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In this paper, we are concerned with the existence of multi-bump solutions for the
following class of p(x)-Laplacian equations:

—div(|Vu[P)72Vu) + AV (@) + Z(@))ul?)2u
= af(z,u) +uwi@®=1 in RN,
ue W@ @), u>0,

where @ > 0 and A > 1 are two real parameters, the nonlinearity f : RN x R — R is
a continuous function with subcritical growth, N > p4 = sup, g~ p(z), the exponent
Np(z)
N—p(z)
ing at infinity and the potentials V, Z : RN — R are continuous functions verifying
some conditions. We show that if the zero set of V' has several isolated connected com-
ponents €1, ...,Q such that the interior of €2; is not empty and 9€2; is smooth, then
for A > 0 large enough there exists, for any non-empty subset I' C {1,...,k}, a bump
solution trapped in a neighborhood of UjeF Q;. The proofs are based on variational and
topological methods.

g(x) can be equal to the critical exponent p*(x) = at some points of RV includ-
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1. Introduction and Main Results

In this paper, we study the existence of multi-bump positive solutions for the fol-
lowing class of p(x)-Laplacian equations:

—div(|VulPD 72V u) + WV (2) + Z(2))|ulP ) 2u
= af(z,u) +ud®-1 in RV, (1.1)
u € WHPE(RN) 4 >0,

where a@ > 0,\ > 1 are two real parameters, V, Z : RY — R are continuous
functions with V' > 0, p,q : RN — (1, 00) are two log-Holder continuous functions,
N > pi = sup,cpn p(z), the nonlinearity f : RY x R — R is a continuous function
with subcritical growth, the exponent g(x) can be equal to the critical exponent

p*(x) = A],V _nga)) at some points of RY including at infinity.

The study of various mathematical problems with variable exponents has
received considerable attention in recent years because it appears in a lot of appli-
cations, such as the electrorheological fluids [38], image processing [I1], elastic
mechanics [43] and the references therein. Besides the importance in applications,
the variable exponent problems are also very interesting from the mathematical
point of view, because they involve a lot of difficulties, for example, the variable
exponent problems possess more complicated nonlinearities than the constant expo-
nent problems. We may refer to the review papers [I4] [36, 40] for the advances
and the references in this area, to [I3] 19, 22 27, B7] for the variable exponent
Lebesgue-Sobolev spaces, and to [13, 17, 23H26], 29] B35 37, 39, [42] for the p(x)-
Laplacian equations and the corresponding variational problems. We also refer to
the pioneering regularity results and qualitative properties of solutions established
by Mingione [30, BI] and to the paper by Pucci and Zhang [34] dedicated to related
but general critical equations. The interest for nonlinear problems with critical
exponent started after the seminal paper by Brezis and Nirenberg [10].

If p(x) = 2, problem ([T reduces to the following one:

{Au + (W (z)+ Z(z))u = Q(u), inRY,

(1.2)
uwe HYRY), wu>0.

In recent years, many researchers considered the existence and multiplicity of posi-
tive solutions for problem (2]) under various assumptions on the potential and the
nonlinearity. For example, in the case when the potential AV (z) 4+ Z(x) is coercive,
Miyagaki [32] proved the existence of a positive solution to problem (L2)). For the
case when the potential AV (x)+Z(z) is 1-periodic, Alves et al. [2] gave the existence
of positive solutions. If AV (z) + Z(z) is radial, Alves et al. [3] also established the
existence of a positive solution. The papers cited above proved only the existence of
positive solutions, while for the multiplicity of solutions for problem (2] we may

refer to [7, 8] [12].
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In [15], Ding and Tanaka considered problem (L2) for the case Q(u) = uP~!,
where 2 < p < 2%, N > 3. If Q has k connected components, the authors showed
that problem (LZ) has at least 2¥ — 1 solutions, for large \, established the existence
of solutions called multi-bumps. For the case Q(u) = au?~' + u®> ~!, where a > 0
and 2 < p < 2*, N > 3, in [], Alves et al. established the similar results. For the
case the nonlinearity Q(u) has the exponential critical growth in R?, in [6], Alves
and Souto also gave the existence of multi-bump solutions.

If p(z) = p, 2 < p < N in problem (LI), when the nonlinear term has subcritical
growth, Alves [I] considered the existence of multi-bump solutions. Since the p-
Laplacian is not linear, and some properties that occur for Laplacian operator
are not standard that they hold for the general case p > 2, therefore, Alves used
different approach in some estimates. Recently, Alves and Ferreira [5] extended the
results in [I] to the p(z)-Laplace operator. The main difference is related to the fact
that for equations involving the p(z)-Laplacian operator it is not clear that Moser’s
iteration method is a good tool to get the estimates for the L>°-norm. The authors
adapted some ideas in [I8] 21] to get these estimates.

Motivated by the papers [4 [5], the main goal of this paper is to investigate the
existence of multi-bump solutions to problem (I.I]). However, since our problem has
the variable exponents growth, some estimates for this problem are very delicate
and different from those used in the constant exponents problems. Also for this
reason, the classical Moser’s iteration is not a good tool to obtain the estimates
for L*°-norm. On the other hand, our nonlinearity is critical growth and some
arguments developed in [5] cannot be applied. The reader is invited to see that the
way how we attach these problems in Sec. Bl As far as we know, there is no result
on multi-bump solutions for p(x)-Laplace equations with critical growth.

We make the following assumptions on p(z), ¢(z), V(x), Z(x) and f(x,u)
throughout this paper:

(p) 1 <p- =infgy p(x) < suppwy p(x) :=py < N.

(1) 1 <q(z) <p*(z):= J\J,Vf);z), the critical set A := {x € RY : ¢(z) = p*(z)} can
be non-empty. Moreover, ¢(x) is critical at infinity in the sense that ¢(co) =
p(o0)".

(g2) q < p*, on 9Q, that is, inf,eo0(p*(z) — ¢(x)) > 0.

(V1) The potential well Q = int V~1(0) is a non-empty bounded open set with
smooth boundary 92 and Q = V~1(0), Q can be decomposed in k connected
components €y, ..., with dist(£2;,€;) > 0, i # j.

(V2) There exists M > 0 such that

N (z)+ Z(x) > M, VreRN A>1.
(V3) There exists K > 0 such that
|Z(z)| < K, VzecRM.
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(f1) flx,t) = o(|t|P™~1) as t — 0, uniformly in 2.
(f2) We have
t
lim sup Wig;))t < 00, uniformly in z € RV,

|t] — o0

where m € C°(RY | R) with p, <m_, my, < ¢, and m < p* = ]\]]Vféz). Here,

* 99

the notation “m < p*” means that inf,cp~ (p*(z) — m(x)) > 0.

(f3) There is a positive constant 5 with p+ < f < min{m_, g_} such that
0 < BF(x,t) <tf(x,t), Ve eRY, t>0,
where F(z,t) = fotf(x, s)ds.

(f1) The function tfp(ffz is strictly increasing in ¢ > 0, for each z € RV,

A typical example of nonlinear term f verifying (f1) — (f4) is
flx,t) = [t|™ @2, 2 eRY and YVt eR,

where p; < 8 <min{m_,¢_} and m < p*.
The main result to be proved in the following theorem.

Theorem 1.1. Let (p), (¢1)(q2), (Vi)~(V3), and (f1)~(fs) hold. Then, for any
non-empty subset T' of {1,2,...,k}, there exist constants a* > 0 and \* = \*(a*)
such that, for all « > «, and X\ > A, problem (1)) has a family {ux} of positive
solutions which depend on « verifying: for any sequence N\, — 0o, we can extract
a subsequence An,; such that uy,  converges strongly in WP (RN) to a function
u which satisfies u(x) = 0 for x ¢ Qr and the restriction ulg, is a least energy
solution of

—div(|Vul[P®)=2Vu) + Z(2)[ulP® 2y = af (z,u) + ui@ -1 2 € Q;,
u>0, ze€f,
u|aﬂj = 07

forall j €T and Qr =, ;.

Jjer
Corollary 1.2. Under the assumptions of Theorem[L1] there exist constants a* >

0 and \* = N*(a*) such that, for all « > o and X\ > X*, problem (1)) has at least
2k — 1 positive solutions.

We refer to Brezis [9] for some of the main abstract tools used in this paper.
Notation. Throughout this paper, we use the following notations:

e If g is a measurable function, the integral [,y g(z)dz will be denoted by [g(z)dz.
e (' denotes any positive constant, whose value is not relevant.
e 0,(1) denotes a real sequence with 0, (1) — 0 as n — +oc.
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2. Preliminaries

Let p € L®(RY) and p_ = essinf,cg~ p(z) > 1. The variable exponent Lebesgue
space LP(®)(RY) is defined by

LP@(RN) = {u : RY — R|u is a measurable real-valued function and

/|u|p(w)dx < oo},
with the norm

. w |p(@)
U] Lo @iy = |tlpa) = 1nf{)\ >0: / ‘X dx < 1}.

The variable exponent Sobolev space WP (RN) is defined by

wtPE (RN = fu e LP@(RY) 1 |Vu| € LP®(RN)}
with the norm

||U||W11P(w>(RN) = |U|p(w) + |vu|p(w)'

If p_ > 1, the spaces LP(®)(RY) and W) (RN) are all separable and reflexive
Banach spaces. For the basic properties of these spaces, we refer to [13] [19] 27 [37].

For problem (), we shall work in the following subspace of W1P(®)(RN) given
by

E\ = {u e WhrE) (RN /V(w)|u|p(r)d:t < oo}

endowed with the norm

s = inf{/\ >0 /( %

For X > 1, we can easily see that E) is a Banach space, Ex C W'P®)(RY) and the
following inequalities hold:

p(z)

(W () + Z()) ‘%‘pm> dr < 1}.

. .

lullx < ea(w) <[lulX, if flullx =1,
+ - .

lullk < oa(w) <lullX if ullx <1,

where ox(u) = [(|Vu|P® + (A\V(z) + Z(z))|u[?®))dz. In particular, for a sequence
(un) in Ejy,

lunl|x — 0< ox(un) — 0, and

(uy,) is bounded in Ey < gx(uy) is bounded in R.
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In view of (V2), for any open set © C RY and u € E\ with A > 1, we have

onolw) = [ (V™ + WV () + 2o

> M/ ulP @ da = Moy e (u).
o

The following property is an immediate consequence of the above observation.

Lemma 2.1. There exist 0, v > 0 with § = 1 and v = 0 such that for any open set
O CRYN

done(u) < orel(u) —voyw)e(u), YueEy, A>1
Now, we list more facts which will be used later.

Lemma 2.2 (See [19,27]). The conjugate space of LP(*) (RN is LY (RN where
ﬁ + ﬁ = 1. For any u € L™ (RN) and v € L9®) (RY),

1 1
[ wide < (p—_ n q—_) o Vlate) < 2l [olgco)-

Lemma 2.3 (See [16]). Let Q@ € RY an open domain with the cone property,
p: Q — R satisfying (p) and m € L>®(2) and m_ > 1.

(i) If p is Lipschitz continuous and p < m < p*, the embedding W) (Q) —
L™®)(Q) is continuous.

(ii) If Q is a bounded, p is continuous and m < p*, the embedding Wl’p(x)(Q) s
L™®)(Q) is compact.

Lemma 2.4 (See [20]). Assume that Q C RY is measurable, let (uy,) be a bounded
sequence in LP@)(Q) and u, — u € LP®)(Q) a.e. on Q. If p(z) satisfies (p), then

i ualP i =l = [l

Lemma 2.5 (See [39]). Assume that co is critical in the sense that q(o0) =
p(00)*. Let (up) € DYPE(RN) be a weakly convergent to uw € DP@)(RN). Then
there exist two bounded measures u and v, an at most enumerable set of indices
I, points x; € A (the critical set defined in (q1)), and positive real numbers j;, v;,
i € I, such that the following convergence hold weakly in the sense of measures,

Vun Pz = > [VulP @i+ 3 pids,,

ol b= e + Y v

1 1

Sp vl < e foralli €1,

— K2
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where Sy, is the localized Sobolev constant at the point x; defined as follows:

where

. |vu|Lp(z)(Bm_(€))

S(p(),q(), Bri()) = inf [P ®) (Bay ()
u€Wy " (Ba, (€)),u#0 |U|Lq<z)(3,i(e))

and By, (€) be a ball centered at x; with small radius € > 0. Moreover, if we define

Voo = lim limsup/ |1, |9 i,
|z|>R

R—o0 noco

loo = lim limsup/ |V, |P@) d,
|z|>R

R—o0 noco

then

limsup/ |V, [P dz = p(RY) 4 oo,
RN

n—oo

lim Sup/ [V, 1@ de = v(RY) + v,
RN

n—oo
1 1
Soovas™ < psd?,
where S is the localized Sobolev constant at infinity defined as follows:

Soc = lim S(p(),a(), RN \Br) = sup S(p(),q(-). RV \B),
— 400 R>0

with
N _ |VU|LP<w>(RN\BR)
weWy P (RN\ Br),u0 |U|Lq<z>(RN\BR)
Lemma 2.6. The infimum S = infycau{oo} Sz is attained at some point of
AU {o0}.

Proof. The proof of the lemma can be found in [39], but for reader’s convenience
we include it. Here, we first prove that the function x € A — S, is lower semi-
continuous. Assume zg € A, (z,) C A such that z,, — x¢ and fix some ¢ > 0.
There exists N(e) € N such that By, (§) C Bz,(€) for n > N(e). It follows that

S(P(): (), Be(wo)) < S(p(), 4(), Bg(wn)) < S,

for n > N(e). Then liminf,, . Sy, > S(p(-), ¢(+), Be(zo)) for any € > 0. Letting
€ — 0, it yields that liminf, . . Sz, > Sz,-

To prove the lemma, moreover, we need to show that this function is also lower
semi-continuous at infinity in the sense that for any sequence (x,) C A such that
|x,| — 400, there holds lim inf,, . o Sz, > Seo. Fix some R > 0 and Ny € N such
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that |x,| > R+ 1. Then, for n > Ny, By, (¢) C RN\Bg for any e < 1. It follows
that for such n and €, S(p(-),q(-), Bz, (€)) > S(p(-), q(-), R¥\ Bg). Taking the limit
in € and then in n gives liminf,, . Sz, > S(p(*), q(+), RN\ Bg). Taking the limit
R — +00, we obtain the desired result. O

Remark 2.1. From Lemma 22 we know that the infimum S = inf,c aufoo} Sz
is attained at some point of AU {o0}. So, S > 0. Moreover, it is easy to see that

3. A Modified Problem
Since we intend to find positive solutions, throughout this paper we assume that
f(z,t)=0, VzeRY, Vt<O0.

The weak solutions of problem ([T]) are the positive critical points of the functional
Jy 1 By — R given by

T = [ S (Val) + (V@) + Z(a) )

a/F(x,u)dx/%,

where F(x,t) fo f(z,s)ds.

In order to overcome the difficulties caused by the critical growth of the non-
linearity and the unboundedness of the domain, in this section, we first modify the
functional Jy by adapting the ideas developed in del Pino and Felmer [12] (see also
[5]), then we show that, under some energy level, the modified functional satisfies
the Palais—Smale (P.S. for shortness) condition.

By (f1) and (f2), we have the following elementary observation:

f(x,t) < elt|P@=1 4 Ot @ =1 vz eRY, teR, (3.1)

and, consequently
F(z,t) < etP@ + O Jt|™®), vz eRN, teR. (3.2)
Moreover, since for each ¢ > 0 fixed, we consider the function a : RV — R given by

af(z,a) + a?® -1 }

ap($)_1

a(z) = min{a >0: (3.3)

From (f1) and g— > py, it follows that a— = inf, g~ a(z) > 0.
For technical reasons, we define the function f: RY x R — R given by

0, t <0,
fx,t) = af(z,t) + 11 0 <t <a(x),
gtP@) =1 t > a(z),

2050013-8
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which satisfies the following inequality:

f(z,t) <ctP@=1 veeRN, teR. (3.4)
Thus
flz, )t <<|tP®, vz eRN, teR, (3.5)
and
Fa,t) < pix)|t|?’<””>, VzeRY, teR, (3.6)

WhereF:Bt fo f(x,s)ds.

In virtue of (V1), for each j € {1,...,k}, we can choose a bounded open set {2’
with smooth boundary such that

Q;cQ, and QNQS =0, fori#j. (3.7)
From now on, we fix a non-empty subset I' C {1,...,k} and
1, ifzeQn,
ar = | Jo, =, x@ { . ,
jer jer 0, ifx¢&Qp,
and the function
g(x,t) = xr(@)(af (@,t) + 1997 + (1 = xr(2)) f (2, 1) (3.8)

and

t q(z)
G(z,t) = /0 g(z,s)ds = xr(x) (aF(x,t) + t

m) + (1 = xr(@)F(z,t), (3.9)

and the auxiliary problem

A —div(|Vul[P®2Vu) + (\V (2) + Z(2))|u[P®)~2u = g(z,u) in RV,
A WLpE) (RN,

We remark that g(x,t) = af(x,t) + 9@ =1 for 0 <t < a(z) and if uy is a solution
for (A,) satisfying

0<ur(z) <a_, VzeRV\Qf,

then it is a solution for the original problem (T).
Note that, using (f1)—(f4), it is easy to check that

g(x,t) = o(|t|P™)=1) as t — 0, uniformly in z.
(92) g(z,t) < af(z,t) +t9@=1 for all t > 0,z € RV,
(g3) (i) 0 < BG(x,t) < tg(z,t), Vx € O, t>0;

(ii) 0 < G(x,t) < 5557 and 0 < tg(w,t) < t?@), Vo € RN\Qp, > 0.
g(w,t)

ssti=t is non-decreasing in ¢ > 0, for each x € RY and is strictly

(g4) The function

increasing in ¢ > 0, for each = € Q.

2050013-9
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Associated with problem (Ay), we have the energy functional @) : E\ — R
defined by

B (1) = / Zﬁqu@ + OV (@) + Z(2) 0P da — / Gz, u)dz,

which is C*(E), R) and satisfies the (PS) condition under some energy level, whereas
Jy does not necessarily satisfy this condition. In this way, the mountain pass level
is a critical value for ®,.

Lemma 3.1. The functional @y satisfies the mountain pass geometry.
Proof. From (g2) and (B2)), one has
! () m(z) 1 (2)
Dy (u) > —or(u) —ea | |ufP'de — Cear | |ul de — — [ |u|"dx,
P+ q-

for any € > 0 and C. be a constant depending on e. By (V3), letting € < %,
and assuming |lu|x < min{1, é, Ciq}, where V] z) < CmllvlIx, [V]g@) < Cqllvlla,
Vv € Ejy. Since p+ < m_ and p1 < ¢_, then for |ju||x small enough, we have
1
@a(u) = 5[l ~ Cralful§ ~ Caully” = b>0.
+

Now, choosing v € C§° () with v > 0 in Qr, one has for ¢t >0
watie) = [ D0+ 2@l — [, e~ [ Ui
tv) = | —(|Vo|P'*") + xvxx—ax,tvw—/—vxx.
g p(x) q(x)

If t > 1, by (f3) and ¢— > p4, it follows that

P+
Py (tv) < — / (IVoP@ + Z(2)|o[P)de — Cat? / vPda
p

q—
B BT B
4+
as t — 4o00. The proof is complete. O

Lemma 3.2. Let ¢ > 0 and (u,) be a (PS). sequence for ®y, then (uy) is bounded
m E)\.

Proof. Assume that (u,) is a (PS). sequence for ®. Without loss of generality,
we set ||up||x > 1 for n large, otherwise the proof is complete. On one hand, there

is ng € N such that

1
Dy (uy) — E@S\(un)un <c+ 1+ |lupllx, forn>ng.

2050013-10
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On the other hand, from (f2), (f3), (30) and Lemma 2], we have

P (un) — %(I)IA (un)un

> (i - %) ox(un) + /(%g(x,un)un - G(x,un)) do
_ (i ~ %) ox(un) + /Q,F a(%f(:z:,un)un - F(x,un)> do

11N ey (1 . . ) .
+/sz/r<ﬁ q(:c)) [un] ZHL/]RN\Q/F ﬁf(x,un)un F(z,uy) | dx

1 1 ~
> (— - —) ox(un) —/ F(xz,up)dx
py B RN\Q,
1 1
> — — = ) doa(un
<p+ 5) ( )
Hence
1 1 1 1
c+1+||lu, 2<——)5Q un2<——)5unp, VYn > ng,
[[wnllx o G A(un) o G llwnlly 0
this implies that (u,) is bounded in Ej. m|

Lemma 3.3. Forc > 0, let (u,) be a (PS).-sequence for ®y, then for each ¢ > 0,
there is a number R = R({) > 0 such that

n—oo

lim sup / (|Vun [P@ + AV (2) + Z(2))|un [P ®)dz < . (3.10)
RN\BRr(0)

Proof. Let R > 0 large such that Qf. C Br (0) and np € C*°(RY) satisfying

o 0, Z'EB%(O),
() = {1, = € RN\ BR(0),

and 0 < nr <1, |Vng| < %, where C' > 0 is a constant independent on R. From
Lemma B2l the sequence (u,) is bounded in E). Moreover, it is easy to verify
that the sequence (u,ng) is also bounded in E). By a simple computation, we

have

/ (IVun|P@) + AV (2) + Z(@))|un [P )nrda

= @) (un)(unnr) — /un|Vun|p(x)72VunVan:r +/ [z, up)upnrde.
RN\Q.

2050013-11
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Denoting
L= /(Wunlp(m) + AV (@) + Z(2)) un|" )nrdz.
From the definition of ng, the Holder inequality and (B1), it follows that

L < & (up)(unnr) + %/|un||Vun|17(:c)71d$ng/|un|10(ac)7mdj7

C _ S
< (I)/ n n 1%n np(:v) ! p(x —L
< @) (1) () + 5 1ot | VP i+ 37

Since the sequence (u,) is bounded in LP(®)(RN), and (|Vu,|P*)~1) is bounded in
Lot (RN), we obtain
C

/ (VunP@ + AV (2) + Z(2) [un ")) < 0 (1) + &
RN\ Bg(0) R

Fixing ¢ > 0 and passing to the limit in the last inequality, it follows that

n—oo R

C
limsup/ (IVun [P® + AV () + Z(2))|unP@)dz < = < ¢
RN\ Br(0)
for some R sufficiently large. We complete the proof. O

Next, for each fixed j € T, let us denote by ¢; = inf,ea, maxiecjo 1) L;((t))
the minimax level of the mountain pass geometry with the functional I;
Wol’p(ﬂ(Qj) — R given by

i(u) = L ulP(®) ) |uP)de — a x,u)dr —
) = [ oo (VP 2@ —a [ P - |

P

|u)9(®)
, alz)
where
Ay = {y € C([0,1], Wy "7 ())) - 7(0) = 0, 1;(3(1)) < 0}

It is well known that the positive critical points of I; are weak solutions of the
problem

—div(|Vul[P®2Vu) + Z(2)[ulP® 2y = af (z,u) + uwi@~1 e Qy,
(PN u>0, =€,
ulaq, = 0.
In order to prove Theorem [[LI] we shall compare between some energy levels of
the functional associated with problem (LI with the energy levels associated with

other modified problem related to problem (IIl), and study the behavior of some
(PS). sequence. In this regard, we prove the following results.

Lemma 3.4. There exists o™ > 0 such that, for all a > o, we have

1 1 1
: — (= —Z2) infSY e {1,...,k}.
CJ€<0,]H1<p+ ﬂ)l}gASz), forall j €{1,... k}
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Proof. For each j € {1,...,k}, we choose a nonnegative function ¢; €
Wy P (€,)\{0}. Note that there exits £, ; € (0,400) depending on a such that
¢j < Ij(tajp;) = maxl;(te;)
and thus, the following equality holds:
z)—1 x T
| D7 Ve p ) + 2@l s

J

- f(@,ta,j05)p dx +/ t‘é(?)_lwg(w)dx
Q, 9

> a/ flx,ta jp5)p dx
Q;

B-1 I
> aCt, ; / ¢ dz. (3.11)
£
If to; > 1, by (B11)), we have
-1 z z -1
057 [ (196ir 4 2@, de > 65 Ca [ s

which implies that (t4,;) is bounded by p4 < 8. Thus, up to a subsequence, t, ; —
to > 1 as a — co. On one hand, for large «, there is a constat C' > 0 such that

| D 196, p ) + 2@l < .12
2
On the other hand, since ¢ty > 1, by the first equality of ([BI1l), one has
lim (a [z ta j05)pide —|—/ ti(’?)_1<pg($)> = 0,
Q; Q,

a——+00
J

which contradicts with [B.12)).

If to; <1, up to a subsequence, t, ; — to > 0 as @ — oo. If 0 < ¢y < 1, similar
to the above arguments, we may also obtain a contradiction. Thus, we must have
to =0 and t,,; — 0 as a — +oo. Using this limit, one has

Li(ta ;i) — 0, asa— +oo,

whence it follows from Remark 2Tl that there exists o > 0 such that for all @ > o,

1 (1 1\ . ..» .

Remark 3.1. In particular, for a large, the above lemma implies that

b 11
D e (0, (— — —) inf S;V). (3.13)
= P+ ) zeA

From Remark [Z] it is easy to see that ( inf,ea SN > 0.

1 1
o 5
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We shall use the above result to show the following lemma.

Lemma 3.5. For any A > 1, the functional ® satisfies the Palais—Smale condition

at any level ¢ € (0, (i — 5)infoeaSY).

Proof. Let (u,) C E\ be a (PS). sequence. Then, from Lemma [B:2] we know that
(uy) is bounded in Ey. Up to a subsequence, we may assume that

Uy — u, weakly in Ey,
Uy — u, strongly in Lﬁ)(f)(RN) for any 1 < h(z) < p*(z),
U, — u, fora.e. xRN,

From @ (un)u,, — 0, it follows that

/(|Vun|p(m) + AV (2) 4 Z(2))|un [P dz = /g(w,un)und:v +o,(1).  (3.14)

It is easy to know that the weak limit u is a critical point of @y, and so

/ (|[Vu|P® + AV () + Z(2))|ulP®)dz = / gz, u)udz. (3.15)
Now, we claim that
lim | g(z,un)upde = /g(w,u)udw. (3.16)

If (BI6) holds, by 314) and (B3I, we have that

lim (|Vun|p($) + (A\V(x) + Z(:B))lun|p($))d$

- / (VP + AV () + Z(2))[ulP@)d,

and u,, — u in F).
Now let us prove [BI6). We first note by Lemma [33] that for each ¢ > 0, there
exists R = R(¢) > 0 such that

limsup/ (IVtn [P+ AV (2) + Z () [un [P dx < ¢.
n—oo JRN\Bg(0)

This inequality together with (B.]), (B.8) and the Sobolev embedding imply that,
for n large enough,

/ (@, up )updr < g/ |un|p(1)dw
RN\Bg(0) RN\ B (0)

S

= (IVunP@) + AV (@) + Z () un [P da

M RN\BRr(0)
<«
=,

IN
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On the other hand, we may choose R large enough such that

/ g(x,u)udr < .
RN\ B (0)

By the definition of g, we know that
g, un)tn < lun [P, for any z € RVN\QF.

Since the set Br(0)\Q- is bounded, we can use the above estimate and a variant
of the Lebesgue Dominated Convergence theorem (see [33]) to obtain that

lim g(x,un)und:r:/ g(z, u)udz.
" JBR(O\OL Br(0)\Q

Finally, we claim that w, — wu in LI®)(QL). If it holds, we can use the
Sobolev embedding and the Lebesgue Dominated Convergence theorem to conclude
that

lim g(x,un)und:r:/ g(z, u)udz.
e Jog Qr

Using the above information, we conclude that (B.16).

It remains to prove that u, — u in L) (Q}). By Lemma 5, we have an at
most enumerable set of indices I, points z; € A (the critical set in (¢1)), and positive
real numbers pu;, v;, ¢ € I, such that the following convergences hold weakly in the
sense of measures:

Vun POz = > [ulP@dz + 3 pid,
fun|[ 1@ = v 1= |1z + 3 wid,,

a1 1
Spvl T < ke forallie I,

K2

where S, is the localized Sobolev constant at the point x; defined in Lemma
It suffices to show that {z;},cr N Qp = 0. Suppose, by contradiction, that z; € Qf,
for some i € I. For ¢ > 0 small such that B(z;,2¢) C Qf, define a function
#(x) € C§°(RY,[0,1]) such that ¢(z) = 1 in B(x;,€), ¢(x) = 0 in RN\ B(z;, 2¢)
and [V¢| < 2 in RY. Obviously, (®x(uy), und) = 0n(1), ie.

f/un|Vun|p(I)_2VunV¢dx +o,(1)
- / [Vuun ") dz + / AV (@) + Z(@))un|" gdz

—a/f(w,un)un¢dac—/|un|q(r)¢d:v. (3.17)
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Because of the boundedness of (u,) in E\, using the Holder inequality, we have
that

e—0n—oo

0 < lim lim ‘/un|Vun|p(z)2VunV¢dx
< 1111% lim /|unV¢||Vun|p(””)_1d:v
< 2lim [, Vol || Va7 e

< Clir% lim |u, V|, (3.18)

By a variant of Lebesgue Dominated Convergence theorem (see [33]) and u,, — u
strongly in L! (x)(RN ), we have that

loc
lim /|unv¢|p(x)dx:/|uV¢|p(z)d:c

Moreover, by the Holder inequality and the absolute continuity of the integration,
it yields

i (@) 1 < 91 p(w) p(w)
tiy [ 9P e < 2bim ") s Ve
< C'lim ||ulP)| =0. (3.19)
LN- P(f) (B(z;,2¢))
Combining (BI]) and (B9, it is easy to see that
lim lm [ |V, [P 2Vu, Vede = 0. (3.20)

e—0n—oo

Since ¢ has compact support and f has subcritical growth, we can let n — co and
€ — 0 to obtain that

lir% lim /f X, Up ) Uppdr = lim lim f(z un)unpda

e—0n—oo B(zi,2¢)

= lim f(z, w)updzr = 0. (3.21)
=0 B(xz;,2€)

Therefore, from B.I17), (320) and B21)), it yields that
0 = lim lim {/ |Vun|p($)¢d:c + /(/\V(:c) + Z(:E))|un|p(””)¢d:v

e—0n—oo

—a/f(x,un)un¢d:v—/|un|q(x)¢dac}
> lir% lim {/|Vun|p(x)¢dx/|un|q(z)¢d:17}

= Wy — Vj.

2050013-16



Multi-bump solutions for quasilinear elliptic equations

N N-op(=,)
Using the above estimate together with Lemma 2.5 we obtain v; > ngxl)ul N
This result implies that

e (1) v, =0or
° (2)Vi ZSiV;

If the second case v; > Si\i holds, for some ¢ € I, then by (f3), we have

c= lim {@A(un) — %@;(un),um}

= lim L__ w [P®) N s 1P dae
J;w{/(p@) ﬂ)ﬂvrA + (W (@) + Z(@)un")d

+a// (%f(w,un)un _ F(:B,un)) de + /'r (% - ﬁ) |7

r

1 - -
—flx,up)ty, — F(z,u,) | dx
4E4N“%<ﬁf(, Yo = Flan)) }

im 1! U [P x )| tn [P da
= {/(p@) 5) (70l + OV (@) + 20l )

n—oo

+/RN\Q'F (%f(w,un)un — F(m,un)) d:c},

If 0 < u, < a(x), we have from the definition of f and (f3) that

f(w Un )ty — F(z,u,) >0, in RN\Q.

B
If u,, > a(x), from the definition of f, it follows that
1 - ~ S S . N\ O/
—f(x,up)uy — F(x,up, :(———) unp(m), in RY\ Q.
3 (2, un) (2, un) 7 o |t \Qp

Since ¢ > 0 small enough, thus we obtain

Qi%)/””ﬂ+zwm%wwm

Jr/RN\sz’r (%f(x’u")u" - F(Iv“n)> dx > 0.

From the above arguments and Lemma [2.5] one has

c> <— - —) lim /|Vu P(@) 4z
p+ n—oo
1 1 / 1 1
> — == Vup(m)d:v—i—(———)ui
(p+ ﬂ) Ve p+ B

2050013-17



C. Ji & V. D. Radulescu

> (i _ l) gpled,, R
“\p+ B v

1 1
>(— =) sY,
B <p+ 5) '

this is impossible. So, v; = 0 for all i € I and

U, —u in LA (QF).

The proof is complete. O

4. The (PS)s Sequence
Our next step is to study the behavior of a (PS)s . sequence, that is, a sequence
(un) C WHPE)N(RN) satisfying
(up) C Ey, and X\, >1, A, — o0,
O, (un) = ¢, (|2, (un)ll, — 0.
Lemma 4.1. Assume that the sequence (u,) C WPE (RN be a (PS)s . sequence
with ¢ € (0, (i - %) infre a4 SY). Then, for some subsequence, still denoted by (uy,),
there exists u € WHPE(RN) such that u, — u in WP@) (RY). Moreover,
(i) ox, (un —u) — 0 and, s0 up — u in WHPE)(RN),
(i) u =0 in RN\Qr, u > 0 and Ul j €T, is a nonnegative solution for
—div(|Vu|P®)=2Vu) + Z(x)|ulP@) 2y
(P)) = af(z,u) + [ul 1 2u, in Q,
ue Wyt ().
(iii) Ay [V (2)|un [P dz — 0 as n — oco.
(iv 0,9, (up) — fQj(|Vu|p(x) + Z(:z:)|u|p(x))dz, forjel.

)
)
(V) ox, mv\ar (un) — 0.
(vi) @y, (up) — fﬂpﬁ(|Vu|p(I) + Z(z)|u|P ) dx — anFF(x,u)d:C — fﬂpﬁ X
|u|9(®) da.

Proof. Similar to the proof of LemmaB.2] for any (PS). . sequence (u,), we may
prove that (o, (u,)) is bounded in RT. Thus, the sequence (u,) is bounded in
WLPE)(RN), and for some subsequence, still denoted by (u,), there exists u €
WrE) (RN such that

Up — u, weakly in WHPE)(RN),
Uy — u, strongly in Lﬁ)(f)(RN) for any 1 < h(z) < p*(z),

U, — u, fora.e. xRN,
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Now, for each m € N, we define the set Cy,, = {x € RV : V() > L}. For n large,

we have
/.

2
e < 2" / OV (@) + Z(2))|un @ da
n Cm

m

2m 2mC

< — < .
— >\'n, ‘QAn (un) — )\n

By the Fatou’s lemma and the last inequality, we obtain

/ luP@dz =0, VmeN.

Thus, u(z) =0 in |J;_; Cp, = RV\Q. From this, we can prove that (i)-(vi).
(1) First of all, we know that

<(I)I>\n (un) - (I)IAn (u), Un — u>

= /(|Vun|p(z)72Vun — |Vu|P® =2V (Vu, — Vu)dz
i /()\nV(x) + Z(@) (Jua P 2wy — [P "2 u) (un — u)de

- /(g(ﬂﬂ,un) —g(z,w)) (uy — u)dz.
Here, we note that
(@Y (un),tup —u) — 0, asn — oo.
Moreover, the fact u = 0 in RM\Q and u,, — u weakly in Wwlp(z) (RN) imply that
(@), (u),up —u) — 0, asn— oo.

Using the similar arguments explored in Lemma B35, we get

/(|Vun|p($)_2Vun — |VulP® =20 (Vu, — Vu)da

N /(/\nV(fE) + Z())(|un [P 2w — [uPD"2u) (uy — u)da — 0.

Thus, oy, (4, —u) — 0, which implies that u, — u in WP (RN),

(ii) Since u € WHPE (RN and u = 0 in R¥N\Q, we have ulq, € W™ (Q;) for all
j €{1,2,...,k}. Moreover, the limits u,, — u in W?@ (RY) and @\ (un)p — 0
for p € C§°(2;) imply that

/ (IVuP=2TuVe + Z(z)|u|P®~2up)dx — / g(z, u)pdr = 0.
Q;

Q;
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This shows that u|q,, j € I, is a solution for the problem

—div(|VulP®=2Vu) + Z(2)|ulP™ 20 = af (z,u) + u?@ =1 in Q;,

ue Wy (Q;).

On the other hand, if j € I", one has

/ (IVulP® + Z(z)|uPde — | f(z,u)udz = 0.

From the above equality, Lemma 2Tl and 33]), we obtain
0> o0, (1) = SOp@),0, (1) > doxa,;(u) > 0.
Thus, u = 0 in RM\Qr and v > 0 in RY.
(iii) Since
/)\HV(I)|Un|p(z)d$ = /)\nV(x)|un —u|P@dz < 205, (un — u).
From (i), we may get A, [V (2)|u,|P®dz — 0 as n — oo.
(iv) From (i), ox, (un —u) — 0. So, for Vj € T,
Op(z),; (Un —u) = 0 and gy (Vun — Vu) — 0.
Then by Lemma 2.4 we have
/ (|Vu, [P — |[VuP®)de — 0 and
o
’ (4.1)
/ Z()(Jun [P — uf?")dz — 0.
o,
J

From (iii) and v = 0 in RM\Qr,

/ AV (@) (Jun |P®) — |uP@))dz = / AV (@) |un PP de — 0. (4.2)
Q) QN\Q;

(@I) and (£2) imply that
Ox,, 2 (tn) = ox,,, 0 (u) = 0,

and

ox. o (ttn) — / (IVulP® + Z()jufp®)dz.
! Q;

(v) It is easy to see that oy, mv\op (un) — 0 from (i) and (ii).
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(vi) It is clear that

() Z/ (LqunV"“+(AnV<w>+Z<x>>|un|P<$>>dx

Jjer

1
*/ ——(|Vun [P + (A V (2) + Z(2)) [P da
RN\Q/ p(x)

—/G(w,un)dx

From (iv), we have for any j € T’

L u p(x) T Nl p(x) 2
/Q;pw'v PO+ OV (@) + Z(@) )

1
— ——(IVulP™® + Z()|uP®)da
/ij<$)(| | (@)[ul"7)
From (v), one has

1
/ —— (|Vun|P® + (A V (2) 4+ Z(2))|un[P))dz — 0.
RN\ p(x)

Moreover, by (i) and (i), u, — u in WHPE(RN) and u = 0 in RN\Qr, it yields
that

/G(x,un)dxﬂa/ F(x,u)dz+/ L|u|q(z)dz,
or ar 4(7)

So, from the above arguments, we have

1
D, (un) —>/Q mﬂvuv)(w)+Z(w)|u|p(m))dw

1
-« F(z,u)dx — / —— |u|?® .

Qr ar 4 ) .
5. The Boundedness of Solutions

In virtue of (g2) and the continuity of p(x), g(z), we can choose the appropriate
smooth bounded domain € (j = 1,...,k) in [B.7) such that

O and QN0 =0, fori#j,

and for any x € Y\, q(z) < p*(z).
The following lemma plays a fundamental role in the study of the solutions of
problem (Ay).
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Lemma 5.1. Let (uy) be a family of solutions for (Ay) such that
11\ . .oy
sup Py (uy) < (— — —) inf S},
A>1 (u3) P+ 3] zea

and uy — 0 in WHPE(RN\Qr) as A — oo. Then, there exists Ag > 0 such that
[ux|pe@n\@p) < a— for A > Ag. In particular, uy is a solution for problem (L)
for A > Ap.

Before to prove the above lemma, we need some technical lemmas.

Lemma 5.2. There exist x1,...,x; € OQ and corresponding Oz, , . .., 05, > 0 such
that

l
00r c N(09r) = | B, ().
1=1

Moreover,
g < (pZ)", mi < (D), (5.1)

where ¢y = SUPB;,, (@) D myt = SUPB;,, (x:) T Pt = infB&a:i(xi)p and (pZ)* =
NpZ!

N—pTt”

Proof. Since ¢ < p* on 912, there exists € > 0 such that ¢ < p*(z) — ¢(x), for all
x € 9). By the continuity of p and ¢, we may choose appropriate Q;-, Vj €T such
that €/3 < p*(z) — q(z) for all 90, Vj € T. So, there exists § > 0 small enough

such that
Bs(x) C RN\Qp, Va € 09
Moreover, for each = € 9., by the continuity of p and ¢, we can choose 0 < d, < §
small enough such that
¢ < (2)"

where ¢§ = supp, (,)¢, p% = infp, (s p and (p2)* = ]\]]Vf;i. Since m(z) < p*(x)

for any x € RY. For the former x € 9Qf, we may choose d,, if necessary, even
smaller such that

mi < (pL)",
where m¥ = supg; (,)m.
Since 9O is compact, there exist the points z1,...,x; € 9Q such that

l
o C | Bas, (w2).

=1
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Lemma 5.3. If uy is a solution for (Ay), then, for each Bs, (zi), i = 1,...,1,
giwen by Lemmal5.2l it satisfies

/ |Vu>\|pzjdx
A

k,g,zi

A

<C ((k‘” +2)| Ay g, |+ (5 —8)" @) / (u — k><P”'>*dx>,

k,s,zi

where 0 < 6 < & < 0z k> 4, C = Cp—,py,m—,my,q—,q1,5,05,) > 0 is a
constant independent of k, and for any R > 0, we denote by Ay gz, the set

Ak ra: = Br(z) N {z € RN :uy(z) > k}.

Proof. We choose arbitrarily 0 < § < § < d,, and & € C=(R") satisfying
2

0<E<L swp€c Blw). €=1, inByle) and V¢ <.

For k > %, we define n = £+ (uy — k)*. By a simple computation, we have

Vn = pr Pt Huy — k)VE + P+ Vuy,

on the set {x € RY : uy(x) > k}. Then, we denote uy by u and take 1 as a test
function, and obtain

Py / P+~ Hu — k)| VuP@~2VuVede + / EP+ | Vu P dy

Ak,S,zi Ak,&,zi

+ / OV (2) + Z(2))u?@=1eps (4 — k)da
A

k,8,x;
= / g(z, u)P* (u — k)dx.
Ak,s,zi
Here, we denote
J :/ EP+ | Vu P @ de.
k.b,x;

Since AV (z) + Z(z) > M >, for Vo € RY, we have

T<pe [ @i BIVAe Ve da
A

k,s,zi
I,

gup(z)flgp+ (u—k)dz + / g(z,u)§P* (u — k)dz.

k,5,x; Ak,s,mi
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From the above inequality, (3.1)) and (3.4), it follows that

J<ps / €0+ (u — k) [V | Ve da
A

k,s,zi

_/ quP@®)~1gp+ (u — k)dz
A

k,8,x;

+/ quP@)~1gp+ (u — k)dx
A

k,8,z;
+/ (Coau™®) =1 4 3@ =1yePr (4 — k) de,
Ak,s,zi
from where it follows

J<p, /A €7+ (u — k)| V)1 Ve da

k,s,zi

+/ Cou™ @y — k)dx + / w1 (4 — k)da.
A A

k,5,x; k,5,x;

Using Young’s inequality, for x € (0, 1), we obtain

_ _ p(z)
g e 2l iy 2p+p+x’p*/ <I~L lf) dz
p_ p_ Ak,g,a:- 5 - 5
4 Celmy = 1) [ Co(l +am7) / (% —k )mm
m— Ak,g,wi m— Ak,s,mi 5 - 5
_ a+ o q(z)
PO [ g G [ (1)
q_ Ak,g,a:i q_ Ak,s,zi 5 - 5
Writing
Qi/ (u_k)(}’zz)*
A - \6—24 ’

for x ~ 07, by (5.1), we have
1 Prpy
J<2Xp+ 1J+ e — p+(|Akaml|+Q)

C.2m+ (my — 1)(1+ 62
m_
C.2m+ (my — 1)(L+ k™)

+ m_ |Ak,5,zi

+

<|Ak,5,mi| + Q)
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C(1+ 50+ 1+ 62+
L Gl a) CRRD

) (4l + S a0
20+ (qy — 1)(1 + 0%

2 = D00 ) 4,5 14 )
C.29+ — 1)(1 4 K9+

et A R T

Therefore,

/ Vul® < J < Ol + 1|4, 5., | +Ql,
’ .

k,s,xi

for a positive constant C = C(p—, p4+,m_,m4+,q—,q+,5, 05, ) which does not depend
on k. Since

VulP™ 1< [VuP™), Vo e B, (x),

we obtain

/ VUl < Ol + 1) A5 |+ Q)+ A |

k,8,x;

< c(uw 2l + G870 |
A

(ux — k)“”””)*dw),

k.6,x;

for a positive constant C' = C(p_, py,m—_, m4,q—, ¢+,S, 0z,) which does not depend
on k. O

In order to prove the desired result, the following lemma is needed, see [2§].

Lemma 5.4. Let (J,) be a sequence of nonnegative numbers satisfying
Jor1 S CB" I n=0,1,2,...

)

where C,mn >0 and B > 1. If
JO S C_%B n_zv
then J, — 0, as n — o0.

Lemma 5.5. Let (uy) be a family of solutions for problem (Ay) such that

1 1
supPy(uy) < [ — — = | inf Siv
Azpl) Aw) <p+ ﬁ) zeA

and uy — 0 in WHPE(RN\Qr) as A — oo. Then, there exists A* > 0 such that
x| Lo (Vo)) < a— for A > A*.
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Proof. It is enough to prove the inequality in each ball Bs,, (x;),i=1,...,[, given
by Lemma We set ’
R Y P W
Op = —* S 0= ———,
2 + 2n+l 2

1
kn?(lw), Vn:0,1,2,....

Then,
N da; < < = a_
577, xl, 577, n 57“ kn —_.
! 5 11 < < T 5
Now, we fix
h= [ @ -k, a=01,
A

kn,dn,x;

and ¢ € CY(R) such that

1
0<6<1, g(t)=1, fort<, and ) =0, fortz%

Set

gn+l O
§n(x)§< 5 <|xxl| ;1)>, zeRY, n=0,1,2,...,

one has { =11in B  (x;) and &, =0 in RN\ B; (). Denote uy by u, we have

[ (o) = h)a@) O da

Kpt1,0n,2;
[ ) k) @)
Bézi ()

(p'ii )*

T

< C(N,p™) (/B V(@) = Fns1) &) (@) dﬂ?)
Sy (24)

< C(N,p™) ( VulP™ da
A 1.5
»7)*
“
A

T3

(1w — kns1)P~ |VEnP™ dw) )

Kpt1,8n,;

Since
V&, < C6, 2", Vo e RY,
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Ty
and writing J,, ., = Ju41, we obtain

jn+1 < C(Napilaé‘wz) (/
Ak
Using Lemma [(5.3]

|Vu|pii dx + 2~ /
Ak

(u— kn-&-l)pmi) .

nt1:0n,@; nt1:9n,2;

Jn+1 S C(Na p??éiﬂz) ((k’lfrzzfi-l + 2)|Akn+1,5n,$i

2n+3 (Pil)* v
<(50) S e
T A

Epg1:0n,2;

+ onp” (u— kn+1)pwi>

kn+1 ,én,zi

kn41,0n,2;

< C(N,p”, 6z,) ((kﬁil +2)|4

4 on@™)” (u— knﬂ)(pfi)*

Akn+1vgnv’ti

DS / (= kepy1)P" ) :
Ept1.8n,;

From Young’s inequality

/ (u— kn+1)pii dx
A

Kpt1:0n,@;

< Cpfi (lAk71+1757171i| +/ (u - kn-‘rl)(pi)*)'

Akn+1 By

Thus
= s a_\ 9+ np”i
Jn+1 < C(N7p7175xi) (((7) +2+27- ) |Ak’n+l>gnazi
oI gy gnpl Jn)-
Now, since
Jn > (u - kn)(pii)*dx > (kn-i-l - kn)(pzj)wAknﬂ Snywi
Akn+1,5n,zi ) )

it follows that

|Akn+1,5n,1i

n+3y\ @5
a_
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and thus,
jn-i-l S C(Na pil ) 611‘7 a—, q+)(2n(pi1)* Jn + 2n(pil+(pi1)*)Jn
+2n(?ii)*Jn + onp” Jn).

Fixing o = (p”* + (p”)*), it follows that

(=i @ H*

Ty

J’n,+1 S C(vaiivaxiva*7q+)(2 o ) J’ﬂp7 ’
and thus

Tpp1 < CB"JHHN,

@ThH*
O Tiyx .
where C = C(N,p",6;,,a-,q+), B =2 "= and n = (pp}i) — 1. Now, since

uy — 0 in WHPE)(RN\Qr) as A — oo, there exists \; > 0 such that

NN 1
[ (=) de—mm<eisE Az

— 0Ty

From Lemma B4 J,(\) — 0 as n — oo, for all A > \;, and so
uy < % <a_, inBs,, forallA> .
=
Now, taking A\* = max{\y,...,\;}, we obtain that

[ux|Lo((oar)) < a-, for VA > A" O

Proof of Lemma 53l Fix A > \*, where \* is given in Lemma [E.5] and define
@y : RN\ Q) — R given by

ar(z) = (ur —a-)"(2).

From Lemmal[B.5] we know that ) € Wol’p(x)(RN\Qf). Now, we are going to prove
that @y = 0 in RV\Qf.. It implies

[urloo,mM @ < a-.

Here, we may extend @y (z) = 0 in Qf and take uy as a test function, it yields

/ |V |P®) =2V uy Vinde + / AV () + Z(2))|ur|P® ~2urirda
RN\Qf, RN\Q

= / g(x, uy)urd.
RN\ QL.
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Since
/ [Vus |P®) =2V uyViinde = / V[P de,
RM\Q RN\QL
/ (AV () + Z(@))|ua "~ Puriiade
RN\QL
= / (AV (@) + Z(@)|ual" 72 (@ + a- )indz,
(BRNAQL)+
and
/ g(z,ux)urdr = / f(z, uy)andz
RN\Q1. RN\,
- / f(I,UA) (ﬂA +CL,)’EL)\7
RN\QL), U
where

RN\ 4 = {z € RM\Q} : up(z) > a_}.

From the above equalities, we obtain that

/ |Viiy |P®) da
RN\ QL

+ / ((AV(w) + Z(x))|uxP® 2 - flaun)
(RN\Qf)+

U

) (iix + a_ )iy = 0.

In virtue of ([B4]), we have

(V) + 2Nt ) o (4 gy o

>0, in (RM\Qp)4.

Thus, @y = 0 in (RV\Qp)4, and @y = 0 in RNM\Q}. The proof is complete. |

6. A Special Critical Value for &

In this section, for each A > 1 and j € I, let us denote by ®, ; : Wl*p(z)(Q;-) — R
the functional

(u) = L wlP@) T N ILICIAY 2
@ 5(0) /Q;_p(x)uw V() + Z(@)]ul)d

7/ F(x,u)d:z:f/ L|u|q<””)d:zr.
’ o ()

l.
J J
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We know that the critical points of ®, ; are related with the weak solutions to
the following problems:

—Apyu+ AV (2) + Z(2))u = f(z,u) + |U|q(z)72u, in Q;,

ou (6.1)
o 0, on 9.

It is easy to check that the functional @ ; satisfies the mountain pass geometry.

In what follows, we denote by c)_ ; the minimax level related to the above functional
defined by

i = inf ax @y ;(v(t
oxg = Inf max ®5,(v(¢),

where
Axg = {y € C([0,1], WHP())) : 4(0) = 0,5 ;(v(1)) < 0}

If « is large enough, similar to the arguments in Lemmas 3.4 and B35l we know that
the functional I; and ®) ; satisfy the (PS).; and (PS)., ; conditions, respectively.

Therefore, it implies that there exist two nonnegative functions w; € VVO1 r (I)(Qj)
and wy ; € Wl’p(I)(Qg) verifying

Ij(w;) =c¢; and I]’-(wj) =0,
and
Dy j(wxy) =cry and @) (wy ;) =0.
Moreover, we have the following lemma.

Lemma 6.1. (i) 0<cy; <¢j, for A>1,Vje{1,2,... k}.

(ii) ¢; (ea,j, respectively) is a least energy level for I;(u) (Py ;(u), respectively),
that is

¢j = inf{L;(u) : u € Wy P@(Q;)\{0}, Ii(u)u = 0},
and
ey = inf{®x;(u) : u € WHPE(Q))\{0}, P4 ;(u)u = 0}

(lll) Cj = maX¢>0 Ij (twj), C),j = IMaXg>o (b)\’j (tw)\,j).
(iv) ex; —¢j as j — oo.

Proof. For any u € Wol’p(x)(ﬂj), we may extend u to u € Wl’p(m)(Q;') by

_ u(z), in Qy,
u(x) == o
0, in Q0\Qy,
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and WOLP(@(QJ.) c Wl,p(z)(Q;.)_ Thus, we have A; C Ay ; and

; = inf ax @y ;(v(t
oxg = Inf max ©;((1))

< inf @5, (v(t
< nf max ©;(v(1))

= inf IL(v(t) = ;.
Jnf max (@) =¢;

Thus (i) holds. The proof of (ii) and (iii) is standard by using (f4).
Now, we prove (iv). Using Lemma [L]] we may extract a subsequence \,, — oo
such that

Wx,.j — uo, strongly in WPE/(QY),
where ug € Wo*™ () is a solution of (Py) and
D, (wan,g) = Lj(uo)-
By the definition of ¢;, we have

limsup ey ; = limsup @y ;(wy ;) > I;(uo) > c¢j.
A—00 A—o00

Together with (i), we get (iv). m|

In what follows, let us fix R > 1 such that
1
Ii\ pwi

|Ij(R’lUj)*Cj| 21, VJEF

1
<§Cj, vVjel

and

From the definition of c;, it is easy to check that

max I;j(sRw;)=c¢;, VjeTl.
56[%,1]

We consider I' = {1,2,...,1}(I <k), and the maps

! !
Yo(81, 82, ..., 81)(x) :Zszwj(:E) V(s1,82,...,8) € [ﬁ’l] , (6.2)
j=1

A= {'y c c({%gy ,EA\{O}> = on D ([%,1D } (6.3)

byr = inf max Dy (v(s1,82,.--,51))-
YEA (s1,82,..., Sl)e[ﬁal]l

and
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We remark that v € As, so A # 0 and by 1 is well defined.
Lemma 6.2. For any v € A, there exists (t1,ta,...,t) € [%, 1) — R such that
Y (v(trsto, . ) (Y(ts b2, 1) = 0, Vi€ {1,2,...,1}.

Proof. For a given v € A,, let us consider the map 7 : [z, 1] — R’ defined by

:)/(317 8250 Sl) = (@’)\’1(7)(7), 3\,2(7)(7)7 ERRR) (I)I)\,l(’Y)('Y))v

where

(I)/A,j<7)<'7) = (I)I)\,j(ﬁ)/(slv 82, .,81))(Y(s1,82,...,8)), foralljel.
For any (s, s2,...,81) € 0([gz,1]"), it follows that

7(81,827 .- -,Sl) = ’70(81782, .- -,Sl)-

Then

(I)I)\,j(/-)@(‘gla 52, ..., Sl))(VO(Sh §25 .00y Sl)) =0.
It implies that s; ¢ {%, 1} for all j € T'. Otherwise,

P i (0(s1, 82, -, 81)) (Y0 (51, 82, -, 81)) = 0,

for s; = % or s; = 1, that is
!/ 1 1 !/
I i) (gwi) = 0 or [;(Rw;)(Rwj)=0
implying that
1
Ij (Ew]) Z ¢; Or Ij(R’U}j) Z Cj,

which contradicts the choice of R. Thus,

o ar ()

Using this fact, it follows from the topological degree

l
deg<&, (% 1) ,(0,0,.. .,0)> = (1! #0.

Hence, there exists (t1,ta,...,t) € (gz,1)" satisfying
q)/)\,j<7<tlat2a cee >tl))<7<tlat2a cee 7tl)) = 07 for all ] € {17 27 ceey l}

The proof is completed. O

In the sequel, the number cpr = 22:1 ¢ € (0,(i - %)infmeA SN (see
Remark 3.1) is very important in the proof of Theorem [Tl Now, we show the

. l
relation among » ., ¢ j, bar and cr.
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Lemma 6.3. The following facts hold:

(i) Zé’:l ex; <bxr <ecr forall X >1.

(ii) ®a(y(s1,82,...,8)) <cr forall A > 1,7 € A, and (s1,52,...,5) € O[5z, 1]").
Proof. (i) Since o defined in ([G2) belongs to A, we have

bA,F S max ¢A(70(513527---,5l))
(51,82 vv»»Sz)G[ﬁ,l]l

(s51,82,-.,80) €[ 7z

!
= max I jzl I;(sRwj;)

l
= E C; =Cr.
j=1

Fixing (t1,t2,...,%) € [p2,1]" given in Lemma 6.2 and recalling that c, ; can be
characterized by

exs = E{@ 5 (u) :u € WP @)\ (0}, & (u)u = 0}.
It follows that
Dy i (y(t1,ta, ... t1) >cexj, VjeTL.

On the other hand, from [B.8]), ®\ gv\q; (u) > 0 for all u € WP (RN\ QL) which
yields

l !
1
Dy (v(s1,82,-.,5)) > Z(I)A,j(V(Slv $2,...,81)), V(s1,82,...,8) € {ﬁ’ 1} )
j=1
Thus
I
max Pr(y(s1,82,---,81)) = Pa(y(tr,to, ... 1)) > ZC,\,j-
(51,82 ...,sl)e[ﬁ,l]l =

From the definition of by r, we can obtain

!
bxr > g Cxj-
j=1

(i) Since y(s1, 82, .., 51) = Y0(s1,82,- .., ) on d([pz,1]"), we have
!

(I))\(’}/(J(Sl, Sy .y Sl)) = ZI] (SjR’U}j).

j=1
Moreover, I;(s;Rw;) < ¢; for all j € I' and for some jo € ', sj, € {#5,1} and
Ly (sjo Rwj,) < 92 Therefore,

Px(v0(s1,82,...,81)) <er —e,
for some € > 0. This completes the proof of Lemma [6-3(ii). m|
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Corollary 6.1. (i) bxr — cr as A — oo.

(ii) bar is a critical value of ®y for large A.

Proof. (i) For all A > 1 and for each j, we have 0 < ¢y ; < ¢;. Using the same
arguments in the proof of Lemma [LI] we can prove that ¢\ ; — ¢; as A — oo and
thus, from Lemma B3] bxr — cp as A — oo.

(ii) By Corollaries [6.1] and B3, we may choose A large such that

1 1
bxr, cre(0,| ——= infSiV).
wre e (0 (o= ) o

Lemma implies that any (PS)s, . sequence of the functional ® has a strongly
convergent subsequence in Ey. We can use well-known arguments involving defor-
mation lemma [4I] to conclude that by r is a critical level to @ for large A. O

7. The Proof of Main Theorem

To prove Theorem [[LI] we need to find positive solution uy for a large A\, which
approaches a least energy solution in each ;(j € I') and vanishes elsewhere as
A — 00. To this end, we will prove two propositions that, together with the estimates
made in the previous section, imply that Theorem [I.I] holds.

Hereafter, we denote by

! 1 1\
=y (pon) @

F:\ ={u € E\ :ox(u) <r}.

For small p¢ > 0, we define
A = {ue B, : oypap (u) < @ j(u) - ¢j < p¥j €T}

We also use the notation

OV ={u € Ey: ®\(u) <cr}
and note that w = Zi’:l w; € Af; N @S which shows that Af; N O # . Fixing

1 .
O<u<11;_n€111gcj. (7.1)
We have the following uniform estimate of || ®4 (u)|| on the annulus (43,\A}) N®SF.

Proposition 7.1. Let u > 0 satisfy (). Then there exist oo > 0 and \* > 1
independent of \ such that

|®\(w)|| > 00 for A\ > X" and allu € (A;‘#\Af;) N o5,
Proof. Arguing by contradiction, we assume that there exist A\, — oo and
up € (A3\AMN) N @S such that ||} (uy)|| — 0. Since u, € A", this implies

H 2p
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that (ox(un)) is bounded sequence, so (P, (uy)) is also bounded. Thus, up to a
subsequence, we may assume that
Dy, (uyp) — ¢ <ecr.

Applying Lemma F], we can extract a subsequence (u,) such that u, — u in
W) (RN where u € Wol’p(r)(ﬂp), and ulq;, j € I' is a nonnegative solution for
(P]) with

oxn, e\ (Un) = 0, @y, i (un) — I;(u).

Since c; is the least energy level for I;, we have two possibilities:

(i) Ij(u) =c¢j, forall j € T.
(ii) Ij,(u) = 0, that is ulg, =0 for some jo € I'.

If (i) occurs, then for n large, we have
ox, mv\er (Un) < pand [y, (un) —cjl <p, VieT.
So, u, € A)» for large n, which is a contradiction to u, € (A;‘Z \Ajm).
If (ii) occurs, it follows that
D5, g0 (Un) = Cjol = €jo > 4pu

which is a contradiction with the fact that w, € A;‘Z Thus neither (i) nor (ii) can
hold, and the proof is completed. O

Proposition 7.2. Let p > 0 satisfy (1) and \* > 1 be a constant given by
in Proposition [[ 1l Then, for X > X\*, there exists a positive solution uy of (Ax)
satisfying uy € Aﬁ nesr.

Proof. Assuming by contradiction that there are no critical points in Af; n o5,
1 1

since the Palais—Smale condition holds for ® in (0, <E — 5)infaea SN, there
exists a constant dy > 0 such that

[|®4 (u)]| > dy, forall ue A:) N e,
From Proposition [[.T], we also have

[@4(u)|] > o0, for all u € (A3,\A)) N O,

where op > 0 is independent of . In what follows, ¥ : E\, — R is a continuous
functional verifying

U(u) =1 for u € Agu/z,
U(u) =0 foruQA%‘H,
0<T(u) <1 forVuce E}y,
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and H : " — E) verifies

- € A)
U)os-7 0 U )
H(u) := Y (u)ll 2
0, u g A
where Y is a pseudo-gradient vector field for @y on M = {u € Ej : @) (u) # 0}.
Thus, using the properties involving Y and ®,, we have the following inequality:

20

|H(u)|| <1, YA>X" and ue€ ®f.

Considering the deformation flow 1 : [0,00) x ®{" — ®S" defined by

Z—Z =H(n) and 7n(0,u) =ue @,
we obtain
d 1 ,
2, w)) < =¥, w) [ @A (n( w))ll < 0, (7.2)
%] =1 <. 73)
n(t, u) =u forallt>0 and ue€ @f\r\Ag‘H. (7.4)

Let yo(s1,82,...,81) € A be a path defined in ([G3]) and we consider n(t,vo(s1,
$2,...,5)) for large t. Since for all (s1,s2,...,5) € d([7z, 1]"), v0(s1,52,...,51) &
Ay thus we have by (Z4) that

2

!
1
n(t,vo(s1,82,---,51)) = Y0(s1,82,...,81), forall (s1,82,...,5) € 3<{ﬁ,1} )

and n(t,vo(s1, S2,...,81)) € Ay for all t > 0.
Since supp(vo(s1, sz, ..., s)(x)) C Qr for all (s1,s2,...,5) € ([7z,1]"), then

Q5 (Yo(s1,82,...,51)) and ||yo(s1,S2,...,81)|[r; etc. do not depend on A > 0. On
the other hand,

!
1
Dy(vo(s1,82,.--,8)(x)) <ep, V(s1,82,...,8) € {ﬁ,l}

and @y (yo(s1,82,...,8)) = cr if and only if s; = &, that is yo(s1,s2,..

R
Sl)(fl?)|9j = w; for j € I'. Thus, we have that

mo = max{flb\(u):uEPyO([%,l]l)\Aﬁ} (7.5)

is independent of A and mg < cr.
From (4), it is easy to see that for any ¢t > 0

)

Hn(0770<813827 .. '7Sl)) - n(t’70<815827 .. '7Sl))||A S t.
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Since @, ;(u) € C1(E)) for all j = 1,2,...,1, and from the assumptions (f1)—(f4),
it is easy to see that for a large number 7" > 0, there exists a positive number py > 0
which is independent of A such that for all j =1,2,...,1 and ¢ € [0, T,

[®@x,;(n(t,v0(s1, 82, -, 50))[[x < po- (7.6)

It is easy to know that there exists K > 0 such that
[Py j(u) — Py (v)| < K|lu— 'UH)\,Q;, u,v € B, and VjeTl.

We claim that for large T',
1
P T e - —
(81,827“?18?))2[%,1]l AT, v0(s1, 82, -, 81)(2))) < max{mo,cr 2K00M}»
(7.7)
where my is given in (TH).
In fact, if yo(s1,52,...,5)(z) & A}, then by [Z2), we have ®x(n(T,yo(s1,
$2,...,51)(x))) < mg and thus ([TT) holds. If yo(s1, s2,. .., 51)(2) € A}, we need to
study the behavior of 7(t) = n(t,Yo(s1, 52, . ..,51)). We set dy := min{dy, 00} and

T = %. Now, we distinguish two cases:
A

(1) 7(t) € Af/i\u/2 for all ¢t € [0, 7.

(2) n(to) € (’“)Ag‘#/2 for some to € [0,T].

If case (1) holds, we have W(7i(t)) = 1 and || @ (7(t))|| > dy for all ¢ € [0,T]. Thus,
by ([C2l), we have

T
BAGT)) = r (st o) + [ L(0)

1

T
< ®a(yo(s1, 82,5 81)) — 5/0 W(ij(s)) 125 (7i(s)) || ds

1
= Cr = 500t <cr-— o TOH-

If (2) holds, there exists 0 < ¢; < to < T such that

i(ta) € A3, )9, (7.9)
i(t) € A3,5\Ay,  for Vit € [ty to]. (7.10)
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We show that
[7(t2) — n(ta)]| >

It follows from (79, for some jo € T,

[7(t2)l[x r2\0 = o
or
3
>

Now, we only consider the latter case, the former case can be obtained in a

[0 (1(t2)) = ¢jo| =

similar way. From the definition of Af‘“

B, (1) — ] <

Thus, we have

[i(t2) — (t2)]| > el (i(t2)) — P, (1)

> (10, ((02)) — ]~ [, (7)) ~ )
1
ok
On the other hand, by t5 — t; > % 4 and the mean value theorem, there exists
ts € (t1,t2) such that

>

_ _ dn
[P0 (1(t2)) = Paq; (1(t1))] = ‘ Ny, g (8)| (B2 — 1),

hence

d

BAGT)) = Dr(lst, o)+ [ L)

T
:@A(70(81,527-~-»51))*/0 U(5(s))[| @A (77(s)) [ ads

<er— / W (i(5)) | (7(5)) [ ads

ty

= Cr — 0'0(t2 — tl)

1
<cr— ﬁUOM»

and so (7)) is proved. Now, we recall that 7(T) = n(T,vo(s1,82,...,51)) € As.
Thus,

1
bar < @A(7(T)) < Hlax{mo,cr - ﬁgoﬂ}- (7.11)
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But, by Corollary [6.1] we know that by r — cr as A — oo, which is a contradiction
to (CII)), thus @, (u) has a critical point uy € A for large A and we complete the
proof of the proposition. O

Proof of Theorem [I.1l From Proposition[7.2] there exists a family (uy) of posi-
tive solutions to problem (A)) verifying the following properties:
(i) For fixed pu > 0, there exists A\* such that
luxliaga\on < g VA A"
Thus, from proof of Lemma 5.5, u fixed sufficiently small, we conclude that
lurlloorray <a™y, VA > AT,
showing that w) is a positive solution to problem (LI]).
(ii) Fixing A\, — oo and p,, — 0, the sequence (uy, ) verifies
)\ (ux,) =0, VneN,
lux, lIn, g2\ — 0,
fI)’)\mj(uAn) —c, Vjel.
From Lemma 4.1, we have
uy, —u in WHPE(RYN)  with u € Wol’p(x)(Qr)
and v > 0 and u|Qj, j €T is a least energy solution for
—div(|Vu[P®=2Vu) + Z(2)|ulP™2u = af (z,u) + [u|7® "2y, in Q;,
{u e Wy ().
The proof of Theorem [I1]is now complete. O
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