝑝(Ω) (see Proposition 2.4), hence ||𝑦|| = 1, 𝑦 ≥ 0. (4.8)

In (4.5) we pass to the limit as 𝑛 → ∞, and use (4.7), (4.8) and the continuity of 𝐴(⋅) (Proposition 2.4). We obtain

⟨𝐴(𝑦), ℎ⟩ + ∫𝜕Ω 𝛽(𝑧)𝑦𝑝−1ℎ d𝜎 =
[
(1 − 𝑡)𝜆̂𝑚 + 𝑡𝜆

]
∫Ω 𝑦𝑝−1ℎ d𝑧 for all ℎ ∈ 𝑊 1,𝑝(Ω),

⇒ −Δ𝑝𝑦(𝑧) = 𝜆𝑡𝑦(𝑧)𝑝−1 for almost all 𝑧 ∈ Ω, 𝜕𝑦

𝜕𝑛𝑝
+ 𝛽(𝑧)𝑦𝑝−1 = 0 on 𝜕Ω, (4.9)

with 𝜆𝑡 = (1 − 𝑡)𝜆̂𝑚 + 𝑡𝜆. We have

𝜆𝑡 ∈
[
𝜆̂𝑚, 𝜆̂𝑚+1

)
. (4.10)

From (4.9) and (4.10) and since 𝑚 ≥ 2, we can infer that

𝑦 = 0 or 𝑦 is nodal.

Both assertions contradict (4.8). This proves Claim 4.2.

Then Claim 4.2 and Theorem 5.1.21 of Chang [3, p. 334] (see also Liang & Su [16, Proposition 3.2]), imply that

𝐶𝑘

(
ℎ+
𝜆
(0, ⋅),∞

)
= 𝐶𝑘

(
ℎ+
𝜆
(1, ⋅),∞

)
for all 𝑘 ∈ 𝐍0, ⇒ 𝐶𝑘

(
𝜒+
𝜆
,∞

)
= 𝐶𝑘

(
𝜓+
𝜆
,∞

)
for all 𝑘 ∈ 𝐍0. (4.11)

Now we consider the following homotopy

ℎ̂+
𝜆
(𝑡, 𝑢) = 𝜓+

𝜆
(𝑢) − 𝑡∫Ω 𝑢 𝑑𝑧 for all (𝑡, 𝑢) ∈ [0, 1] ×𝑊 1,𝑝(Ω).

Claim 4.3.
(
ℎ̂+
𝜆

)′
𝑢
(𝑡, 𝑢) ≠ 0 for all 𝑡 ∈ [0, 1], 𝑢 ∈ 𝑊 1,𝑝(Ω)∖{0}.

Again, we argue indirectly. So, suppose that for some 𝑡 ∈ [0, 1] and 𝑢 ∈ 𝑊 1,𝑝(Ω)∖{0}, we have(
ℎ̂+
𝜆

)′
𝑢
(𝑡, 𝑢) = 0,

⇒ ⟨𝐴(𝑢), ℎ⟩ + ∫𝜕Ω 𝛽(𝑧)|𝑢|𝑝−2𝑢ℎ 𝑑𝜎 = 𝜆∫Ω(𝑢
+)𝑝−1ℎ 𝑑𝑧 + 𝑡∫Ω ℎ 𝑑𝑧 for all ℎ ∈ 𝑊 1,𝑝(Ω). (4.12)

In (4.12) we choose ℎ = −𝑢− ∈ 𝑊 1,𝑝(Ω). Then

𝜏(𝑢−) ≤ 0, ⇒ 𝑢 ≥ 0, 𝑢 ≠ 0 (see (2.1)).

Hence (4.12) becomes

⟨𝐴(𝑢), ℎ⟩ + ∫𝜕Ω 𝛽(𝑧)𝑢𝑝−1ℎ 𝑑𝑧 = 𝜆∫Ω 𝑢𝑝−1ℎ 𝑑𝑧 + 𝑡∫Ω ℎ 𝑑𝑧 for all ℎ ∈ 𝑊 1,𝑝(Ω),

⇒ −Δ𝑝𝑢(𝑧) = 𝜆𝑢(𝑧)𝑝−1 + 𝑡 for almost all 𝑧 ∈ Ω, 𝜕𝑢

𝜕𝑛𝑝
+ 𝛽(𝑧)𝑢𝑝−1 = 0 on 𝜕Ω. (4.13)



2474 PAPAGEORGIOU ET AL.

As before, the nonlinear regularity theory implies that 𝑢 ∈ 𝐶+∖{0}. Also, from (4.13) we have

Δ𝑝𝑢(𝑧) ≤ 0 for almost all 𝑧 ∈ Ω, ⇒ 𝑢 ∈ 𝐷+ (see Gasinski & Papageorgiou [6, p. 738]).

Let 𝑣 ∈ 𝐷+ and consider the function 𝑅(𝑣, 𝑢)(⋅) from Section 2. Using Proposition 2.6, we get

0 ≤ ∫Ω𝑅(𝑣, 𝑢) d𝑧

= ||𝐷𝑣||𝑝
𝑝
− ∫Ω

(
− Δ𝑝𝑢

) 𝑣𝑝

𝑢𝑝−1
𝑑𝑧 + ∫𝜕Ω 𝛽(𝑧)𝑢𝑝−1 𝑣𝑝

𝑢𝑝−1
𝑑𝜎 (via the nonlinear Green identity, see [6, p. 211])

≤ ||𝐷𝑣||𝑝
𝑝
− 𝜆||𝑣||𝑝

𝑝
+ ∫𝜕Ω 𝛽(𝑧)𝑣𝑝𝑑𝜎 (see (4.13))

= 𝜏(𝑣) − 𝜆||𝑣||𝑝
𝑝
.

Let 𝑣 = 𝑢̂1 ∈ 𝐷+. Then

0 ≤ [
𝜆̂1 − 𝜆

]
< 0

(
since 𝜆 > 𝜆̂𝑚, 𝑚 ≥ 2 and ||𝑢̂1||𝑝 = 1

)
,

a contradiction. This proves Claim 4.3.

The homotopy invariance property of critical groups (see Gasinski & Papageorgiou [10, Theorem 5.125, p. 836]) implies that

for sufficiently small 𝑟 > 0 we have

𝐻𝑘

((
ℎ̂+
𝜆

)
(0, ⋅)◦ ∩ 𝐵𝑟,

(
ℎ̂+
𝜆

)
(0, ⋅)◦ ∩ 𝐵𝑟∖{0}

)
= 𝐻𝑘

((
ℎ̂+
𝜆

)
(1, ⋅)◦ ∩ 𝐵𝑟,

(
ℎ̂+
𝜆

)
(1, ⋅)◦ ∩ 𝐵𝑟∖{0}

)
for all 𝑘 ∈ 𝐍0. (4.14)

On account of Claim 4.3, 0 is an ordinary level for ℎ̂+
𝜆
(1, ⋅). Hence from Granas & Dugundji [12, p. 407], we have

𝐻𝑘

((
ℎ̂+
𝜆

)
(1, ⋅)◦ ∩ 𝐵𝑟,

(
ℎ̂+
𝜆

)
(1, ⋅)◦ ∩ 𝐵𝑟∖{0}

)
= 0 for all 𝑘 ∈ 𝐍0. (4.15)

From the definition of critical groups, we have

𝐻𝑘

((
ℎ̂+
𝜆

)
(0, ⋅)◦ ∩ 𝐵𝑟,

(
ℎ̂+
𝜆

)
(0, ⋅)◦ ∩ 𝐵𝑟∖{0}

)
= 𝐶𝑘(𝜓+

𝜆
, 0) for all 𝑘 ∈ 𝐍0. (4.16)

Combining (4.14), (4.15), (4.16), we obtain

𝐶𝑘

(
𝜓+
𝜆
, 0
)
= 0 for all 𝑘 ∈ 𝐍0. (4.17)

Since 𝜆 ∈ (𝜆̂𝑚, 𝜆̂𝑚+1)∖𝜎̂(𝑝), we have

𝐾𝜓+
𝜆
= {0},

⇒ 𝐶𝑘

(
𝜓+
𝜆
, 0
)
= 𝐶𝑘

(
𝜓+
𝜆
,∞

)
for all 𝑘 ∈ 𝐍0 (see [19, Proposition 6.61, p. 160]). (4.18)

By (4.11), (4.17), (4.18), we can conclude that

𝐶𝑘

(
𝜒+
𝜆
,∞

)
= 0 for all 𝑘 ∈ 𝐍0.

Similarly, we can show that

𝐶𝑘

(
𝜒−
𝜆
,∞

)
= 0 for all 𝑘 ∈ 𝐍0.

The proof is now complete. □

Let 𝑢̂ ∈ 𝐷+ and 𝑣̂ ∈ −𝐷+ be the second pair of constant sign solutions for problem (𝑃𝜆) (𝜆 > 0 sufficiently large) produced

in Proposition 3.4.
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Proposition 4.4. If hypotheses 𝐻(𝛽),𝐻(𝑔),𝐻(𝑓 ),𝐻0 hold and 𝜆 > 0 is large enough (see Proposition 3.4), then 𝐶𝑘

(
𝜒+
𝜆
, 𝑢̂
)
=

𝐶𝑘

(
𝜒−
𝜆
, 𝑣̂
)
= 𝛿𝑘,1𝐙 for all 𝑘 ∈ 𝐍0.

Proof. We may assume that 𝐾𝜒+
𝜆
= {𝑢0, 𝑢̂}. Otherwise we already have a fifth nontrivial solution for (𝑃𝜆), which is also positive

(see (3.46) and (3.25)).

Let 𝑚̂+
𝜆
= 𝜒+

𝜆
(𝑢0) and let 𝑚̃+

𝜆
be as in (3.44). We have 𝑚̂+

𝜆
< 𝑚̃+

𝜆
and we choose 𝜂, 𝜗 ∈ 𝐑 such that

𝜂 < 𝑚̂+
𝜆
< 𝜗 < 𝑚̃+

𝜆
. (4.19)

For these levels, we consider the corresponding sublevel sets for 𝜒+
𝜆(

𝜒+
𝜆

)𝜂
⊆
(
𝜒+
𝜆

)𝜗
⊆ 𝑊 1,𝑝(Ω).

For this triple we consider the corresponding long exact sequence of singular homological groups (see Motreanu, Motreanu

& Papageorgiou [19, Proposition 6.14, p. 143]). We have

⋯ → 𝐻𝑘

(
𝑊 1,𝑝(Ω),

(
𝜒+
𝜆

)𝜂) 𝑖∗
→ 𝐻𝑘

(
𝑊 1,𝑝(Ω),

(
𝜒+
𝜆

)𝜗) 𝜕̂∗
→ 𝐻𝑘−1

((
𝜒+
𝜆

)𝜂
,
(
𝜒+
𝜆

)𝜗)
→ ⋯ (4.20)

with 𝑖∗ being the homomorphism induced by the inclusion map 𝑖 ∶
(
𝑊 1,𝑝(Ω),

(
𝜒+
𝜆

)𝜂)
→

(
𝑊 1,𝑝(Ω),

(
𝜒+
𝜆

)𝜗)
and 𝜕̂∗ is the

composite boundary homomorphism.

From (4.19) we see that 𝜂 < inf 𝜒+
𝜆

(
𝐾𝜒+

𝜆

)
and so

𝐻𝑘

(
𝑊 1,𝑝(Ω),

(
𝜒+
𝜆

)𝜂) = 𝐶𝑘

(
𝜒+
𝜆
,∞

)
= 0 for all 𝑘 ∈ 𝐍0 (see Proposition 4.1). (4.21)

Also, from (4.19) and (3.46), we have

𝐻𝑘

(
𝑊 1,𝑝(Ω),

(
𝜒+
𝜆

)𝜗) = 𝐶𝑘

(
𝜒+
𝜆
, 𝑢̂
)

for all 𝑘 ∈ 𝐍0, (4.22)

𝐻𝑘−1

((
𝜒+
𝜆

)𝜗
,
(
𝜒+
𝜆

)𝜂) = 𝐶𝑘−1
(
𝜒+
𝜆
, 𝑢0

)
= 𝛿𝑘−1,0𝐙 = 𝛿𝑘,1𝐙 for all 𝑘 ∈ 𝐍0 (4.23)

(see [19, Lemma 6.55, p. 175] and Claim 2 of Proposition 3.4).

Returning to (4.20) and using (4.21), (4.22), (4.23), we see that only the tail (that is, 𝑘 = 1) of the long exact sequence is

nontrivial. Moreover, by the rank theorem and the exactness of (4.20), we have

rank𝐻1

(
𝑊 1,𝑝(Ω),

(
𝜒+
𝜆

)𝜗) = rank ker 𝜕̂∗ + rank im 𝜕̂∗ = rank im 𝑖∗ + rank im 𝜕̂∗,

⇒ rank 𝐶1
(
𝜒+
𝜆
, 𝑢̂
) ≤ 1 (see (4.21), (4.22), (4.23)). (4.24)

From the proof of Proposition 3.4 we know that 𝑢̂ ∈ 𝐾𝜒+
𝜆

is of the mountain pass type. Therefore

𝐶1
(
𝜒+
𝜆
, 𝑢̂
) ≠ 0 (4.25)

(see [19, Corollary 6.81, p. 168]).

It follows from (4.24) and (4.25) that

𝐶𝑘

(
𝜒+
𝜆
, 𝑢̂
)
= 𝛿𝑘,1𝐙 for all 𝑘 ∈ 𝐍0.

Similarly, we can show that

𝐶𝑘

(
𝜒−
𝜆
, 𝑣̂
)
= 𝛿𝑘,1𝐙 for all 𝑘 ∈ 𝐍0.

This completes the proof. □
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Let 𝜑𝜆 ∶ 𝑊 1,𝑝(Ω) → 𝐑 be the energy functional for problem (𝑃𝜆) defined by

𝜑𝜆(𝑢) =
1
𝑝
𝜏(𝑢) − 𝜆∫Ω𝐺(𝑧, 𝑢) 𝑑𝑧 − ∫Ω 𝐹 (𝑧, 𝑢) 𝑑𝑧 for all 𝑢 ∈ 𝑊 1,𝑝(Ω).

Evidently, 𝜑𝜆 ∈ 𝐶1(𝑊 1,𝑝(Ω),𝐑
)
.

Proposition 4.5. If hypotheses 𝐻(𝛽),𝐻(𝑔),𝐻(𝑓 ) hold and 𝜆 > 0, then the functional 𝜑𝜆 satisfies the 𝐶-condition.

Proof. Let {𝑢𝑛}𝑛≥1 ⊆ 𝑊 1,𝑝(Ω) be a sequence such that

|𝜑𝜆(𝑢𝑛)| ≤ 𝑀2 for some 𝑀2 > 0 and all 𝑛 ∈ 𝐍, (4.26)

(1 + ||𝑢𝑛||)𝜑′
𝜆
(𝑢𝑛) → 0 in 𝑊 1,𝑝(Ω)∗ as 𝑛 → ∞. (4.27)

By (4.27) we have

||||⟨𝐴(𝑢𝑛), ℎ⟩ + ∫𝜕Ω 𝛽(𝑧)|𝑢𝑛|𝑝−2𝑢𝑛ℎ 𝑑𝜎 − 𝜆∫Ω 𝑔(𝑧, 𝑢𝑛)ℎ 𝑑𝑧 − ∫Ω 𝑓 (𝑧, 𝑢𝑛)ℎ 𝑑𝑧
|||| ≤ 𝜖𝑛||ℎ||

1 + ||𝑢𝑛|| (4.28)

for all ℎ ∈ 𝑊 1,𝑝(Ω) with 𝜖𝑛 → 0+.

In (4.28) we choose ℎ = 𝑢𝑛 ∈ 𝑊 1,𝑝(Ω). Then

𝜏(𝑢𝑛) − ∫Ω
[
𝜆𝑔(𝑧, 𝑢𝑛) + 𝑓 (𝑧, 𝑢𝑛)

]
𝑢𝑛 𝑑𝑧 ≤ 𝜖𝑛 for all 𝑛 ∈ 𝐍. (4.29)

Also, from (4.26) we have

−𝜏(𝑢𝑛) + ∫Ω 𝑝
[
𝜆𝐺(𝑧, 𝑢𝑛) + 𝐹 (𝑧, 𝑢𝑛)

]
𝑑𝑧 ≤ 𝑝𝑀2 for all 𝑛 ∈ 𝐍. (4.30)

Adding (4.29) and (4.30), we obtain

∫Ω
[
𝑝
(
𝜆𝐺(𝑧, 𝑢𝑛) + 𝐹 (𝑧, 𝑢𝑛)

)
−
(
𝜆𝑔(𝑧, 𝑢𝑛) + 𝑓 (𝑧, 𝑢𝑛)

)
𝑢𝑛
]

d𝑧 ≤ 𝑀3 for some 𝑀3 > 0 and all 𝑛 ∈ 𝐍. (4.31)

We claim that {𝑢𝑛}𝑛≥1 ⊆ 𝑊 1,𝑝(Ω) is bounded. Arguing by contradiction, suppose that ||𝑢𝑛|| → ∞. We set 𝑦𝑛 =
𝑢𝑛||𝑢𝑛|| , 𝑛 ∈ 𝐍.

We have ||𝑦𝑛|| = 1 for all 𝑛 ∈ 𝐍 and so we may assume that

𝑦𝑛
𝑤
→ 𝑦 in 𝑊 1,𝑝(Ω) and 𝑦𝑛 → 𝑦 in 𝐿𝑝(Ω) and 𝐿𝑝(𝜕Ω). (4.32)

From (4.28) we have|||||⟨𝐴(𝑦𝑛), ℎ⟩ + ∫𝜕Ω 𝛽(𝑧)|𝑦𝑛|𝑝−2𝑦𝑛ℎ 𝑑𝜎 − ∫Ω
𝜆𝑔(𝑧, 𝑢𝑛)||𝑢𝑛||𝑝−1 ℎ 𝑑𝑧 − ∫Ω

𝑓 (𝑧, 𝑢𝑛)||𝑢𝑛||𝑝−1ℎ 𝑑𝑧
||||| ≤ 𝜖𝑛||ℎ||

(1 + ||𝑢𝑛||)||𝑢𝑛||𝑝−1 (4.33)

for all 𝑛 ∈ 𝐍.

From (2.5) it is clear that{
𝑔(⋅, 𝑢𝑛(⋅))||𝑢𝑛||𝑝−1

}
𝑛∈𝐍

,

{
𝑓 (⋅, 𝑢𝑛(⋅))||𝑢𝑛||𝑝−1

}
𝑛∈𝐍

⊆ 𝐿𝑝′ (Ω) are bounded sequences. (4.34)

In (4.33) we choose ℎ = 𝑦𝑛 − 𝑦 ∈ 𝑊 1,𝑝(Ω) and pass to the limit as 𝑛 → ∞. Then using (4.32) and (4.34), we obtain

lim
𝑛→∞

⟨𝐴(𝑦𝑛), 𝑦𝑛 − 𝑦⟩ = 0, ⇒ 𝑦𝑛 → 𝑦 in 𝑊 1,𝑝(Ω) (see Proposition 2.4) and so ||𝑦|| = 1. (4.35)
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From (4.35) we see that 𝑦 ≠ 0 and so if 𝐷+ = {𝑧 ∈ Ω ∶ |𝑦(𝑧)| > 0}, then |𝐷+|𝑁 > 0 with | ⋅ |𝑁 denoting the Lebesgue

measure on 𝐑𝑁 . We have

|𝑢𝑛(𝑧)| → +∞ for almost all 𝑧 ∈ 𝐷+,

⇒ lim inf
𝑛→∞

𝑝𝐹 (𝑧, 𝑢𝑛(𝑧)) − 𝑓 (𝑧, 𝑢𝑛(𝑧))𝑢𝑛(𝑧)|𝑢𝑛(𝑧)|𝜏 > 0 for almost all 𝑧 ∈ 𝐷+ (see hypothesis H(f)(iii))

⇒ lim inf
𝑛→∞

1||𝑢𝑛||𝜏 ∫𝐷+

[
𝑝𝐹 (𝑧, 𝑢𝑛) − 𝑓 (𝑧, 𝑢𝑛)𝑢𝑛

]
𝑑𝑧 > 0 (by Fatou’s lemma)

⇒ lim inf
𝑛→∞

1||𝑢𝑛||𝜏 ∫Ω
[
𝑝𝐹 (𝑧, 𝑢𝑛) − 𝑓 (𝑧, 𝑢𝑛)𝑢𝑛

]
𝑑𝑧 > 0 (see 𝐻(𝑓 )(𝑖𝑖)). (4.36)

Note that hypothesis 𝐻(𝑔)(𝑖𝑖) implies that given 𝜖 > 0, we can find 𝑐17 = 𝑐17(𝜖) > 0 such that

𝑔(𝑧, 𝑥)𝑥 ≤ 𝜖|𝑥|𝜏 + 𝑐17 for almost all 𝑧 ∈ Ω and all 𝑥 ∈ 𝐑 (see hypothesis 𝐻(𝑔)(𝑖)). (4.37)

Since 𝐺(𝑧, 𝑥) ≥ 0 for almost all 𝑧 ∈ Ω, all 𝑥 ∈ 𝐑 (by the sign condition in 𝐻(𝑔)(𝑖)), we obtain

𝑝𝐺(𝑧, 𝑥) − 𝑔(𝑧, 𝑥)𝑥 ≥ −𝜖|𝑥|𝜏 − 𝑐17 for almost all 𝑧 ∈ Ω and all 𝑥 ∈ 𝐑 (see (4.37)). (4.38)

Hence

∫Ω
[
𝑝
(
𝜆𝐺(𝑧, 𝑢𝑛) + 𝐹 (𝑧, 𝑢𝑛)

)
−
(
𝜆𝑔(𝑧, 𝑢𝑛) + 𝑓 (𝑧, 𝑢𝑛)

)
𝑢𝑛
]
𝑑𝑧

≥ ∫Ω
[
−𝜆𝜖|𝑢𝑛|𝜏 + (

𝑝𝐹 (𝑧, 𝑢𝑛) − 𝑓 (𝑧, 𝑢𝑛)𝑢𝑛
)]

𝑑𝑧 (see (4.38))

⇒
1||𝑢𝑛||𝜏 ∫Ω

[
𝑝
(
𝜆𝐺(𝑧, 𝑢𝑛) + 𝐹 (𝑧, 𝑢𝑛)

)
−
(
𝜆𝑔(𝑧, 𝑢𝑛) + 𝑓 (𝑧, 𝑢𝑛)

)
𝑢𝑛
]
𝑑𝑧

≥ ∫Ω
−𝜆𝜖||𝑢𝑛||𝑝−𝜏 |𝑦𝑛|𝜏d𝑧 + 1||𝑢𝑛||𝑝 ∫Ω [𝑝𝐹 (𝑧, 𝑢𝑛) − 𝑓 (𝑧, 𝑢𝑛)𝑢𝑛

]
𝑑𝑧.

Using (4.36), we obtain

lim inf
𝑛→∞

1||𝑢𝑛||𝜏 ∫Ω
[
𝑝
(
𝜆𝐺(𝑧, 𝑢𝑛) + 𝐹 (𝑧, 𝑢𝑛)

)
−
(
𝜆𝑔(𝑧, 𝑢𝑛) + 𝑓 (𝑧, 𝑢𝑛)

)
𝑢𝑛
]
𝑑𝑧 > 0. (4.39)

On the other hand, relation (4.31) yields

lim sup
𝑛→∞

1||𝑢𝑛||𝜏 ∫Ω
[
𝑝
(
𝜆𝐺(𝑧, 𝑢𝑛) + 𝐹 (𝑧, 𝑢𝑛)

)
−
(
𝜆𝑔(𝑧, 𝑢𝑛) + 𝑓 (𝑧, 𝑢𝑛)

)
𝑢𝑛
]
𝑑𝑧 ≤ 0. (4.40)

Comparing (4.39) and (4.40), we arrive at a contradiction.

This proves that

{𝑢𝑛}𝑛≥1 ⊆ 𝑊 1,𝑝(Ω) is bounded.

So, we may assume that

𝑢𝑛
𝑤
→ 𝑢 in 𝑊 1,𝑝(Ω) and 𝑢𝑛 → 𝑢 in 𝐿𝑝(Ω) and 𝐿𝑝(𝜕Ω). (4.41)

In (4.28) we choose ℎ = 𝑢𝑛 − 𝑢 ∈ 𝑊 1,𝑝(Ω), pass to the limit as 𝑛 → ∞, and use (4.41). Then

lim
𝑛→∞

⟨𝐴(𝑢𝑛), 𝑢𝑛 − 𝑢⟩ = 0,

⇒ 𝑢𝑛 → 𝑢 in 𝑊 1,𝑝(Ω) (see Proposition 2.4),

⇒ 𝜑𝜆 satisfies the 𝐶-condition.
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The proof is now complete. □

Then using Proposition 8 of Papageorgiou, Rădulescu & Repovš [25], (see also [4]), we obtain the following property.

Proposition 4.6. If hypotheses 𝐻(𝛽),𝐻(𝑔),𝐻(𝑓 ) hold and 𝜆 > 0, then 𝐶𝑚(𝜑𝜆,∞) ≠ 0.

We assume that𝐾𝜑𝜆
(𝜆 > 0 sufficiently large, as in Proposition 3.4) is finite. Otherwise we already have an infinity of solutions

which are in 𝐶1(Ω) (nonlinear regularity theory).

Proposition 4.7. If hypotheses 𝐻(𝛽),𝐻(𝑔),𝐻(𝑓 ),𝐻0 hold and 𝜆 > 0 is sufficiently large (see Proposition 3.4), then

𝐶𝑘(𝜑𝜆, 𝑢̂) = 𝐶𝑘(𝜑𝜆, 𝑣̂) = 𝛿𝑘,1𝐙 for all 𝑘 ∈ 𝐍0,

𝐶𝑘(𝜑𝜆, 0) = 𝐶𝑘(𝜑𝜆, 𝑢0) = 𝐶𝑘(𝜑𝜆, 𝑣0) = 𝛿𝑘,0𝐙 for all 𝑘 ∈ 𝐍0.

Proof. Consider the homotopy ℎ̃+
𝜆
(⋅, ⋅) defined by

ℎ̃+
𝜆
(𝑡, 𝑢) = (1 − 𝑡)𝜑𝜆(𝑢) + 𝑡𝜒+

𝜆
(𝑢) for all (𝑡, 𝑢) ∈ [0, 1] ×𝑊 1,𝑝(Ω).

Suppose that we can find 𝑡𝑛 → 𝑡 and 𝑢𝑛 → 𝑢̂ in 𝑊 1,𝑝(Ω) such that(
ℎ̃+
𝜆

)′
𝑛
(𝑡𝑛, 𝑢𝑛) = 0 for all 𝑛 ∈ 𝐍.

We have

⟨𝐴(𝑢𝑛), ℎ⟩ + ∫𝜕Ω 𝛽(𝑧)|𝑢𝑛|𝑝−2𝑢𝑛ℎ d𝜎

= (1 − 𝑡𝑛)∫Ω
(
𝜆𝑔(𝑧, 𝑢𝑛) + 𝑓 (𝑧, 𝑢𝑛)

)
ℎ 𝑑𝑧 + 𝑡𝑛 ∫Ω 𝑖+

𝜆
(𝑧, 𝑢𝑛)ℎ 𝑑𝑧 for all ℎ ∈ 𝑊 1,𝑝(Ω), 𝑛 ∈ 𝐍,

⇒ −Δ𝑝𝑢𝑛(𝑧) = (1 − 𝑡𝑛)(𝜆𝑔(𝑧, 𝑢𝑛(𝑧)) + 𝑓 (𝑧, 𝑢)𝑛(𝑧)) + 𝑡𝑛𝑖
+
𝜆
(𝑧, 𝑢𝑛(𝑧)) for almost all 𝑧 ∈ Ω,

𝜕𝑢

𝜕𝑛𝑝
+ 𝛽(𝑧)|𝑢𝑛|𝑝−2𝑢𝑛 = 0 on 𝜕Ω (see Papageorgiou & Rădulescu [21]). (4.42)

From (4.42) and Proposition 7 of Papageorgiou & Rădulescu [23], we have

||𝑢𝑛||∞ ≤ 𝑀4 for some 𝑀4 > 0 and all 𝑛 ∈ 𝐍.

Then invoking Theorem 2 of Lieberman [17], we can find 𝛼 ∈ (0, 1) and 𝑀5 > 0 such that

𝑢𝑛 ∈ 𝐶1,𝛼(Ω) and ||𝑢𝑛||𝐶1,𝛼
(
Ω
) ≤ 𝑀5 for some 𝑀5 > 0 and all 𝑛 ∈ 𝐍. (4.43)

By (4.43), the compact embedding of 𝐶1,𝛼(Ω) into 𝐶1(Ω) and the fact that 𝑢𝑛 → 𝑢̂ in 𝑊 1,𝑝(Ω), we infer that

𝑢𝑛 → 𝑢̂ in 𝐶1(Ω),
⇒ 𝑢𝑛 − 𝑢0 ∈ int 𝐶+ for all 𝑛 ≥ 𝑛0 (see Proposition 3.4),

⇒ {𝑢𝑛}𝑛≥𝑛0 ⊆ 𝐾𝜑𝜆
(see (3.25)),

a contradiction to our hypothesis that 𝐾𝜑𝜆
is finite.

Therefore by the homotopy invariance property of critical groups (see [10, p. 836 ]), we have

𝐶𝑘(𝜑𝜆, 𝑢̂) = 𝐶𝑘

(
𝜒+
𝜆
, 𝑢̂
)

for all 𝑘 ∈ 𝐍0, ⇒ 𝐶𝑘(𝜑𝜆, 𝑢̂) = 𝛿𝑘,1𝐙 for all 𝑘 ∈ 𝐍0.

Similarly, using this time 𝜒−
𝜆

, we show that

𝐶𝑘(𝜑𝜆, 𝑣̂) = 𝛿𝑘,1𝐙 for all 𝑘 ∈ 𝐍0.
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Recall that 𝑢0 ∈ 𝐷+ and 𝑣0 ∈ −𝐷+ are local minimizers of the functionals 𝜒+
𝜆
(⋅) and 𝜒−

𝜆
(⋅), respectively (see Claim 4.3 in

the proof of Proposition 3.4). Hence we have

𝐶𝑘

(
𝜒+
𝜆
, 𝑢0

)
= 𝐶𝑘

(
𝜒−
𝜆
, 𝑣0

)
= 𝛿𝑘,0𝐙 for all 𝑘 ∈ 𝐍0. (4.44)

A homotopy invariance argument as above, shows that

𝐶𝑘(𝜑𝜆, 𝑢0) = 𝐶𝑘

(
𝜒+
𝜆
, 𝑢0

)
and 𝐶𝑘(𝜑𝜆, 𝑣0) = 𝐶𝑘

(
𝜒−
𝜆
, 𝑣0

)
for all 𝑘 ∈ 𝐍0,

⇒ 𝐶𝑘(𝜑𝜆, 𝑢0) = 𝐶𝑘(𝜑𝜆, 𝑣0) = 𝛿𝑘,0𝐙 for all 𝑘 ∈ 𝐍0 (see (4.44)).

Finally, hypotheses 𝐻(𝑔)(𝑖𝑖) and 𝐻(𝑓 )(𝑖𝑖𝑖) imply that

𝑢 = 0 is a local minimizer of 𝜑𝜆

(see also the proof of Proposition 3.1). It follows that

𝐶𝑘(𝜑𝜆, 0) = 𝛿𝑘,0𝐙 for all 𝑘 ∈ 𝐍0.

The proof is now complete. □

Proposition 4.8. If hypotheses 𝐻(𝛽),𝐻(𝑔),𝐻(𝑓 ),𝐻0 hold and 𝜆 > 0 is big (see Proposition 3.4), then problem (𝑃𝜆) has a fifth
nontrivial solution

𝑦0 ∈ 𝐶1(Ω).
Proof. According to Proposition 4.6, we have

𝐶𝑚(𝜑𝜆,∞) ≠ 0.

So, there exists 𝑦0 ∈ 𝐾𝜑𝜆
such that

𝐶𝑚(𝜑𝜆, 𝑦0) ≠ 0. (4.45)

Since 𝑚 ≥ 2, by Proposition 4.7 and (4.45), we infer that

𝑦0 ∉
{
0, 𝑢0, 𝑣0, 𝑢̂, 𝑣̂

}
.

Therefore 𝑦0 is a fifth nontrivial solution of (𝑃𝜆) (for sufficiently large 𝜆 > 0) and the nonlinear regularity theory implies that

𝑦0 ∈ 𝐶1(Ω). □

Finally, we can state the following multiplicity theorem for problem (𝑃𝜆).

Theorem 4.9. If hypotheses 𝐻(𝛽),𝐻(𝑔),𝐻(𝑓 ),𝐻0 hold, then for all sufficiently large 𝜆 > 0 problem (𝑃𝜆) has at least five
nontrivial solutions

𝑢0, 𝑢̂ ∈ 𝐷+ with 𝑢̂ − 𝑢0 ∈ int 𝐶̂+, 𝑣0, 𝑣̂ ∈ −𝐷+ with 𝑣0 − 𝑣̂ ∈ int 𝐶̂+ and 𝑦0 ∈ 𝐶1(Ω).
Question. Is it possible, in the framework of the present paper, to generate nodal solutions for (𝑃𝜆)?
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