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Abstract. The aim of the present paper is to discuss the influence which certain perturbations have
on the solution of the eigenvalue problem for hemivariational inequalities on a sphere of given
radius. The perturbation resultsin adding aterm of the type ¢°(z, u(z); v(z)) to the hemivariational
inequality, where g isalocally Lipschitz nonsmooth and nonconvex energy functional. Applications
illustrate the theory.
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I ntroduction

The study of variational inequalities began in the early sixties with the pioneering
works of G. Fichera[8], J.L. Lions and G. Stampacchia [11]. The connection of
this theory with the notion of the subdifferential of a convex function was achieved
by J.J. Moreau [12], who introduced the notion of convex superpotentials.

The mathematical theory of hemivariational inequalities, aswell as their appli-
cationsin Mechanics, Engineering or Economics, were introduced and developed
by P. D. Panagiotopoulos [20-27] in the case of nonconvex energy functions. He
also defined the notion of nonconvex superpotentials [19]. An overview of these
methodsisgiven in the recent monograph by Z. Naniewicz and P. D. Panagiotopou-
los[16]. By replacing the subdifferential of a convex function by the generalized
gradient (in the sense of F.H. Clarke) of alocally Lipschitz functional, hemivaria-
tional inequalities arise whenever the energetic functional associated to a concrete
problem is nonconvex. The hemivariational inequalities appear as a generalization
of the variational inequalities, but they are much more general than these ones, in
the sense that they are not equivalent to minimum problems but, they give rise to
substationarity problems. Since one of the main ingredients of this study is based
on the notion of Clarke subdifferential of alocally Lipschitz functional, the theory
of hemivariational inequalities appears as anew field of Non-smooth Analysis.

Note that all problems formulated in terms of hemivariational inequalities can
be formulated “equivalently” as multivalued differential equations. However, the
formulation in terms of hemivariational inequalities has agreat advantage: that the
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hemivariational inequalities express a physical principle, the principle of virtual
work or power. This fact permits us to use all the advantages of the energetic
approach in the mathematical treatment. Moreover, the energetic approach is the
only approach towards the development of a solid numerical method.

1. Theabstract framework

Let V bearea Hilbert space with the scalar product (-, -) and the associated norm
| - ||. Assume V is densely and compactly imbedded in L?(Q; R"), for some
l1<p<+4+ooand N > 1, where Q is a bounded domain in R™, m > 1. In
particular, the continuity of this embedding ensures the existence of a positive
constant C, (£2) such that

|lullLr < Cp()||ul|, fordlueV.
Throughout, the Euclidean norm in RY will be denoted by | - |, while the duality

pairing between V* and V' (resp., between (R™)* and (RY) will be denoted by
('7 '>V (resp., ('7 >)

Leta : V x V — R beacontinuous, symmetric and bilinear form, which is not
necessarily coercive. Let A : V' — V* be the self-adjoint bounded linear operator
which correspondsto a, that is, for every u,v € V,

(Au,v)y = a(u,v).
For r > 0, set S, the sphere of radius in V' centered at the origin, i.e.
Sy ={ueV;|ul| =r}

Consider a mapping C' : S, x V. — R, to which we impose no continuity
assumption. However, for our purpose, a weak kind of compactness hypothesisis
given by
(H1) There exists alocally Lipschitz function f : V' — R, even and bounded on
Sy, satisfying

C(u,v) > fOu;v), foral (u,v) € S, x V, with (u,v) = 0,
and such that the set
{CeVi(edf(u)ue S}

isrelatively compactin V*.
Here fO(u; v) standsfor the Clarke derivative of f atu € V with respect to the
directionu € V,v # 0, that is

fw + ) = f(w)
S :

£O(u;v) = limsup
w—u
ANO
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Accordingly, Clarke's generalized gradient 0 f (u) of f at u is defined by
df (u) ={¢ e V¥ fO(u;v) > (¢,v)y, fordlveV}.

Let j : © x RN — R be a Carathéodory function which is locally Lipschitz
with respect to the second variable and such that j(-,0) € L(Q). We also assume
that this functional satisfies the symmetry condition
(Ho) j(z,y) = j(z,—y), forae.z € Q andevery y € RY.
and
(H3) thereexist a; € LP/»~D(Q) and b € R such that

lw| < a1(z) +bly|P~L, forae (z,y) € 2 x RN andal w € dj(z,y).

We have denoted by 97 (z, y) Clarke’'sgeneralized gradient of thelocally Lipschitz
mapping y — j(z,y), for somefixed z € Q.
Let A : V — V* betheduality isomorphism

(Au,u)y = (u,v), foralu,veV.

Our last assumption is (Hg) Let (u,) C S, be an arbitrary sequence which con-
vergesweakly in V' to some . Consider a sequence(,, € df (u,,) such that

a(unaun) + <Cnaun>V — QQ
and, for every w € LP/(»=1(Q; RN) verifying
w(z) € 3j(z,u(z)), forae z e,

the sequence{(A— XoA)u,, } isconvergent. Thenthere existsastrongly convergent
subseguence of (u,,) in V. Here \q is defined by

Ao=r2 (ao + /Q (w(z),u(x)) dx) .

In the proof of our main result we shall make use of some notions of Algebraic
Topology, for which we refer to [29, Chapter 1] (see also [6, 7]). We recall only
few basic definitions.

Let X beametricspaceand A C X.Amapr : X — Aissaidtobearetraction
if it is continuous, surjective and r 4 = Id. A retraction r is called to be a strong
deformation retraction provided there exists a homotopy F' : X x [0,1] — X of
i o r and Idx which satisfies the additional condition F'(z,t) = F(z,0), for each
(z,t) € Ax[0,1]. Here: standsfor theinclusion map of A in X. The metric space
X is said to be weakly locally contractible, if every point has a neighbourhood
which is contractiblein X.

Lety : X — R bealocally Lipschitz functional. For every a € R, set

[ < a] ={ue X;¢p(u) <a}.
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Givena,b € Rwitha <, thepair ([ < b],[¢p < a]) issaidto betrivial provided
that, for every neighbourhood [¢’, a”'] 0 of b, there exist some closed sets A and B
suchthat [y <a'| CAC [ <d"],[9p <b]C B C[yp <b’'landsuchthat A is
astrong deformation retract of B.

A real number ¢ is said to be an essential value of ¢ if, for every £ > 0, there
exist a,b € (¢ — e,¢ + ¢€), witha < b and such that the pair ([1) < b], [ < a]) is
not trivial. Thisnotion is essentially dueto M. Degiovanni and S. Lancelotti [7].

2. Themain result

Let us consider the following eigenvalue hemivariational inequality with con-
straints:
(P1) Find (u, \) € V' x R suchthat, foral v € V,

{ a(u,v) + C(u,v) + /Qjo(:r,u(x);v(x)) dz > A(u,v), 1)

lull =r.

Under hypotheses (H1)—(H4), Motreanu and Panagiotopoul os proved in [13, The-
orem 4] that this problem admitsinfinitely many pairs of solutions (£u,,, A, ), with
all u,, distinct. Moreover, they find the expression of eigenvalues \,,. Remark that
their statement is done under aslight less general hypothesis, namely by assuming
a; = const. in (H3). Examining this proof, we remark that in order to show that
the arguments of [13] hold in our case, it is sufficient to verify that the energy
functional

F(u) = 3a(u,u) + f(u) + J(u), weV, (18)

is bounded from below on S, where .J : LP(Q;R") — R isdefined by .J(u) =
fq i (=, u(z)) dz. Indeed, noticefirst that, for ae. (z,y) € Q x RY,

(@, y)| < 1i(2,0)] + |i(z,y) — j(z,0)]
< 1i(@,0)] + sup{lw|;w € 0j(z,Y), Y € [0,y]} - [y]
< 1i(2,0) + ca(z)|y[ + bly|”.
Therefore

[ T()] < (15 ¢, 02 + llaall o - Nullze + Dllull,
Hence,
Fis, (u) > —3llall-r? = [|fllz= — ll7 (- Ol 2
—Cp(V)|aa]| pprr — BCE(Q)rP.

From now on the proof follows from the samelinesasin [13].
A natural question arises now: what happens if we perturb (1) in a suitable
manner? Perturbation results for the case of equations have been established in [1,
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2] while perturbation techniques for variational inequalities have been developed
in [3, 7]. Let us consider the following non-symmetric perturbed hemivariational

inequality:
(P2) Find (u, A\) € V' x R such that

a(u,v) + C(u,v) + /Q(jo(x,U(:v):v(x)) + ¢%(z, u(z); v(x))) de

+(p, )y > ANu,v), fordlueV 2

[ul =,
wherep € V*and g : Q x RN — RY isaCarathéodory function which islocally
Lipschitz with respect to the second variable and such that g(-,0) € L*(Q2). Fix
0 > 0. We make no symmetry assumption on g, but we impose only the growth
condition (Hs) |w| < az(x) + d|y[P~2, for ae. (z,y) € Q x RY and for all
w € dg(x,y), where ay € LP/(P=D(Q).

We also assume
(Hg) The mappings g(+, 0), a2 and ¢ satisfy
lazll; <6 and [lpfv- <.

As a compactness condition we assume the following variant of (H):
(H7) Let (u,) C S, be an arbitrary sequence which converges weakly in V' to
some u. Assume ¢, € Of (uy) such that

a(tn, un) + (G, Un)v — o
and, for every w, z € LP/(*=D(Q; RY) verifying

w(z) € 9j(z,u(z)) and z(z) € dg(z,u(z)) forae z € Q, (29)
the sequence { (A — A\oA)uy, } is convergent. then (u,,) isrelatively compactin V.
Here )\ is defined by

Ao=r? (ao + / (w(z) + z(z), u(x)) dx) .
Q
Our aim is to show that the number of solutions of (P,) increasesas § — 0.

More precisely, we have

THEOREM 1. Assume hypotheses (H1)—(H7) hold. Then, for every n. > 1, there
existsd,, > Osuchthat, for each§ < 4,,, the problem (P,) admitsat least » distinct
solutions.

In the proof of our main result, given in the next section, we shall make use of
some techniquesfrom [6, 7, 13, 15].
3. Proof of Theorem 1

We shall follow in the proof a method developed by Degiovanni and Lancelotti in
[7].
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Forevery n > 1, set

where F denotes the family of closed and symmetric subsets of S, with respect to
the origin and ~y(.S) represents Krasnoselski’s genus of the set S € T'),. Namely,
v(S) isthe smallest £ € N U {400} for which there exists an odd continuous
mapping from S into R¥\ {0}. Motreanu and Panagiotopoul os proved in [13] that
the corresponding min-max valuesof F' over I',,

Bn = inf SUpF(U), n>1,
€ln yes

are critical values of F' on S,.. We first remark that

LEMMA 1. Wehavethatsupg  F isnotachievedand limy, . B, = sUp,cg, F(u).
Moreover, there exists a sequence (by,) of essential valuesof Fi 4 strictlyincreasing

to sup,, ¢, F(u).

Proof. The proof of thisresultisessentially containedin [7]. It is sufficient to adapt
the arguments given in these papers for the case of locally Lipschitz functionals
and replacing the classical Fréchet-differentiability by the subdifferentiability in
the sense of Clarke. We point out only the main steps of the proof:

(i) The functional F|s, satisfies the Palais-Smale condition (see the proof of
Theorem 4 in [13]). So, if there exist ug € S, and m < n such that 8, = 6, <
f(uo), theny(Kp3, ) > n —m + 1, where

Kﬂm = {U € ST;F(U) = Om and )\F(u) = 0}
In the aboverelation, A is defined by
Ap(u) = min{|[£];§ € OF (u)}.

It is known (see [4]) that if F' isalocally Lipschitz functional then \r is lower
semi-continuous.

(i) If the sequence (53,,) is stationary and if there exists ugp € S, such that
(i) holds, then vy(Kpg,,) = +o0, for somem > 1. Thisis not possible, since S,
is aweakly locally contractible space and K, is a compact set, which implies
’)/(K/gm) < +00.

(iii) It follows by the previous steps, the definition of Krasnoselski’s genus
and the fact that F # const. on S;, that sup,.g F(u) is not achieved and
lim, 00 Bn = SUP,cq, F(u). Moreover, without loss of generality, we may
assumethat sup, g F(u) = +oo. Let usdefine

T, = {p(S"1);¢p: 8"1 — S, iscontinuous and odd},
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and

Ccely, ueC

Of course, 3, > [, S0 that lim,, ;oo B3, = SUp,cg F(u) = +oo. By Theorem
2.12 of [7] it follows that there exists a sequence 9,,) of essential values of Fig,
strictly increasing to sup,,c 5, F'(u). O

Notice that the proof of Theorem 4 in [13] works if f is supposed to be only
bounded from below on ;. If sup f(u)ues, = oo thensup, g F(u) = oo and
Bn — 00, @8N — 00.

We associate to the hemivariational problem (P,) the energy function H : V' —
R, defined by

H(u) = 5 a(u,u) + £(u) +J(u) + Glu) + (o, ), (2)

where G(u) = [, g(z,u(z)) dz, for every u € LP(2; R™). The next result asserts
that if ¢ is chosen sufficiently close to 0 in (Hs) and (Hg), then H is a small
perturbation of the functional F' on S..

LEMMA 2. For every e > 0, there exists o > 0 such that, for all 6 < 6o,
sup |F(u) — H(u)| < e.

UGST

Proof. We have
l9(z,y)| < |g(z,0)] + az(x)|y| + oly[’.
Thus, for dl v € S,.,

F(u) — H(w)| < |G(u) + (o, uhy| < |G(w)| + or

<|
< llg(O)llza + 9CH(Q)r + 6CHEQ)™ + o1 <&,

for 0 > 0 small enough. O
LEMMA 3. Thefunctional H satisfies the Palais-Smale condition on .S..

Proof. Let (u,,) beasequencein S, suchthat sup,, | H (uy,)| < +oo and A g (up) —
0, asn — oo. The expression of the generalized gradient of H on S, is given by

O(H s, (u) = {& —r~ (&, u)y du; € € OH (u)}. 3)
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Consequently, there exists a sequence (¢,) C V* such that

&n € OH (un) (4)
and

€n — 1 2(€n, un)vAu, — 0, strongly in V*. (5)

We haveto prove that (u,) is relatively compact.

Using (4), (5) and applying the formula for the generalized gradient of a sum
(see, eg., [5, Proposition 2.3.3]) in the expression of H, one obtains the existence
of ¢ € Of (un), wn € I(Jjy)(un) and z, € 9(G\y)(un) such that

Aty + Cp +wp + 2p — 7"72<Un + Cp + Wy + 2, Un )y Aup + @ — 0
strongly in V*. (6)

Moreover, the density of V' in LP(Q; RY) implies (see [4, Theorem 2.2))
O(Jy)(u) COJ(u) and O(Gy)(u) C G (u).

It iswell known that the embedding V* ¢ L?/(=1)(Q; R") is compact. Thus one
can suppose, passing eventually to subsequences, that

wy, — w strongly in V* (7)

zp — z  strongly in V*. (8)
Furthermore, hypothesis (H4) implies that (eventually, at a subsequence),

¢p — ¢ strongly in V™. 9)
Since ||u, || = r, we can aso assume that

up — u  weaklyinV. (20)
Additionally, we can suppose that

{a(un,u,)} convergesinR (12)
and

(Wi + 2n, un)v — (W + 2, u)v. (12)

Using the upper semicontinuity of the Clarke generalized gradient (see [5,
Proposition 2.1.5]), the relations (6), (12) and the hypothesis (H1), we find

w € I(Jpy)(u) (13)

z € 0(Gy)(u) (14)
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¢ € 0f (u).
Applying now Theorem 2.7.5in [5], the relations (13) and (14) yield
w(z) € 9j(z,u(x)) foraexr e
z(z) € 0g(z,u(z)) foraex e Q.
Set
AO::T2<ao+-/g(u(x)%—z(x%zdx))dx),
where

ag = nILrTgo{a(un,un) + (W + 2n, Un)v }-

293

(15)

(16)

(17)

Relations (6)—(12) allow us now to deduce that the sequence { (A — A\oA)uy, } con-
vergesstrongly inv*. Then, by (H7), thereexistsastrongly convergent subsequence

of (uy,), which concludes our proof.

a

LEMMA 4. If u isacritical point of H|g, thenthereexists A € R such that (u, \)

isa solution of (Py).

Proof. We have, for every v € V,
OH (u) = Mu + d(Jy)(u) + 0(Gv)(u) + .
Since0 € d(Hg, )(u), it follows by (3) and (14) that there exists
w € I(Jy)(u) CAJ(u) and 2z € I(Gy)(u) C IG(u)
such that « is a solution of
Au+w+ 2+ =r?(Au+w + z 4+ @, u)y.

Moreover (see[5, Theorem 2.7.3)), for every u € LP(; RY),

wmcéw@mwm:mjwwcéw@mwm.

Thus, by (19), the mappingsw, z : Q@ — (RN)* satisfy
w(z) € 9j(z,u(z)) forae z €,

z(z) € 0g(z,u(x)) forae z e,

(18)

(19)

(20)

(21)

(22)
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and, foral v e V,

W)y = [ (@), v(@) do. (23)

(z,0)y = /Q (2(x), v(z)) dz. (24)
Set

A =r"2((AMu + o, u)y = /Q (w(z) + 2z(z),u(x)) dz. (25)

It follows by (20)~(25) that, for every v € V/,
Mw,0) = alu0) = (p.u)y = [ (@) + 2(0), 0(z) do
< [ max{(u,v(e))i s € 0w+ ), u(w)} o
< | ma{ s, v(@))s 2 € (e, u(a)} do (26)
+ [ max{(uz, (@) 2 € 02(z,u(@))} o

= [ @ u@);o(@) do + [ % u(@);o()) da.
Q Q
We have used above the classical inclusion (see [5, Proposition 2.3.3])
O(w+ z)(z,u(z)) C dw(z,u(x)) + 0z(x, u(x)).

We point out that the last equality in (26) holds because of Proposition 2.1.2 from
[5]. O

PROOF OF THEOREM 1. Fix n > 1. Taking into account Lemma4, it suffices
to motivate the existence of somed,, > 0 suchthat, for every § < 4,,, thefunctional
H|g, hasat least n distinct critical values.

By Lemmal, let (b,) beasequenceof essential valuesof F|g, strictly increasing
tosup,cg, F(u).Fixn > landsomeeg < 1/2mini<j<, 1 (bj+1—b;). Weapply
Theorem 2.6 from [7] to F|s, and Hs,. Hence, for every 1 < j < n — 1, there
existsn; > 0 such that

sup |F(u) — H(u)| <mnj

UESy
implies the existence of an essential valuec; of Hyg, in (b; — €0, b; +£0). Wenow
apply Lemma 2 for ¢ = min{eg,n1,...,n,—1}. Thisyields the existence of some
dpn, > O such that

sup |F'(u) — H(u)| <e,
uESy
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provided 0 < é,, in (Hs) and (He). So, we have obtained that the functional His,
has at least n distinct essential values ci, ..., ¢, in (—oo, b, + ¢). It remains to
provethat ci, ..., c, arecritical values of H|g,. Arguing by contradiction, let us
assumethat c; isnot acritical valueof Hg, .

CLAIM 1. Thereexistse > Osothat H,g, hasno critical valuein (c; — €, ¢;j +¢).

PROOF OF CLAIM. Indeed, if not, there is a sequence (d,,) of critical values of
H\g, with d,, — c;, asn — oo. Since d,, isacritical value, there exists u,, € S
such that

H(u,) =d, and Apg(u,)=0.

Now we take into account that (PS)., holds. Therefore, up to a subsequence, one
can suppose that (u,,) convergesto somew € S, asn — oo. By the continuity of
H and the lower semi-continuity of Az, it follows that

H(u) =¢; and Ap(u)=0,

which contradictstheinitial assumption on ¢; and concludesthe proof of our Claim.

Now we apply the Noncritical Point Theorem (see [6, Theorem 2.15]), which
can be also deduced as a consequence of the Deformation Lemma for localy
Lipschitz functionals (see [4, Theorem 3.1]). Thus, for somefixedc; —e < a <
b < ¢;j + ¢, thereexistsacontinuousmap n : S, x [0, 1] — S, such that, for each
(u,t) € S x [0, 1],

n(u,0) = u, H(n(u,t)) < H(u),
H(u) <b= H(n(u,1)) <a, H(u)<a=n(ut)=u.
It follows that the map
pi[Hs, <bl = [Hjs, <bl,  p(u) = n(u,1)
isaretraction. Set
H:[Hg, <b]x[0,1] = [Hg, <b], H(u,t)=mn(u,t).
We observe that, for every u € [H|g, < b],
H(u,0) =u and H(u,l) = p(u). (27)
Moreover, for each (u,t) € [H|g, < a] x [0,1],
H(u,t) = H(u,O0). (28)

By (27) and (28) it follows that # is [H|s, < a]-homotopic to the identity of
[His, < a], i.e, H isastrong deformation retraction. This means that the pair
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([His, < 0], [Hs, < a]) istrividl. Therefore, c; isnot an essentia value of Hg, .
This contradiction concludes our proof. O

4. A note of the possible applications

The perturbation results obtained in the previous Sections may have a serious
applicationin the study of the eigenvalueproblemsfor hemivariational inequalities.
Suppose, for instance, that we deal with the eigenvalue problem of two adhesively
connected v. Karman plates [28] and that the interface law has a very complicated
form (a zig-zag nonmonotone multivalued diagram). Then one can consider the
eigenvalue problem for a simplified interface law which results by “smoothing
some parts’” of the complicated initial law. With respect to the corresponding
nonsmooth nonconvex potential energy (1a) this“simplification procedure” means
that we have added an additional nonconvex and nonsmooth energy term (cf.
Equation (2b)). The simplified interface law results by the “superposition” of the
two nonmonotone multivalued relations given in (2a).

Here we deal with systems having a prescribed cost or weight or consumed
energy. this is the meaning of the constraint ||u|| = r and therefore we have an
eigenvalue problem for hemivariational inequality on a sphere of agiven radius.

Theorem 1 of the present paper holds in all cases of the applications given in
[13] Section 3, where we refer the reader for further information.
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