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Abstract. We give some versions of theorems of Hartman-Stampacchia’s type for the case of Hemi-
variational Inequalities on compact or on closed and convex subsets in infinite and finite dimensional
Banach spaces. Several problems from Nonsmooth Mechanics are solved with these abstract results.
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1. Introduction and the main results

The well-known theorem of Hartman-Stampacchia (see [3], Lemma 3.1, or [5],
Theorem 1.3.1) asserts that¥f is a finite dimensional Banach spadé,c V is
compact and convexd : K — V* is continuous, then there exisise K such
that, for every € K,

(Au,v —u) > 0. Q)

If we weaken the hypotheses and consider the case vithésa closed and convex
subset of the finite dimensional spake Hartman and Stampacchia proved (see
[5], Theorem 1.4.2) that a necessary and sufficient condition which ensures the
existence of a solution to Problem (1) is that there is s&ne 0 such that a
solutionu of (1) with ||u|| < R satisfies|u|| < R.

The purpose of this paper is to extend these classical results in the framework of
hemivariational inequalities. These inequalities appear as a generalization of vari-
ational inequalities, but they are much more general than these ones, in the sense
that they are not equivalent to minimum problems but give rise to substationarity
problems. The mathematical theory of hemivariational inequalities, as well as their
applications in Mechanics, Engineering or Economics, has been developed by P.D.
Panagiotopoulos (see monographs [6, 8, 9] and the references cited therein for a
treatment of this theory and further comments).
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Let V be a real Banach space and fet: V — L?(Q, R*) be a linear and
continuous operator, where4 p < oo, k > 1, andQ is a bounded open set
in RY. Throughout this papek is a subset o/, A : K — V* an operator and
j = j(x,y) : QxR Ris a Carathéodory function which is locally Lipschitz
with respect to the second variables R* and satisfies the following assumption

() there existh; Lﬁ(sz, R) andh, € L*(22, R) such that
2] < h1(x) 4+ ha(x)]y|7 7,

fora.e.x € Q, everyy € R¥ andz € 9 j(x, y). Denoting byT'u = i, u € V, our
aim is to study the problem

(P) Findu € K such that, for every € K,
(Au, v —u) +/ 7O, Gi(x); D(x) — fi(x))dx > 0.
Q

We have denoted by®(x, y; h) the (partial) Clarke derivative of the locally
Lipschitz mappingj (x, -) at the pointy € R* with respect to the directioh € R,
wherex € @, and byg j (x, y) the Clarke generalized gradient of this mapping at
y € R¥, that is

H . ’ ! th — 7 y !
jo(x,y;h):hmsup](x Yy Ath) —jix y);
Y=y t
tl0
3jCx,y) ={zeRF: (z,h) < j%x, y; h), forallh € R¥)

The euclidean norm iR*, k > 1, and the duality pairing between a Banach space
and its dual will be denoted by |, resp.( -, - ). We also denote by- ||, the norm
in the spacd.” (2, RY) defined by

||ﬁllp=</lﬁ(X)|” dX) , 1<p<oo.
Q

In order to state our existence results for the problem (P), we need the following
definitions.

<=

DEFINITION 1. The operatorA : K — V* is w*-demicontinuous if for any se-
quence{u,} C K converging tou, the sequenc¢Au,} converges tAu for the
w*-topology inV*,

DEFINITION 2. The operatorA : K — V* is continuous on finite dimensional
subspaces o if for any finite dimensional spacgé c V, which intersects, the
operatorA|xnr is demicontinuous, that isAu,,} converges weakly tau in V* for
each sequencg:,} € K N F which convergesto u.

* By ‘converges’ we always mean ‘strongly (or norm) converges’.
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EXISTENCE THEOREMS OF HARTMAN-STAMPACCHIA TYPE 43

REMARK 1. In reflexive Banach spaces the following hold: (a) thedemi-
continuity and demicontinuity are the same; (b) a demicontinuous operator
A : K — V*is continuous on finite dimensional subspace& of

The following result is a generalized form of the Hartman—Stampacchia theo-
rem for the case of hemivariational inequalities in infinite dimensional real Banach
spaces; namely it generalizes Theorem 6 in [13] and Theorem 2.1 in [14] for the
framework of such inequalities.

THEOREM 1. Let K be a compact and convex subset of the infinite dimensional
Banach spacé&” and let; satisfy the condition (j). If the operatot : K — V* is
w*-demicontinuous, then the problem (P) admits a solution.

In finite dimensional Banach spaces the above theorem has the following equiv-
alent form.

COROLLARY 1. Let V be a finite dimensional Banach space and Aetbe a
compact and convex subseflofif the assumption (j) is fulfilled and £ : K — V*
is a continuous operator, then the problem (P) has at least a solution.

In Section 2 the proof of Theorem 1 will be based on Corollary 1; for this reason
Corollary 1 will be proved before this theorem.

REMARK 2. The condition ofv*-demicontinuity on the operatet : K — V* in
Theorem 1 may be replaced equivalently by the assumption:

(A1) the mappingk > u — (Au, v) is weakly upper semi-continuous, for each
veV.

REMARK 3. If A is w*-demicontinuous{u,} C K andu, — u, then

lim (Au,, u,) = (Au, u).

n— oo
Weaking more the hypotheses &nby assuming thak is a closed, bounded and
convex subset of the Banach spa¢ewe need some more about the operatbrs
andT (see Theorem 2). We first recall that an operator K — V* is said to be
monotone if, for every, v € K,

(Au — Av,u —v) > 0.

Thus we can formulate the following result, which is the corresponding variant for
hemivariational inequalities of Theorem 1.1 in [3].

THEOREM 2. Let V be a reflexive infinite dimensional Banach space and let
T :V — L?(Q,R be alinear and compact operator. Assurkieis a closed,
bounded and convex subsetibfind A : K — V* is monotone and continuous on
finite dimensional subspaces Kf If j satisfies the conditiofy) then the problem
(P) has at least one solution.
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We also give a generalization of Theorem Ill.1.7. in [5] by

THEOREM 3. Assume that the same hypotheses as in Theorem 2 hold without the
assumption of boundednesskf Then a necessary and sufficient condition for the
hemivariational inequality (P) to have a solution is that there exi®ts- 0 with

the property that at least one solution of the problem

ug € KN{u e V;llull <R}

(Aug, v — ug) + / JOCe, R (x); B(x) — g () dx > O, @
Q

for everyv € K with ||v|| < R,

satisfies the inequalitjuz| < R.

A basic tool in our proofs will be the following auxiliary result.

LEMMA 1. (a) Ifitis satisfied the assumption (j) aitd, V> are nonempty subsets
of vV, then the mappind, x V> — R defined by:

(u, v)—>/ 70k, A(x), D(x)) dx 3)
Q

iS upper semi-continuous.

(b) Moreover, ifT : V — L?(Q2, RY) is a linear compact operator, then the
above mapping is weakly upper semi-continuous.

Proof. (a) Let{(u,,, v,)}men C Vi x V> be a sequence converging o v) €
Vi x V,, asm — oco. SinceT : V — LP(Q, R¥) is continuous, it follows that

Gm— 0, Op—0in LP(Q,RY, asm— oo

There exists a subsequence,,, v,)} of the sequenc&,,, v,,)} such that

m — o0 Q

limsup | jO0x, fip (x); D (x)) dx = lim / 7O, iy (x); 0, (x)) dx.
n— o0 Q

By Proposition 4.11 in [4], one may suppose the existence of two fundiigrig €
L?(22, R™), and of two subsequences {@f,} and{?,} denoted again by the same
symbols and such that:

|, ()| < tio(x),  [0,(x)] < Do(x),

u,(x) = ulx), v,(x)—>0(x), asn— o0

for a.e.x € Q. Onthe other hand, for eaahwhere holds true the condition (j) and
for eachy, h € R*, there existg € § j(x, y) such that

7o, yih) = (z,h) = max{(w, k) : w € dj(x, )
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EXISTENCE THEOREMS OF HARTMAN-STAMPACCHIA TYPE 45
(see [1], Prop 2.1.2). Now, by (j),
170, yi ] < 1zl 7] < (ha(x) + ho()yIP ™Y - Al -
Consequently, denoting (x) = (h1(x) + ha(x)|io(x) [P~ |00(x)|, we find that
1700x, i (0); 8, (0))] < F (),

foralln € N and fora.ex € Q.
From Holder's Inequality and from the condition (j) for the functignsandh,
it follows that F € L1(22, R). Fatou’s Lemma yields

lim / 70, fiy (x); D (x)) dx < [ limsupO(x, i, (x); D, (x)) dx.
n— oo Q

Q n—> o0

Next, by the upper-semicontinuity of the mappifftyx, .; .) (see [1], Prop. 2.1.1)
we get that

limsupj°(x, i, (x); 0, (x)) < j%x, a(x); D(x)),

n— oo

for a.e.x € Q, because
U,(x)—u(x) and v,(x) = 0(x), asn— oo

fora.e.x € Q. Hence

limsup [ jOCx, f (x); D, (x)) dx < f 70, 4(x); D(x)) dx,

m—o00 JQ Q

which proves the upper-semicontinuity of the mapping defined by (3).

(b) Let {(um, vm)}lmen C V1 x Vo be now a sequence weakly-converging to
{u,v} € V1 x Vp, asm — oo. Thusu,, — u, v, — v weakly asn — oco. Since
T:V — LP(R, R") is a linear compact operator, it follows that

Um— 0, Opm— 0 in LP(Q,RY.

From now on the proof follows the same proof as in the case (a). O

2. Proof of the theorems
2.1. PROOF OF COROLLARY1

Arguing by contradiction, for every € K, there is some = v, € K such that

(Au,v —u) —i—/ 7O, Gi(x); O(x) — fi(x))dx < O.
Q
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For everyv € K, set

Nw) ={ue€K; {(Au,v —u) —i—/ 700, Gi(x); O(x) — fi(x))dx < O}.
Q

For any fixedv € K the mappingk — R defined by

u+— (Au,v —u) +/ jo(x, u(x); 0(x) —u(x))dx
Q

is upper semi-continuous, by Lemma 1 and the continuityA oThus, by the de-
finition of the upper semi-continuityy (v) is an open set. Our initial assumption
implies that{N (v); v € K} is a covering ofK. Hence, by the compactness Kf
there existy, ... , v, € K such that

K c|JNw).

j=1
Let p; (1) be the distance from to K \ N(v;). Thenp; is a Lipschitz map which
vanishes outsid#/ (v;) and the functionals

pj(u)
2?21 pi(u)
define a partition of the unity subordinated to the covefing - - - , p,}. Moreover,
the mapping

VYi(u) =

p) =¥,
j=1

is continuous and mapk into itself, because of the convexity &. Thus, by
Brouwer’s fixed point Theorem, there existg in the convex closed hull of
{vy, ..., v,}such thatp(ug) = ug. Define

q(u) = (Au, p) — u) + /Q 0, A): p@)(x) — 4(x)) dox.

The convexity of the map®(ii; -) (see [1], Lemma 1) and the fact thel;_y v, (u) =
1imply '

90 = 32y vy )+ 3wy [ 0058500 — )
j=1 j=1 &

For arbitraryu € K, there are only two possibilities: if ¢ N (v;), theny; (u) = 0.
On the other hand, for all ¥ j < n (there exists at least such an indice) such that
u € N(vj), we havey;(u) > 0. Thus, by the definition oV (v;),

qg(u) <0, foreveryu € K.
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EXISTENCE THEOREMS OF HARTMAN-STAMPACCHIA TYPE 47

But g (ug) = 0, which gives a contradiction. O

2.2. PROOF OF THEOREML

For this proof we need Lemma 2 below. LEtbe an arbitrary finite dimensional
subspace of/ which intersectX. Letig~r be the canonical injection & N F
into K andi} be the adjoint of the canonical injectiép of F into V. Then:

LEMMA 2. The operator
B:KNF—F* B=irAignr
is continuous.

REMARK 4. The above lemma also holds true if the operatds continuous on
finite dimensional subspaces &t
Proof. For anyv € K, set

S(v) = {u € K; (Au,v —u) —i—/ 7O, i(x); D(x) — A(x))dx > 0} .
Q

Step 15(v) is a closed set.

We first observe thaf(v) # @, sincev € S(v). Let{u,} C S(v) be an arbitrary
sequence which convergesit@sn — oo. We have to prove that € S(v). By the
part (a) of Lemma 1 we have

0 < lim SUpL(Attn, v — 10) + / O, fin (); Dx) — i (0] dx
n—o00 Q

= lim (Au,, v — u,) + limsup | j%%x, 4, (x); 0(x) — i1, (x)) dx

n—o00 n—o00 Q

(Au,v—u) + / 7Ok, (x); 0(x) — ii(x)) dx.
Q

A

This is equivalent ta € S(v).

Step 2. The familyS(v); v € K} has the finite intersection property.

Let{vq, ..., v,} be an arbitrary finite subset & and letF be the linear space
spanned by this family. Applying Corollary 1 to the operabodefined in Lemma
2, we findu € K N F such thaty ¢ mf}zlS(vj), which means that the family
of closed set§S(v); v € K} has the finite intersection property. But the &ets
compact. Hence

(s #9.

vek

which means that the problem (P) has at least one solution. O
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2.3. PROOF OF THEOREM2

Let F be an arbitrary finite dimensional subspacé/gfwhich intersect’. Con-
sider the canonical injectiong~r : K N F— K andir : F— V and leti}. :
V* — F* be the adjoint ofiz. Applying Corollary 1 to the continuous operator
B = i} Aignr (see Remark 4) we find somg; in the compact seK N F such
that, foreveryw € KN F,

(5 Aikortr, v = up) + [ 520 (603 506) = () d = 0. (4)
Q
But
OS<AU—AMF,U—MF)=<AU,U—MF>—<AMF,U—MF>. (5)

Hence, by (4), (5) and the observation thagtAixnrur, v —ur) =
(Aup, v — ur), we have

(Av, v — up) + / O, g (0); D(x) — iip () dx = 0, 6)
Q

foranyv € K N F. The setK is weakly closed as a closed convex set; thus it is
weakly compact because it is bounded &hid a reflexive Banach-space.
Now, for everyv € K define

M®©) = {u € K; (Av,v —u) +/ GO0, d(x); D(x) — @i(x)) dx > O} .
Q

The setM (v) is weakly closed by the part (b) of Lemma 1 and by the fact that this
set is weakly sequentially dense (see, e.g., [2], pp. 145-149 or [10], p. 3). We now
show that the seM = N,cx M(v) C K is non-empty. To prove this, it suffices to
prove that

(M@, # 9, (7)
j=1
foranyvs, ..., v, € K. Let F be the finite dimensional linear space spanned by

{vy,...,v,}. Hence, by (6), there existg- € F such that, forevery e K N F,
(Av,v —ur) +/ JOCx, dip(x); D(x) — dip(x)) dx = 0.
Q
This means thaky € M(v;), for every 1< j < n, which implies (7). Conse-
quently, it follows thatM # @. Therefore there is somee K such that, for every

ve K,

(Av, v —u) + / 700k, (x); 0(x) — fa(x)) dx > O. (8)
Q
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We shall prove that from (8) we can conclude thas a solution of Problem (P).
Fix w € K andi € (0, 1). Puttingv = (1 — A)u + Aw € K in (8) we find

(AL = W)t + Aw), 2w — ) + / 0, 2(x): A — )(x)) dx = 0. (9)
Q

But jO(x, i; Ad) = A jOx, i; 0), for anyx > 0. Therefore (9) may be written,
equivalently,

(AL — D+ rw), w —u) + f JOC, i(x); (b — @) (x))dx > 0. (10)
Q

Let F be the vector space spanned ibynd w. Taking into account the demi-
continuity of the operatod s~ and passing to the limit in (10) as— 0, we
obtain thatu is a solution of Problem (P). O

REMARK 5. Asthesek N{u € V; |lu|]| < R} is a closed bounded and convex
setinV, it follows from Theorem 2 that the problem (2) in the formulation of our
Theorem 3 has at least one solution for any fixed 0.

2.4. PROOF OF THEOREM3

The necessity is evident.

Let us now suppose that there exists a solutigrof (2) with |jug| < R. We
prove thatuy is solution of (P). For any fixed € K, we chooses > 0 small
enough so thab = uy + (v — uy) satisfieg|w|| < R. Hence, by (2),

(Aug,e(v —ug)) +/ JO(x, fig(x); e(d — dig)(x))dx > 0
Q

and, using again the positive homogeneity of the map~> j°(u; v), the conclu-
sion follows. O

3. Applications
3.1. NONCOERCIVE HEMIVARIATIONAL INEQUALITIES

We consider noncoercive forms of the coercive and semicoercive hemivariational
problems treated in [6] (pp. 65-77). The results are more general from the point
of view of the absence of the coercivity or the semicoercivity assumption, but less
general from the point of view of the boundedness of theksdtor this purpose,

let us assume thaf is a real Hilbert space and that the continuous injections

V C[L3(Q,RHY c v*

hold, whereV* denotes the dual space Bf Moreover letT : V — L, RY),
T(u) = i, ii(x) € R* be a linear and continuous mapping. Consider the operator
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A appearing in our abstract framework 48 = A;u + f, wheref € V*is a
prescribed element, whila, satisfies, respectively, the assumptions of Theorems
1, 2 or 3. Then the theorem 1 holds for the problem

(P1) Findu € K such that, for every € K,

(Au,v—u) + / 7Ok, (x); 0(x) — @i(x)) dx > O.
Q
Moreover, if T is a linear compact operator, then Theorems 2 and 3 also hold for
the above problem.
Suppose further thdt is the Lipschitz boundary a2 and that the linear map-
pingT : V — LT, RY) is continuous. Then the theorem 1 holds for the problem
(P;) Findu € K such that, for every € K,

(Au, v —u) + / 700k, a(x); 0(x) — @t(x)) dx > O.
r

Furthermore, ifl" is compact, then Theorems 2 and 3 remain valid fe}.(P

3.2. NONMONOTONE LAWS IN NETWORKS WITH CONVEX CONSTRAINTS

We shall give now an application in Economics concerning a network flow prob-
lem. We follow the basic ideas of Prager [7, 11], and for the consideration of the
nonlinearities we combine them with the notion of nonconvex superpotential. We
refer to [6] (p. 191) for the derivation of the formulas.

The generally non-monotone nonlinearity is caused by the law relating the two
branch variables of the network, the ‘flow intensity’ and the ‘price differential’
which here can also be vectors. The problem is formulated as a hemivariational in-
equality and the existence of its solution is discussed further. We consider networks
with directed branches. The nodes are denoted by Latin letters and the branches by
Greek letters. We suppose that we haveodes and branches. We take as branch
variables the ‘flow intensitys, and the ‘price differentiale, . As node variables the
‘amount of flow’ p, and the ‘shadow pricei, are considered. The terminology has
been taken from [11]. Moreover each branch may have an ‘initial price differential’
vectores. The above given quantities are assembled in veetat$ u, s, p. The
node-branch incidence matrix is denoted byG, where the lines of; are linearly
independent. Upper indek denotes the transpose of a matrix or a vector. The
network law is a relation between the ‘flow intensity’and the ‘price differential’

e,. We accept that, is a nonmonotone function of the expressed by the relation

, 1
e, —€) € djy,(s,) + Easjcysy : (11)

wherek,, is a positive definite symmetric matrix aidds the generalized gradient.
The graph of the, — ¢, law is calledy -characteristic.
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The problem to be solved consists in the determination for the whole network
of the vectors, e, u, for given vectorg andeg.

Further letC = diag[C4, ... ,C,,---]1and let the summatioEy be extended
over all branches. Now we consider the graph which corresponds to the network
and a corresponding tree. The tree results from the initial graph by cuting all the
branches creating the closed loops. Let us denote-lyesp.s,,) the part of the
vectors corresponding to the tree branches (resp. to the cut branches giving rise to
closed loops). Then we may write instead®f = p the relation

Grstr +Gusu=p.

HereG is nonsingular and thus we may write that

-1 -1
S=[ST]=[GT :|p+|:_GTGM:|SM=SO+BSM, (12)
Sm 0] 1

where/ denotes the unit matrix. Using (11) and (12) we obtain (cf. [6]) a hemi-
variational inequality with respect tg, which reads: finds,;, € R" (ny is the
dimension ofsy,) such that

> %o+ Bs)y. (Bsy, — Bsy)y) + sty BT CB(s}, — sy)
Y
+ 58 CB(sy; — sy) + e B(s}; —sy) >0 Vs}, € R™. (13)

Let us now assume that the flow intensitigg are constrained to belong to a
bounded and closed convex subgetc R"* (box constraints are very common).
Thus the problem takes the form: fing, € K which satisfies (13), for every
sy € K.

Since the rank of3 is equal to the number of its columns a@ds symmetric
and positive definite the same happens B3IC B. In the finite dimensional case
treated here, one can easily verify that Corollary 1 holdg, f, -) satisfies the
condition (j). Thus (13) has at least one solution.

3.3. ON THE NONCONVEX SEMIPERMEABILITY PROBLEM

Let us put ourselves within the framework of [6] (p. 185), where we have studied
nonconvex semipermeability problems. We consider an open, bounded, connected
subset$2 of R® referred to a fixed Cartesian coordinate systemvgxs and we
formulate the equation

“Au=Ff inQ (14)

for stationary problems.
Here u represents the temperature in the case of heat conduction problems,
whereas in problems of hydraulics and electrostatics the pressure and the electric
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potential are represented, respectively. We denote furthdr the boundary of
Q and we assume that is sufficiently smooth ¢*'-boundary is sufficient). If
n = {n;} denotes the outward unit normallcthenou /adn is the flux of heat, fluid
or electricity througH" for the aforementioned classes of problems.
We may consider the interior and the boundary semipermeability problems.
In the first class of problems the classical boundary conditions

u=0 onT (15)

are assumed to hold, whereas in the second class the boundary conditions are de-
fined as a relation betweeh:/dn andu. In the first class the semipermeability
conditions are obtained by assuming tifat f + f where f is given andf is a

known function ofu. Here, we consider (15) for the sake of simplicity. All these
problems may be put in the following general framework. For the first class we
seek a functiom such as to satisfy (14), (15) with

f=Ff+7Ff,  —fedjhtx,uinQ. (16)

For the second class we seek a functiosuch that (14) is satisfied together with
the boundary condition

0
—8—u€8j2(x,u) onTIycr and u=0onI"'\I;. a7
n

Both ji(x, -) and jo(x, -) are locally Lipschitz functions anél denotes the gener-
alized gradient. Note, that if = {g;} denotes the heat flux vector akd- O is the
coefficient of thermal conductivity of the material we may write by Fourier's law
thatg;n; = —kou/on.

Let us introduce the notations

a(u,v):/Vu-Vvdx
Q
and
(fw = [ fuds.
Q

We may ask in addition that is constrained to belong to a convex bounded closed
setK C V due to some technical reasons, e.g., constraints for the temperature or
the pressure of the fluid, etc.

The hemivariational inequalities correspond to the two classes of problems. Let
for the first classV = HZ(Q) and f € L2(Q); for the second clas¥ = {v :
v e HY(Q), v = 0onT \ 'y} and f € L?(Q). Then from the Green-Gauss
theorem applied to (14), with the definition of (16) and (17) we are led to the
following two hemivariational inequalities for the first and for the second class of
semipermeability problems respectively
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(i) Find u € K such that

a(u,v —u) —i—/ jf(x, u(x); vix) —u(x)) dx > (f:, vV —u) YveKk.
’ (18)
(ii) Find u € K such that

a(u,v —u) —i—/ jg(x, u(x); vix) —ux)dr > (f,v—u) YveK.
1
(19)

Sincea(-, -) is (strongly) monotone o both in (i) and (ii) and the embeddings
V Cc L3(Q)andV C L?(T';) are compact we can prove the existence of solutions
of (i) and of (ii) by applying Theorem 2 if; and j, satisfy the condition (j).

3.4. ADHESIVELY SUPPORTED ELASTIC PLATE BETWEEN TWO RIGID
SUPPORTS

Let us consider a Kirchoff plate. The elastic plate is referred to a right-handed
orthogonal Cartesian coordinate syst&mx,x3. The plate has constant thickness
h1, and the middle surface of the plate coincides with the x,-plane. LetQ

be an open, bounded and connected subs&%afnd suppose that the boundary

I' is Lipschitzian €%*-boundary). The domaif is occupied by the plate in its
undeformed state. O’ C (' is such thatd NT = #) the plate is bonded

to a support through an adhesive material. We denote (by the deflection of

the pointx = (x1, xp,x3) and by f = (0,0, f3), f3 = f3(x) (hereafter called

f for simplicity) the distributed load of the considered plate per unit area of the
middle surface. Concerning the laws for adhesive forces and the formulation of
the problems we refer to [9]. Here we make the additional assumption that the
displacements of the plate are prevented by some rigid supports. Thus we may put
as an additional assumption the following one:

z€e K, (20)

whereK is a convex closed bounded subset of the displacement space. One could
have, e.g., thaip < z < bg etc.

We assume that any type of boundary conditions may hold  ohlere we
assume that the plate boundary is free. Indeed there is no need to guarantee that
the strain energy of the plate is coercive. Thus the whole sp&a&) is the
kinematically admissible set of the plate. If one takes now into account the relation
(20), thenz € K C H?(Q), whereK is a closed convex bounded subsefHi(Q2)
and the problem has the following form:

Find¢ € K such as to satisfy

a(g,z—¢>+/ .z —0dQ = (f.z—¢)  VzeK. (21)
5
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Herea(-, -) is the elastic energy of the Kirchoff plate, i.e.
a(¢,z) =k /[(1 —V)8apZap T VAL AZ]dQ o, =12, (22)
Q

wherek = Eh3/12(1 — v?) is the bending rigidity of the plate witlE and v

the modulus of elasticity and the Poisson ratio respectively,aisdts thickness.
Moreover; is the binding energy of the adhesive which is a locally Lipschitz func-
tionon H%(Q) andf € L?(2) denotes the external forces. Furthermorg fiflfills

the growth condition (j) then, taking into consideration @t -) appearing in (22)

is continuous monotone, we can deduce, by applying Theorem 2, the existence of
a solution of the problem (21).
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