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Critical point

RESUME

Dans cet article on considere 'existence de solutions multiples pour 1’équation
quasi-linéaire —div A (z, Vu) + V(z) [u/*® 2y = f(z,u) dans RY, qui implique
un opérateur elliptique général a exposant variable sous forme de divergence. Le
probléme correspond a des phénomeénes anisotropes a deux phases, dans le sens
ot Popérateur différentiel a des comportements comme |€]9®)72 ¢ pour |¢| petit et
comme |¢[P™72¢ pour |¢| large, ot where 1 < a() < p(-) < g(-) < N. Notre
objectif est d’approcher de maniére variationnelle le probléme en utilisant les outils
de la théorie des points critiques dans les espaces de Orlicz—Sobolev généralisés
& exposant variable. Nos résultats étendent les travaux précédents A. Azzollini et
al. (2014) [4] et N. Chorfi and V. R&dulescu (2016) [11] des cas ol le exposants
p et g sont constants, au cas ol p(-) et ¢(-) sont des functions. Nous affaiblissons
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considérablement certaines des hypotheéses de ces articles et nous surmontons le
manque de compacité en utilisant la condition de compacité de Cerami.
© 2018 Elsevier Masson SAS. All rights reserved.

1. Introduction

In this paper, we deal with the following variable exponent elliptic equation
—div A(z, V) + V(@) [u|* 2 u = f(z,u), (€)

where A : RY x RY — RN admits a potential <7, with respect to its second variable &, satisfying the
following assumption:

(A1) the potential &7 = &7 (z,€) is a continuous function in RY x RY, with continuous derivative with
respect to &, A = 0:.9/(x, &), and verifies:

(i) o (x,0) = 0 and o/ (z,&) = o (x,—£), for all (z,£) € RNV x RY;

(ii) <7 (,-) is strictly convex in R for all z € RY;

(iii) there exist positive constants C;, Cy and variable exponents p and ¢ such that for all (z, &) € RN xRN

Co [P i el > 1
Co €771 i ¢ < 17

C el it g >1

1
Cy €17 | if J¢] <1 M

}SAmaf wdlemé{

(iv) 1 < p(-) < q(-) < min{N, p*(-)}, and p(-), q(-) are Lipschitz continuous in RY;
(v) A(z,€) - € < s(z) o (z,€) for any (z,€) € RV, where s is Lipschitz continuous and satisfies g(-) <
s(+) < p*(");

(Az)  is uniformly convex, that is, for any € € (0, 1), there exists d(¢) € (0,1) such that |u — v|
emax{|u|,[v]} or & (z,“$?) < 1(1 - 6(e))( (w,u) + & (z,v)) for any z,u,v € RV,

In this paper, for any v : RV — R, we denote

IN

v =esssupv(z), v- = essinfv(x),

z€RN zERN

and we denote by v; < v the fact that

88, inf(va(x) — v1(z)) > 0.

We point out that condition (A;) (iv) is fundamental in the theory of variational second order elliptic
problems with variable coefficients, as well as with more general (p, ¢)-growth conditions. This hypothesis,
which imposes a bound of ¢/p in terms of p and N has been used several times in [45, Chapter 3]. This
assumption is relevant in the qualitative analysis of nonlinear problems with variable exponents and describes
a subcritical abstract setting.

Remark 1. The typical case of A is

(VP2 Ty, if [Vu| > 1
x,Vu)= _
(@ Vo) { (V"2 u, if [Vu| < 1.

Then

—div (|Vu"™ 2 vu), if |[Vu| > 1

_divA(z, Vu) = .
v Az, Vu) {—div(|Vu|q(w) 2 V), if |Vu| < 1
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and

S s -
vl 7@ @ )

€170 if e < 1

¢ > 1

q(x)

From Lemma A.2, given in Appendix A, it is clear that this typical potential & satisfies (A;) and (As),
l<p <p"<Nandl<gqg <qg" <N.
We also make the following assumptions:
(Hv) () V € L}, .(RY) and V(-) > 0 a.e. in RY;
(if) V(1) = Vo > 0;
(iii) V(x) = +o0 as |z| = +o0.
(H}) 0 < fz,u)u, flz,u)u = o(|u|*™Y as u — 0, and | f(z,u)| < C(1 + |u|"™), where 4(-) is Lipschitz
continuous and o < y(-) < p*(+).
(H3) There exist constants M, Cy,Ca > 0 and a function a > ¢ on RY such that

tf(x,t)

89 1 )]t < oy
Cl| | [Il(€+| |)} —021n(6+‘t|)

<tf(x,t) = s(z)F(a,t),V[t| > M, VoeRY,

where F(z,t) fo f(x,s)ds.
(H2) f(z,—u) = — ().

Remark 2. Let f(x,t) = |t|s(m)72 t[In(1 4 |¢))]*® where s(-) > q(-), a(-) > q(-) on RV, then we observe that
f satisfies hypotheses (’H})—(’H;), but it does not satisfy the Ambrosetti—-Rabinowitz condition.

This paper generalizes some results contained in [4] and [11] to the case of partial differential equations
with variable exponent. If p(-) = p, ¢(-) = g and a(-) = « are constants, then (£) becomes the usual constant
exponent differential equation in divergence form discussed in [11]. But if either p(-) or ¢(-) are nonconstant
functions, then (£) has a more complicated structure, due to its non-homogeneities and to the presence of
several nonlinear terms.

This paper is motivated by double phase nonlinear problems with variational structure, which have been
introduced by Marcellini [34] and developed by Mingione et al. [6,7,14,15] in the framework of nonhomoge-
neous problems driven by a differential operator with variable growths described by nonconstant functions
p(x) and ¢(z). In the case of two different materials that involve power hardening exponents p(z) and g(x),
the differential operator div A(z, Vu) describes the geometry of a composite of these two materials. Cf.
hypothesis (1), the p(-)-material is present if |£| > 1. In the contrary case, the ¢(-)-material is the only one
describing the composite.

In recent years, the study of differential equations and variational problems with variable exponent
growth conditions have been an interesting topic, which have backgrounds in image processing, nonlinear
electrorheological fluids and elastic mechanics etc. We refer the readers to [1,10,31,44,45,47,57] and the
references therein for more background of applications. There are many reference papers related to the
study of variational problems with variable exponent growth conditions, far from being complete, we refer
the readers to [3], [8], [16-29], [32], [33], [36-38], [43], [46], [48-50], [52-55].

Our main results can be stated as follows.

Theorem 1.1. Assuming that 1 € a < p < ¢ < min{N,p*}, 1 € a(") € p*(')Z:§ﬁ§7 (A1)-(A2), (Hy) and
(H})*(”H?}, then problem (£) has a pair of nontrivial non-negative and non-positive solution.
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Theorem 1.2. Assuming that 1 < a < p < ¢ < min{N,p*}, 1 € a(") € p*(-)gigig, (A1)-(A2), (Hy) and
(’H})*(Hi’c), then problem (€) has infinitely many nontrivial solutions.

This paper is divided into six sections; section 2 contains some properties of function spaces with variable
exponent; section 3 includes several basic properties of Orlicz—Sobolev spaces; in section 4 we establish
some qualitative properties of the operators involved in our analysis; sections 5 and 6 give the proofs of
Theorems 1.1 and 1.2, respectively.

We refer to [12] for the basic analytic tools used in this paper.
2. Variable exponent spaces

Nonlinear problems with non-homogeneous structure are motivated by numerous models in the applied
sciences that are driven by partial differential equations with one or more variable exponents. In some
circumstances, the standard analysis based on the theory of usual Lebesgue and Sobolev function spaces,
LP and WP, is not appropriate in the framework of material that involve non-homogeneities. For instance,
both electrorheological “smart fluids” fluids and phenomena arising in image processing are described in a
correct way by nonlinear models in which the exponent p is not necessarily constant. The variable exponent
describes the geometry of a material which is allowed to change its hardening exponent according to the
point. This leads to the analysis of variable exponents Lebesgue and Sobolev function spaces (denoted by
LPC) and WHP())| where p is a real-valued (non-constant) function.

Throughout this paper, the letters ¢, ¢;, C, C;, i = 1,2, ... denote positive constants which may vary from
line to line but are independent of the terms which will take part in any limit process.

In order to discuss the problem (£), we need some theories on variable exponent Lebesgue spaces and
Sobolev spaces. In the following, we will give some properties of these variable exponent spaces. Let Q ¢ RY
be an open domain. Let S(€2) be the set of all measurable real valued functions defined on . Let

Ci(Q) ={v|veCQ), v(x)>1forzecQ},

PO = due S | /|u(x)\1’<w> dr < o

The function space LP(") (Q) is equipped with the Luxemburg norm

M p(x) de < 1

|u‘LP(')(Q) =inf { A\ >0 /
Q

Then (LPO)(Q), || L#()(q)) becomes a Banach space, we call it variable exponent Lebesgue space.
If @ = RY, we simply denote (LPC)(RY), [ o) mvy) @8 (LPO) || o)

Proposition 2.1. (see [20, Theorem 1.15]) The space (LPC) (1), [ulpecy()) @ a separable, uniformly convex
Banach space, and its conjugate space is L”,(')(Q), where le) + ﬁ = 1. For any u € LPO)(Q) and
v E Lp/(')(Q), we have the following Hélder inequality

1 1
wodz| < (— + —) |ul;»c V| pr( .
Q/ (= + =) il o
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Proposition 2.2. (see [20, Theorem 1.16]) If f: @ x R — R is a Carathéodory function and satisfies
1f(z,8)| < d(z) +b|s|P" P2 for any 2 € Qs € R,

where p1, pa € CL(Q), d(x) € LP2)(Q), d(x) > 0, b > 0, then the Nemytsky operator from LPr()(Q) to
Lr20)(Q) defined by (Nyu)(x) = f(z,u(x)) is a continuous and bounded operator.

Proposition 2.3. (see [20, Theorem 1.3]) If we denote

Pp() () :/IUI”(I) dx, Vu € LPV(Q),
Q

then
i) [ulpoer o) < L=1> 1) <= ppey(u) < L(=1;>1);
.. P pt .
it) [ul ey gy > 1= |U|Lp<->(g) < pp(y(u) < |U|Lp<«>(g)’

- +
lul ppir o) <1 = |u‘ip<->(9) 2> Pp(y () 2 |u|€p(-)(9);
i18) ] o0 () — 00 <= pp()(u) = o0.

Proposition 2.4. (see [20, Theorem 1.4]) If u, u, € LPC)(Q), n = 1,2,---, then the following statements are
equivalent:

1) klggo [uk = ul o0 () = 03

2) klirrgo Pp() (U —u) = 0;

3) ur, — u in measure in Q and klim Pp(y (Ur) = ppcy (w).
— 00

The variable exponent Sobolev space Wl”’(‘)(Q) is defined by
w0 (@) = {u e /0 (@) |[Vu e (170 (@) |,
and it is equipped with the norm
lully o0 @) = [l ooy (@) + VUl Lo ) VU € whrO ().

We denote by Wol’p(')(Q) the closure of C§° (Q) in WHP() (Q).

The Lebesgue and Sobolev spaces with variable exponents coincide with the usual Lebesgue and Sobolev
spaces provided that p is constant. According to [45, pp. 8-9], these function spaces L) and WHP() have
some non-usual properties, such as:

(i) Assuming that 1 < p~ < p* < oo and p: Q — [1,00) is a smooth function, then the following co-area
formula

/|u(x)|pdx _ p/tp_l iz € Ju(@)] > 1) dt
Q

0

has no analogue in the framework of variable exponents.

(ii) Spaces LP0) do not satisfy the mean continuity property. More exactly, if p is nonconstant and
continuous in an open ball B, then there is some u € LP()(B) such that u(x 4+ h) ¢ LPC)(B) for every
h € RN with arbitrary small norm.
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(iii) Function spaces with variable exponent are never invariant with respect to translations. The convo-
lution is also limited. For instance, the classical Young inequality

If % glp)y < Clflpey lgller

remains true if and only if p is constant.
Conditions (A;)-(i) and (ii) imply that

o (2,8) < Az, ) - € for all (z,£) € RY x RV, (2)

Furthermore, (A;)-(ii) is weaker than the request that < is uniformly convex, that is, for any € € (0, 1),
there exists a constant 6(e) € (0,1) such that

A (,6) + o (x, 1)
2

) < (1—-4d(e))

for all z € RY and &, € RY x RY satisfy |u — v| > e max{|ul, |v|}.
By (A1)-(i) and (iii), we have
1
(x,t&)d /
0

1
xfz/
0

This estimate in combination with (1) and (2) yields

c1 [€P) le] > 1
er €7 1e) < 1

&|g‘
| =

Az, t€) - tédt > {

e [€P) el > 1
e €170 ¢ < 1

e €7 e > 1

|€‘Q($) €1 <1 , V(z,¢) € RY x RV, (3)

} (w£)<A(:v£)£§{

Denote

with the norm

If Q =RY, we simply denote (L?;(')(RN), |-\L$(.)(RN)) as (L‘O;('), |~|L?/(.)).

From now on, we denote by Bpr the ball in RY centered at the origin and of radius R > 0.

Lemma 2.5. (see [/2, Lemma 2.2]) Assume (Hy )-(i), = > 1 and at < oo, then Lg(') is separable uniformly
convex Banach spaces.

Theorem 2.6 (Interpolation Theorem). If p(-) < a(-) < q(-), then for any u € LV (), there exists X =

AMQ, o, p,q,u) € [07,07], where 6() = ’;((‘f;_i;, such that

A
[ul o) < 2lulzee) @) Jul Q) -

Moreover, if 0= < 0%, then A € (0—,607).
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Proof. Let 3:= 2 ((5:13) = af. We may assume that u is nontrivial. We consider

a(x) a(z)

u 1 U
dr < —/ dzx
/ u 1-0(x) 2 / |u‘9(m) |’LL|1 0(x)

Q 2‘“|Lp(>(9) | |LLI(‘)(Q) Lr()(Q) L) ()

:l/ |u|ﬁ(1) |u|0¢(I)*5() "
a(z)f(z 1-6(z))a(x
|u| (2)0(z) lu |( )e(z)

Lr)(Q) L1()(Q)
|u|5($) |u|0<(w —B(=)
(z)0(x) ) (1-6(z))a(z) .
|U|Lp<~)(g) L%(Q) |u |Lq< () L(%v(m
Note that
e (@) p(z)
x p(x
/ |u‘3 z) i / |U‘B(m)g(z) p / |u|P($) p / p .
€Tr = —_—ar = —_—ar = —_— €Tr =
9 )
P |u I(fof)> g)) |U|Zi’(”))9$))/s<w> A |u|]z(f<?)(m 2 [ul o) (@)
)
therefore % =1.
() (Q) %
Similarly we obtain
(B
/ |u|a(9c)—ﬁ(ac) :/ Jul (a(z)—B(w)) (5 b :/ |uIQ(w) L
u | a(z)(1—6(x)) ;)/ Mq(w)
0 Li0)(9) u ILq<> o Mo
()
= d.’l? = 1,
Q/ ‘“|Lq( )(Q)
w| (@ =)
therefore \ILI(LGW o =1
La() (o) L(T)/(Q)
It follows that
/ Y ) dr < 1.
S 2‘U|Lp(>(g) u |Lq< )(Q)
If [ulpoc) () = [l pac) () We observe that
a(z) a(z)
U U
dr = / T E— dr < 1.
0 1-6 <
Q/ 2 |u|L(:(?)(Q) . |u|Lq(,>(;(CS)2) 2 2[ul Loy (o

Therefore

[u] o o) S2 |u|Lp() @) =2 \u|LP( (@) |u|Lq( >(s)1) for any £ € Q.

165
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Without loss of generality, we may assume that |u|Lp(.)(Q) > |u|Lq(.)(Q) and 0~ < 6%, then we have

a(z)
a(z)
u
/ ol oF / 2 [’ |u|1—0(a:) dz <
UirO (o) ) Lr()(Q) La0) ()
@ 2 (ulLQ(')(Q)) |U|LQ( )(Q) @ (
a(z)
/ ue_ dx.
|U|Lp(-)(9)
P Moo ) Tow
Thus, there exists A(p, ¢, a,u) € [0, 07] such that
a(z) a(z)
/ ) - :/ 0(z) - 1-6(z) dr < 1,
512 [ulZoe) ‘U|Lq( () 2121l )+ Ul o

Cy e A
which implies [u|zac) () < 2 [ul7o0) ) - |u|Lq<) @)
To conclude the proof, we observe that A € (~,6%), provided that 6~ < 6*. 0O

3. Variable exponent Orlicz—Sobolev spaces
Let © C RY be an open domain.
Definition 3.1. Assume (A;)-(iv). We define the following linear space
2PO(Q) + LIO(Q) = {u eM|u=v+wve LPOQ),we Lq<->(9)} ,
which is endowed with the norm
Ul oo @y 2oy = 0 {10l ooy + [0l acr @y |0 € PO@),w e LIO@u+w=uf. (1)

If @ = RY, we simply denote (LP0)(Q) 4+ L10)(Q), 'l Le0 (@) La0) () 8S (LPO + LI 1 Loty 4 pac)-
We also define the linear space

LPO(Q) N LIO(Q) = {u lue LPO(Q) and u € Lq<->(9)} ,
which is endowed with the norm
|“\Lp<~>(sz)nm<»>(sz) = mmax {|U|LP(')(Q) ) \“|Lq<->(sz)} :
Throughout this paper, we denote
Ay={zeQ]|u(x)|>1} and A ={xecQ||ulx)] <1}.
Proposition 3.2. Assume (A )-(iv). Let Q C RN and u € LPO(Q) + LIO(Q). Then the following properties

are true:
(i) if Q' C Q is such that || < +oo, then u € LPC)(Q);
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(i) if ' C Q is such that u € L®(Q'), then u € L) (Q');

(1) |Ay| < +o0;

(iv) u € LPO(A,) N LIC)(AS);

(v) the infimum in (4) is attained;

(vi) if B C , then |U|Lp(->(Q)+Lq(->(Q) < |U‘Lp<->(13)+Lq<->(B) + |U|Lp<->(9/3)+Lq(-)(Q/B)7'
(vii) we have

1 «“
max U cmin{ |u ey U . <
{1+2|A |p(§) 15 | |Lp()(A“) {‘ |LLI()A | ‘ >(A )}}

|ul Loc Q4L (Q) = |U|Lp(-)(Au) + |U|Lq(-)(Az)a
where £ € RN and ¢ is a small positive constant.

Proof. The proof uses some ideas developed in [4] and [5]. For the reader’s convenient, we state it here.
(i) Let v € LPO)(Q) and w € L) (Q) be such that « = v + w, then v € LPO) () and w € LIO(Q'). T
order to prove u € LP() ('), we only need to prove w € LP() (). By Young’s inequality, we have

a(z)
() 7 p( T T
/|w|P(I> dz S/\ll(gw) + ’|w|p(“") ( )d:c:/m + |w|!™ dz = || +/|w|q( ) dz < +o0.
Q/ Q/ Q/ QY

Thus w € LPO) (). Therefore u € LPC) ().
(ii) Let v € LPO)(Q) and w € L) (Q) be such that u = v + w, then v € LPO)(Q’) and w € L) ().
In order to prove u € L90)(Q), we only need to prove v € L) (Q). We have

/|u|q<’”> da —/|v|q(w> P ) i < (1 + [sup o))t /|U\P(”> iz < +o0.

Thus, v € LIO)(Q'). Therefore u € LI ().
(iii) Let v € LPO)(Q) and w € L9 (Q) be such that u = v + w. Since 1 < |u| < |v| + |w| implies |v] > 1
or |w| > 3 for any x € Q. We get

pT+q"

1
+o0> [ + 0l do > [l + 0" do > ‘5 A

u

p+ +q+ ‘ 1

Thus, |Ay| < +o0.

(iv) It is easy to see from (i)—(iii).

(v) For any u € LP)(Q) + L40)(Q), and consider a minimizing sequence for u, namely v, € LP)(Q) and
w, € L) (Q) be such that u = v, + w,,, and nhm [Vl Loy () T [Wnlpar ) = [l o) (@) 4 na0) () Without
loss of generality, we may assume that |vn|z.c) () + [Wnlpao @) < 1+ Ulpee) @) raor @) forn=1,2..., and
nh_}rrgo |vn|L,)(.)(Q) exists. Thus, {v,} is bounded in LP()(Q), then the reflexibility of LP()(Q) implies that up
to a subsequence, there exists vy € Lp(')(Q) such that v, — vy in Lp(‘)(Q). Similarly, we may assume that
there exists wo € L90)(Q) such that w,, — wg in L) (Q). Therefore (v,,, wy,)—(vo, wo) in LPC) () x LIC)(Q),
and then v,, + w, — vy + wo in LPO)(Q) + LIO)(Q). Thus, u = vy + wo.

By lower semicontinuity we have

|UO|Lp(-)(Q) < linrgioréf |’U7I‘LP(-)(Q) and |w0|Lq<-)(Q) < hnrgio%ﬂwu‘m(-)(g) .
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It follows that

|u|LP(l)(Q)+Lq(l)(Q) = nh_?;o(wnhp(‘)(g) + ‘wn|Lq(')(Q))

> lim inf [on | o) () + Hminf fwn | L) o)

= |UO‘LP(')(Q) + |w0‘LLI(')(Q) :

According to the definition of |u|p.¢) ()1 a1 (q), We have

[ul Loy @)+ Latr (@) = Vol pocr (@) + [wol pacy gy -

(vi) The proof of property (vi) we refer to Proposition 2.2 of [4].
(vii) From (iv) and the definition of the norm ||,y (q)4 pac) (), We observe that

[l Lo @) 2a0r (@) < Tl peerany + Ul pao aey -

From (v), there exists v € LPO)(Q),w € L1)(Q),v 4+ w = u such that [ul o) @)+ Latr @) = Vee) ) +
W[40y (- We have

Ul Loy (@)t Lar (@) = [Vl eer @) 1@ paer @) 2 10l (an) F 10l Laeran) 2 18l Lo (Aw) 1140 (A0) »
and
Ul Loy ()4 La0 (@) = [Vl e @) T 1wl Lao @) 2 0l Lo (aey + 1WlEarae) 2= [l o) (ac )1 a0 (ac) -
By Proposition 2.1, we get W]z, (5,) < 2 |Au|ﬁfﬁ W[ ety (a,) forall £ € RN, It follows that
T
[l oy an) < 10l an) F 10 ey ay) < 10lneeray) T 218 PO 7@ [w[ra0) (4,
<1+ 2|Au|"“>7(7)(|v|m< daw T Wlraoan))
T
= (1 +2[Au] 7O 5O ) ul poey (4, )4 100 (A
T
< (14 2[Au] 7O 7 59) Ul Loy ()4 190 (0) -
Without loss of generality, we may assume that v is nonnegative, 0 < v € LP()(Q),0 < w € LI (Q),v +

w = w such that |u[;,c) ) a0 ) = [V]pe0) (@) + [0 La) () Obviously, 0 <w <1 on Af.
Denote A, = w0y (pe) and Ag = W[40 (pc)- Since |w| < 1 on A7, we have
w
1= —
/1
Ac

p(x)
dr > /
p
Ac

u u

“©
ISVCH

w q(x) /\Z@) )\q(ﬁ)
/\_q )\Z(m )\P(f/

ae)
where ¢ € RY. Thus A\, > \J® . Similarly, we have

1€

‘U|Lp(-)(Az)+Lq(-)(Ac) = |(U|Lp<‘)(Az) + |w|Lq<»>(Aﬁ) 2 ‘U|z(qg(-)(1\3) + |w|Lq(')(A§) >
cmin \u|Lq(.)(Ac ul 7

)(Ac

Summarizing, we get the result. 0O
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We define the following norm on LP()(Q) + LI0)(Q):

: ‘ ¢ 1/ P(") a()
el = inf § (ol + lelhaor o)~ v € LO(@),w e LIO@),v+w =u
if 1 <t < +o0and
|lul|,, = inf {max{|v\m(.)(m wlpaey o} v e LPOQ), w e LIO(Q), v +w = u} .

Proposition 3.3. Assume (A;)-(iv). Then {||ul],}1<i<oo is a family of equivalent norms on LPC)(Q)+L10)(Q).
Moreover, |ul|, = |||ulll, for every u € LPO(Q) + L1(Q) and 1 < t < oo.

Proposition 3.4. (see [13, Theorem 1]) The uniformly convex product of a finite number of uniformly convex
Banach spaces is uniformly convez.

Proposition 3.5. The norm ||-||, is uniformly convex for 1 <t < oc.

Proposition 3.6. (see [30, Theorem 2]) If (X, ||-||) is a Banach space, then the following two statements are
equivalent:

(i) (X,||'ll) is reflexive;
(ii) any bounded sequence of (X, ||-||) has a weak convergent subsequence.

From Proposition 3.0, we obtain the following property.

Proposition 3.7. If (X,||-||) is a reflexive Banach space, and |||, is an equivalent norm of ||-|| on X, then
(X, |I'l,.) is also a reflexive Banach space.

Proposition 3.8. Assume (A )-(iv). Then (LP')(Q) N LY (Q)) = LPO(Q) + LIO(Q).

Proof. Similar to the proof of Theorem 2.10 of [5]. We omit it here. O

Proposition 3.9. Assume (A; )-(iv). Then (LPO)(Q)+LI0)(Q), 'l Lo ()4 290 () ) @8 @ Teflezive Banach space.

Proof. By Proposition 3.8, we obtain that (LP()(Q) + L) (), 'l Loy @)+ Lat) () 18 @ Banach space.
Because ||-||, and ||-||, are equivalent norms on LPC) (Q)+ L) (Q), and (LPO)(Q)+L1)(Q), ||-|,) is reflexive

from Proposition 3.5, we deduce that (LP() () + L) (Q), ||-||,) is a reflexive space. Since Il ey ()4 La0r ) =
[|[|;, we deduce that (LP()(Q) 4+ La0)(Q), Il Lo ()4 290 () 1 also a reflexive space. O

Define X (Q)= {u € Li(')(ﬂ) | Vu € (LPO(Q) + Lq(')(Q))N} with the following norm
[ullg = \U|L3<~>(Q) + |VU\LP<~>(Q)+L<1<~>(Q) .
If O = RY, we simply denote (X (Q), ||lullg) as (X, ||u|).
Proposition 3.10. Assume (Ay)-(iv) and (Hv )-(i). Then (X(Q), |lullg) is a Banach space.
Proof. The proof is similar to Proposition 2.4 of [4], we omit it here. O

Proposition 3.11. Assume (Ay)-(iv) and (Hv )-(i). Then (X(Q), |lullg) is reflexive.
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Proof. On LP)(Q) + L90)(Q), we can consider the equivalent norm ||-||,, it is uniformly convex.
We consider the following norm on X:

9 9 1/2
ully = (6200 gy + 113)

It is easy to see that |||, is an equivalent norm of ||-||, on X. By Proposition 3.4, we deduce that ||-[| ,
is uniformly convex, then (X (), [|-||,) is reflexive. By Proposition 3.7, we conclude that (X (1), [|) is a
reflexive space. O

Theorem 3.12. Assume (A1 )-(w) and (Hvy )-(i) and (ii), 1 < p ()plg'g, o satisfies 1 < af-) < p*(-) AL
and 1 < Oé() =P ()p’()

. Then the space X () is continuously embedded into LP" ) (£2).
Proof. For any u € X (€2)\{0}, we only need to prove that u € L? ()(Q). Write
Xi0e(Q) = {u € X(Q) : suppu is compact.}

We distinguish the following three cases.
Case 1: We assume u € Xjoc(€2) N L> (), set [ul,. ) = A, then we have

/‘%‘p*(m) dr = 1. (5)
Q

, then it is easy to see that f € W11(Q) following the proof below. By the

p* (I) NI\7 1

u(x)
A

Let f(z) =
Sobolev embedding theorem we have (see [2]) WH1(Q) — L%(Q), then there is a positive constant
Cy = C1(Q, N) such that

y < 01/(\W| + |v])dz, Yo € WH(Q). (6)
Q

Obviously, f € LvT (Q). It follows that

1, 51 iy <1 [ 1951+ ) ™
Q
We have
y = </|f|%dx>NF = ([ J3] we =, ®)
Q
V@) < 9 (@)~ M % IV @) %’/\‘p o ’H‘XH
(9)
S a2 |
From (6), (7), (8), and (9) we get
1< % ’% Pt |Vu|dz + C / ; RS ’ln ’dz—!— / % ) dz. (10)

Q Q Q
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We have
1 U p*(I)NI;l_l
Q
70— )%1 u d
- o
p*(I)NJ;l

u
hZ/h
Q

In the following, we will estimate Ji, Jo, J3 respectively.
By (v) of Proposition 3.2, there exist v € (LPO)(Q)N, w € (LO)(Q))V, v + w = Vu such that

IVl Loy (@) nae @) = Wl eor @) + 0] e (@)

From the Young inequality, we have

1 wpt (@)t -1 1 w P (@) Tt -1
Sx/h’ '”“*x/h\ [l dz
Q

v Viw s G [ p@
/’)\’ dm+7/|v| dx

Q
C N —1)q (z) C
%/‘%‘ Y dw+74/\w|q($)dm.
Q Q
We observe that
q (z) N-1 N-1

U a($)+‘u
A

p" () C
)dx+75/|v\m> + [0]%) de
Q

Cs +
dx + = (|U|Lp<->(g) + W] a0y () +2)

u|o() C5 205

‘X dx +T+—(|V“|Lp<> Q)+L‘1<>(ﬂ)+3)'

IN

IA
>|Q

SO =R
5=
B|E

We have

(o) Nt
T 5l -

-/l

Q

o5l

(13)
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where ¢ is a small enough positive constant such that

N -1

p*(z) +2e <p*(x), VreQ, (14)
and
N -1 _
p*(x) -2 > a(z), Vrel. (15)
By (14), there exists to > 0 such that
pr@itee < L@ sy peq (16)
3C,
Let
Cg = sup t°|lnt|.
0<t<tg
Since lim ¢° [Int| = 0, we have
t—0t
0 < Cg < +o0.
Set
C7 = sup 07 (@) 5t —e—ale)
0<t<to
reQ
Then relation (15) implies
0<Cy < +oo.
Let
le{xeg‘TStO},QQZ{$GQ|T>tO}, (17)
then
w|P (@) gt e e u w|p (@) 5t ey e u
=[5l 3| pwf3]e+ [15] 5| ]3|
2 / A MR LR Y
Ql Q2
Since
w P @ e jugE | Ju w P (@) Nt e
v v 1’—Hd <c/’— d
/‘)\ A= LN v
Ql Szl
u (@) CesCrat [ V(z) |u|al@)
< CsC ’— dz < ]— dz,
N 67//\ v Vo /a(ac) A v
(951

Q

and
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w P (@) Pty e 114 g < u P () Pt te
[13l sl Imfllee< [15]
Qz Q2
u |P"(x) 1
< — dr <
Q
we have
066’7 / () |u|o@ 1
. 18
a(x) do + 3C, (18)
Q
In order to estimate J3, we pick tg > 1 such that (16) is satisfied. Therefore
* - 1
" @5 19
e 19)
Let
Cs = sup 7" (@ 5 o) (20)
0<t§t0
zeQ
Note that a(-) < p*(-) 22, hence
0 < Cg < +0.
Assume that €3 and €2 are defined as in (17). By (19) and (20) we obtain
w P (=) Nt w (P (=) Nt
-5 e
& /’/\‘ v +/ y
Ql 92
V(z) |u P (z)
<C ’_
- 8/ alz) TA 3C (21)
o
<c [l e
a(r) 3C,
Q
From (10), (13), (18) and (21) we have
Cs V(.’L’) u|(@) Cs 2C5 + gt
1< O*[T/ () ‘X do+ =+ T(W“Vim-)q(g)%q(-)(g) +3)]
Q
(22)
CsCrat [ V(z) |u|a) 1 /V(a:) w|(@) 1
C. IR Ea(eXe S e+ ).
H Vo /a(x) A x+3]—|—[ * ] a(z) 1A x—|—3]

Thus, by (22)

w o) Vi(x) ju @) e 1
Ao +/ x H oty W“'LM H@+zeere) Tyl (23)
Q
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If A > 1, we deduce from (23) that

1 V(I) a(z) A V(l‘) a(z) pT4+qt
AS C[)\a+ / a(x) |U| d.]f-'-w Ck(.’E) | | dCC—F‘V ‘Lp()(Q +Lq()(Q)+1]
Q Q
V(aj) olz
< 0[2/ a(z) |ul “ do + Vu |;2p<+>qu)+m< e T 1] (24)

V(T) )
< Co[/ ol(z) jul*) da + |VU|LP<> @)+ rac (@) T 1
O

Without loss of generality, we can assume Cy > 1.
If A < 1, relation (24) is naturally satisfied, so we have proved that there is a constant Cy > 1 which is
independent of u such that

V(z) @) oo
|u‘p*(,) S CO[/ 0[(1‘) | | (@) dx + |V LP() Q)+L‘Z( )(Q) + ] Yu € XZOC NL (Q) (25)

Furthermore, for any u € Xj,.(2) N L>°(Q2) we have

: e [ V@) o
[l o < 0 [ S da ot DU o + 0 (26)
Q Q

Case 2: For any u € X (2) N L>(Q), we prove that (26) is satisfied.
Let {4} € C>=(RY R) satisfy

@) =1, V]z| <1 Pu(z) =0, V]z| > 3;
P(x) €[0,1], V()| <1, Yz € RV,

Let ¢ (x) = (%), and set A, = {x € R" | n < |2] <3n}NQ, A, = Q/A,, B, = {z ¢ R" | |[z] <n}NQ,
and B = {z € R" | || > n} NQ.

Define u,, = tnu, thus u, € L>(Q) and |u,(z)| < |u(z)|. Certainly, u, has a compact support and it
is in L (Q). Since Vu, = ¥, Vu + uV,, we have that Vu, € LPO)(Q) + LIO)(Q) if both of the terms
of the sum are in LP()(Q) + L0 (Q). Since 9, € L®°(RY) and Vu € LPO)(Q) + L10)(Q), we deduce that
VY, Vu € LPO)(Q) + L1O)(Q). Since Vi, vanishes in A%, |A,| < +o0, Vb, € (L®(RN)) and u € L>®(Q),
then uVe,, € LPO)(Q) 4+ LIO)(Q). We conclude that u,, € Xj0c(Q) N L¥(Q).

We also observe that

/V(x ‘u_un|04($ de/M|u|a($) dr = 0,(1),
a(z)
Q

where 0, (1) denotes vanishing function as n — 0. Thus, |u — — 0 as n — +o0.

iz @)
We only need to prove that

|Vu — Vun|Lp(«)(Q)+Lq(«)(Q) = o, (1).

Using (iv) of Proposition 3.2, we deduce that Vu € LP()(Ag,) N LI (AL,).
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We observe that

|(1 - ¢n)vu|LP(‘)(B%)+LQ(-)(BTCL) < |VU|LP(')(B;)+L‘I(‘)(B$L)

< IVulpoo (agunse) VUl (ae ey = on(1), (27)

and

By (27) and (vi) of Proposition 3.2, we have

IVu = Vun| ooy @)1 10 @) S VU= Vual oo g4 rao () T 1V = Val oo (ge )+ 1ao) (52
= |Vu— Vunle»(B;)Jqu("(Bﬁ)
<= )Vl oo 3oy Lo 8 + UVl 100 (Be) L0082

= |uvz/}’ﬂ|Lp(~)(An)+Lq(-)(An) + On(l)

1
ﬁ |U|Lp(«)(An)+Lq(.)(An) + On(l)

1

1
=, |u|Lp(‘)(AumAn) + n |U‘Lq(~>(AzmAn) + on(1)

<

1 1
< n |u|Lp(,>(An) + n |U‘LQ(‘)(ATL) + on(1).

We have
1 1 1
Sl a,) < S lulpeo (aana,) o TUlEeo (a0
1. 1
< ” |[Ay|P® esssup |u| + o |u|Lp(')(AnﬁAa)
1 1
S |ul Lo (4, mAsnpa)) + -~ |l 1o (A, e nip<al) T+ On (1)
< Lo + 1 +on(1), where € € RY
= M LeO (nacnp>a)) T, MLrO (AnnAgnlp<al) T Onlt)
1
P +0,(1).
n LP(.)(AnmAﬁﬁ[p<a])

By Holder’s inequality we obtain

p(z)

N 1
" L7 (ApnAagnlp<al) [P |G (4 Aaenp<a])
A,NASN[p<al u
© 1 1/(2) (&)
<2 |u|ia(AnﬂAﬁﬂ[P<a]) G) [An]
€3]
<C |u|ia(AnﬂAiﬂ[p<Dé])
Therefore
1
—u - On(l)a
n LrC) (A,NALN[p<al)
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hence

1
E ‘u|LT’(')(A,L) = On(l)

Analogously, if p < g < p*, we have

1

< 1
n ‘U|Lq(-)(,4n) =

—Uu

- +0,(1) = 0,(1).

La) (A,NAEN[g<al)

Therefore

|Vu — vun|LP(-)(Q)+LQ(-)(Q) = on(1).

Therefore, we conclude that u, — u in X.
By (26), we have

*(x )t V(x a(z) )t
/|un|p @) gz < C(gp ) [/ () |y | @) de + |Vun|1£p<'|r)q(Q trao@ 1](10 )
Q Q

%)t
Clfp S8 u]*® d + [Vul?, Hley 4 ooy + 277

Since u,(x) = u(z) a.e. z € Q, by Fatou’s lemma we have

x (37) a(x %)t L)
/|u|1’ @ g <0[/ ") da 4 [Vl 5 e AP Ve e X(Q) 0 LE(Q),
Q

a(z)

where C > 1 is a constant independent of w.
Case 3: For any u € X (9), we will prove that (26) is satisfied.
Forn=1,2,---, let

i () = { u(z), if |u(z)|] <n,

nsgnu(z), if |u(z)| > n.

Then u,, € X(Q2) N L>(0). Notice that

a(x)

()

/ V@) 1 (22 da < / ? ()@ da: and / IV ()P dar < / V()@ da.
Q Q Q Q

By (28) we get

a(z)

)+
|un| dx + |v“n|Lp( )(Q)+Lq( )(Q) + 2](p )

/|un|;0*(z) dz < C[/ V(z)
ax)
Q

Q

|4 a(x O+
Cllo oz((;f) Jul* da + |v“|}£p<+)q§2)+m< o) T 2]
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Since u,(x) = u(z) a.e. € Q, by the Fatou lemma we have

T (‘r) a(x %
/ u”" ) da <C[/ i " e+ [FU 5 sy + 2 < 4ov.

We conclude that v € LP"()(Q), which means that X ¢ LP"()(Q). O

Corollary 3.13. Assume conditions of Theorem 3.12. We have the following properties:

(i) for any u € X(Q), Ypu — u in X(Q);

(ii) for any u € X, we have uc = u xj. — u in X (where jo(z) = e Nj(%) and j : RN — RT is in
C>(RY), a function inducing a probability measure);

(iii) for any u € X, there exists a sequence {u, }C C°(RYN) such that u, — u in X.

Proof. (i) The arguments are similar to the proof of Theorem 3.12 (ii). For any u € X, by Theorem 3.12,
we have u € LP ()(Q). Similar to the proof of (i) of Theorem 3.12, since V), vanishes in AS, |A,| <
400, Vb, € (L¥(RN))N and u € LP"()(Q), we conclude that uVi, € LPO(Q) + LIO(Q).

We have

1 2 1
-~ [ulpocra,y < o Ul oy any [Anl™ < Clulpercya,) = on(1).

Analogously, if p < g < p*,

1 2 B EE
- ulpacy(a,) < - (] o3 () AR TO 7@ < Clul ey a,) = on(1)-

Similar to the proof of case (ii) of Theorem 3.12, we conclude that u, — u in X ().

(ii) By the method of mollifiers, we have u. — u in L*)(RY) as ¢ — 0. Moreover, if we write Vu = a+b,
with a €(LPO)(RY))N and b €(L2O) (RV))N | we have Vu, = Vuxj. = axj.+bxj., with axj. € (LPO(RN))NV
and b * j. € (L) (RN))N. Therefore

Vue — VU\LP<->(Q)+Lq<->(Q) < laxje — alLlJ(-)(Q) + b je — b|L<1(-)(Q) — 0.

Thus v, — v in X.
(iii) This follows from (i) and (ii). O

Theorem 3.14. Assume conditions of Theorem 3.12.
(i) For any o < s < p*, the space X (Q) is continuously embedded into L) ().
(ii) For any bounded subset Q@ C RN, there is a compact embedding X ()= L") (Q).
(iii) We also assume (Hy )-(iii) and s(-) € C(RY) is Lipschitz continuous and

a() <s(-) <p*(), in RY. (29)
Then there is a compact embedding X —L5() .
Proof. The proofs of (i) and (ii) are trivial. We only need to prove (iii).
From (i) and Theorem 2.6 (interpolation theorem), it remains to prove that |un|,) — 0 if u, — 0 in X.

Obviously, we have

A = sup ||uy| < oo.

n—oo
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For any € > 0, there exists R > 0 such that

+
Viz) > 0‘7 Vx| > R.

Set
B = Br(0) .
The following mapping is linear and bounded

Pp:X(Q) = X(B):u—uP.

It follows that u, |p— 0 in X (B). From the compactness of the embedding WP()(B) «— L*()(B), we have

lim |u? =0
n—o0o | n |La(')(3) ’

which implies that for any € > 0, there exists N > 0 such that

/|un|a(z) dz < C'/ V(z) |u£g *®) <& Vn>N.
a(z)
B

B

From (Hy )-(iii), we obtain

\%
|t |2 da < 5/ (z) un |*® dz < (A+1)* ¥V n > 1.

an[jz|>R) 0

Combining relations (30) and (31), we deduce that

/ |un|“®) dz < 26(A+ 1), ¥n > N.
Q

Therefore
Jim | un [Loc) @)= 0,

thus the embedding X < L®() is compact. This completes the proof. O

4. Properties of functionals and operators

(30)

(31)

By (vii) of Proposition 3.2, we deduce that «(x,Vu) is integrable on RY for all v € X. Thus,

Jon @ (x,Vu)dz is well defined. For u € X, it follows by (3) that

/ A(z,Vu) - Vudz + / V() Jul*® do
RN

RN

> / |VulP™) da + / V"™ do + / V() Ju*® da |,

NAAva. RN AL, RN
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and

/A(x, Vu) - Vudz + / V(zx) |u|a(z) dx
RN RN

< o / (V"™ da + / (V"™ da + / V() [ul*® dx
RN

NNAva RNNAS,

where ¢; and ¢ are positive constants.
Similarly, using (3), we get for all u € X

/%(w,Vu)d:c+/M|u|a(z) dx
a(z)
RN RN
sal [ owar@ws [ v @i [ Do) (33)
a(z)
RN

NAAvay RNNAS,

and

/d(x7vu)dx+/%|u|“(“ dz

RN RN

< co / \Vu\p(z) dx + / \Vu\q(x) dx + / Vix) |u|°‘(f”) dx
a(z)

NAAvs, RNNAS,, RN

We say that u € X is a solution of problem (&) if

/A(x,Vu) -Vodx + / V(z) |u|a(w)_2 wvdx = /f(x,u)vdas, Yo e X.

RN RN RN

It follows that solutions of (£) correspond to the critical points of the Euler-Lagrange energy functional
® : X — R, defined by

a(z)

RN RN

D= /,Q{(x,Vu)dx—l— / Viz) |u|*®) da — /F(w,u)dw.
RN
Define functionals ® ./, ®,,®; : X — R by
V(z)

Do(u) = /%(m,Vu)dac, D, (u) = / e ‘u|a(w) dz, ®s(u) = /F(:U,u)dx.

RN RN RN

Lemma 4.1. Assume the structure conditions (A1) and (Hy )-(i). Then the functional ® o is convex, of class
C*, and sequentially weakly lower semicontinuous in X . Moreover, ', : X — X* is bounded.

Proof. If u, — u in X, then |[Vu, — Vu| ), po) — 0. Thus Vu,, — Vu a.e. in RY. By Lemma A 4,

Doy (up) < /C(;zf(x, Vu) + o (x, Vu, — Vu))dz.

RN
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From (vii) of Proposition 3.2, we observe that {«/(z, Vu, )} is uniformly integrable. By the Vitali theorem
(Theorem A.3 of [42]), we have liIJIrl Do (up) = Poy(uw). This means that ® o is continuous.
n—-+0oo
Next, we prove that ®’, : X — X* is bounded.
For any ¢ € X, there exists v € (LPO))N and w € (L)Y such that ¢ = v + w and Vol o) ypaer =

0] oc) + [w] oy Since p < g, we have (g(z) — 1);25205 > g(x) and (p(x) — 1) ;525 < p(x). By Young’s

inequality, we have

19, )| = sup / Az, Vi) Voo
wEX,|lpll=1 "

< sup / |A(x, Vu)| |v|dx +  sup / |A (2, Vu)| |w| dx
eeX lloli=L), eeX llgll=LJ,

< sup O / (VP | do + / Va7 ) da
peXllel=t I v
Vu Vu

+ / VP || dz + / V7 ] d)

RNNAv. RNNAS,

_1y_p@) "
< s 20 / V" 4 o) d + / V) DT 4 @ gy
peXllell=1

]RNﬂAVu RN mACVu

q(z)
+ / V| PO DT 4 0|7 da + / (V| 4 Jw|) dz)

RVNNAv. ]RNOACV'U,

< sup 40 / V@ do + / Va7 da

S
eexlol=t S exhe
+/\v|p(m) dx+/|w|q(z) dr)
RN RN

< 40( / |VulP™) de + / V"™ da + 1)

RNNAvw RNNAS,

< 8C(IVul ppo g pacy +1)77 +8C,

Thus, ¢/, : X — X* is bounded.
By (vii) of Proposition 3.2, |[Vu, — Vul;,) e — 0 implies

/ |A(z, Vu, — Vu)[P' @ dz — 0.
RN

By Lemma A.4, we have

|A(Z’,Vun)|p’(w) < C(|A(m,Vu)| + |A(x,Vun . Vu)Dp/(x)
< C(|A(z, Vu) "' 4 |A(z, Vu, — Vu) P @).
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This relation combined with (vii) of Proposition 3.2 and |Vu, —Vu|p ) ey — 0 implies that

{|A(z, Vun)|p/(x)} is uniformly integrable. Similarly, {|A(z, Vun)|q/(w)} is also uniformly integrable. Note
that Vu, — Vu a.e. in RY. Thus, by the Vitali theorem, that

M;wm—¢mw|=Eﬁghh/mwmmm—vawwm

< |A(z,Vuy,) — Az, Vu)|yqpa) — 0asn — 0.

We deduce that ®’, is also continuous. Thus, @ is Cl.
Note that &7 is convex. Obviously, @, is convex. By Theorem A.2 of [42], we deduce that ® ., is sequen-
tially weakly lower semicontinuous in X. O

Lemma 4.2. Assume the structure conditions (A1 )-(iv) and (Hv )-(i). Then the functional ®,, is convex, of
class C' and sequentially weakly lower semicontinuous. Moreover, if u,,u € X and u, — u in X, then
P’ (uy) = @ (u) in X*.

Proof. Similarly with the arguments in the proof of Lemma 4.1, ®, is convex, of class C'' and sequentially
weakly lower semicontinuous.

By (ii) of Theorem 3.14, we have u,(x) — u(z) a.e. in RY. Obviously, the integrals of the family
{V(J?) ‘|un(ar:)|0‘(x)_2 Un () — \u(x)|a<x)_2 u(z) |U(x)\} are uniformly integrable in R"V. By Vitali’s theorem,
we have

hm/V@WM@W@JW@%MMW®4MMWWWx

n—oo
RN

_ / lim V() [fan ()] 0 () — () * O 72 ()| ()| dz = 0

n—o0
RN

Thus, &/, (u,) = & (u) in X’. O

Lemma 4.3. Assume conditions of Theorem 3.1/-(iii) and (’H}), ~ s Lipschitz continuous and a < v <K
p*(-). Then the Nemytsky operator (Nyu)(x) = f(x,u(x)) is weak continuous from X to X*, that is, for
any un, — u, Nyup, — Npu in X*.

Proof. Since u, — u in X, we have u, () — u(z) a.e. in RV, and u,, — u in L") (RY) for any o < (") <
p*(-). We have

INftn - Nyully. = sup /um%wwﬁmmmwm
pEX,|lell=1 by

~ swp L/kj(x,un(x))—-f(w,U(x»)wdx

eX,lell=1
peX lloll=1

R

Su T,up(x)) — f(z,ulx dz
T oexipliet /R(f( (2)) = f (@ u@))e

< sup C{(|un(x)|Lv’(-)(B§?) + |u(x)|L"/(‘>(B§~2)) “Jelpae
PEX, [lpll=1
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F(un ()| porcr (g + (@) Loy ge)) - 1l Lacr } + on(1)

< sup  2C{(Jun(z) - U‘Lw'w(B;() + |u(x)|Lw’(')(B§)) el e
peX,|lell=1

+(Jun(z) — “|La’<-)(3§) + |u<x)|L°¢’(‘)(BI§)) |@lpac b4 0n(1)
< 2C{[u(@)| vy F (@) Larcr (g} + on (D).

Since R and n are arbitrary, we deduce that | Nju, — Nyul|y. = 0asn — +oo. O

Lemma 4.4. Assume conditions of Theorem 3.1/-(iii) and (’H}) Then ®¢ is of class C' and sequentially
weakly continuous, that is, if up, — u in X then ®¢(un) — @¢(u) and ¥ (un) — @ (u) in X*.

Proof. Similar to the proof of Lemma 4.3, we only need to prove the sequentially weakly continuity of
®f. Assume that u,, — u in X. By Theorem 3.14, u, — u in L70) for any a(-) < () < p*(-). From
Proposition 2.2, we have ®/(u,) — ®7(u). O

Lemma 4.5. Assume conditions of Theorem 5.1/-(iii) and (’H}) Then the functional ® is of class C' and
sequentially weakly lower semicontinuous in X, that is, if u, — ug in X, then

D (up) < liminfd(uy,).
n—oo
Proof. According to Lemmas 4.1-4.4, we deduce the C' continuity of ®. Next, we will prove that ® is the
sequentially weakly lower semicontinuous in X.
Assume that (A;), (Hy,) and (H}) are satisfied. By Lemma 4.4, ®¢(u) is weakly continuous. Obviously

lim inf®(u,) > lim inf (P g (upn) + Po(uy,)) — limsup® ¢ (u,,)

n— oo n—oo n—oo
> P (uo) + Pa(ug) — Pr(uo)
= (I)(’LL())

Thus, @ is sequentially weakly lower semicontinuous in X. 0O

Lemma 4.6. Suppose that o/ satisfies (A1) and (Az) (namely o/ (z,-) : RY — R is a uniformly con-
vex function), that is, for any € € (0,1) there exists 6(¢) € (0,1) such that |u —v| < emax{|u|,|v|} or
o (y, *52) < W(@/(%u) + o/ (x,v)). Then we have

(i) @y (-) : X — R is uniformly convez, that is, for any e € (0,1) there exists 6(g) € (0,1) such that for
all u,v € X

ugv) < 6<I>gg(u)—2&—<1>d(v) or (I)d(u—i—v

<I>g¢(u) + ‘I)d(’l)).
B ;

) < (1-4d(e))

(i) if up, — w in X and lim (9, (up) — ¥, (u),u, — u) < 0, then ®y(u, —u) — 0 and

n—roo

IVun = Vulpoe) 4 pacy = 0.

Proof. (i) See Lemma A.3 (Theorem 2.4.11 of [18]). We omit the details.
(ii) For the proof, we refer to Proposition 2.1 in [40]. For the readers’ convenience, we state it here.
Let {u,} be a sequence in X such that u,, — u and

lim sup (9, (uy,), up — u) < 0.

n—oo
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Since the sequence {u,} is weakly convergent, then it is bounded, hence ||u,|| < R for all n. Since ./ is
locally bounded, we deduce that < (u,) is bounded. For a subsequence, we may assume that ® g (u,) — c.
By weak lower semicontinuity,

Doy (u) < lminf® gy (uy,) = c.

n—oo

On the other hand, since ® . is convex, we have

Doy (u) > Doy (un) + (P (un), u — uy) -

Using lim sup (@, (uy,), un, — u) > 0, we deduce that @, (u) > c. Thus, &/ (u) = c.
n— o0
Also we have that (u,, +u)/2 — u, and again by lower weakly semicontinuity,

c=Pqy(u) < 1iminf¢d(u7l tu

n—oQ

)- (34)
If we suppose the contrary, then there exist € € (0,1) and a subsequence {uy, } such that

o Doy (un,
D~ 1y, 2 ¢ 2 F Parltns),

Let 6 > 0 corresponding to the uniform convexity of @, over the ball B(0; R) C X. Then

Do (1) + Py (Uny)
2

Up,, + U

Doy ( 2

) <(1-9)

— (1 —=¥)cas k — oo,

which contradicts (34). Thus, @4 (u, —u) — 0 in X.
By (vii) of Proposition 3.2, we have |Vu, — Vu|;,0), po) = 0. O

Define p(-) : X — R as
p(u) = /sz(x,Vu)dx+ / % |u|04(m) dz,

RN RN

and we denote the derivative operator by L, that is, L = p' : X — X* with

L(u),v) = | A(z,Vu)Vvdz + [ V(x w2 yudz Vu,v € X.
(L(u),v)

RN RN

Lemma 4.7. Under the structure conditions (A1) and (Hy )-(i), we have the following properties.

(i) L : X — X* is a continuous, bounded strictly monotone operator.

If (A2) is also satisfied, we have

(i) L is a mapping of type (S4), that is, if up, — uw in X and n@o (L(un) — L(u),up, —u) <0, then
Up — U N X;

(iii) L : X — X* is a homeomorphism.

Proof. (i) It follows by Lemmas 4.1-4.4 that L is continuous and bounded.

Denote g(t) = @y (t(u — v) + v) + P, (t(u — v) + v). Note that since &7 is strictly convex, then t —
D (t(u — v) + v) is convex. Combining this information with the inequality

[(elP 72 = P2 ) =m)] - (el + D> = (oD lg =l if1<p<2,
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)— z)— 1 .
(P2 =PI 2 ) —m) = G 6 =l ifp =2
we deduce that
0<g'(1)—g'(0) = (L(u) — L(v),u — v), for any u # v in X.

Thus, ¢'(t) is strictly increasing, hence L is strictly monotone.
(ii) By Lemma 4.6, we deduce that L is of type (S4).
(iii) By the strict monotonicity, L is an injection. We observe that

a(z)
i Lo o Jo Al Ve Vude 4 Jo V@) ™ de
ful—>+o0 |lull l[ul|=+o0 [ ]

hence L is coercive. Thus, by the Minty-Browder theorem, L is a surjection (see [51, Theorem 26A]). Hence
L has an inverse mapping L' : X* — X. Thus, in order to show the continuity of L', it is sufficient to
establish that L is a homeomorphism.

If fo, f € X*, fo— f,let u, = L7 fn), u = L7(f), then L(u,) = fn, L(u) = f. So {u,} is bounded
in X. Without loss of generality, we can assume that u,, — ug. Since f,, — f, then

lim (L(u,) — L(ug), un —up) = lim (fn — f,un —ug) =0. (35)

n—+oo n—-+o00
Since L is of type (S4), un, — ug in X. Note that f,, — f and L is continuous in X, then we conclude that
L(up) = lim L(u,) = lim f, = f. Note that L is a surjection, so ug = u, then L™! is continuous. The
n—-+oo n—-+oo

proof of Lemma 4.7 is complete. O

Lemma 4.8. We assume the structure conditions (A1)-(A2), (Hv), (Hp)-(H37), 1 < a(-) < p*()ZiE% and
a < p. Then ® satisfies the Cerami compactness condition, that is, if {u,} C X satisfies ®(uy,) — ¢ and

|9 (un)l| x« (1 + ||unl|]) = 0, then {u,} has a convergent subsequence.

Proof. Assume that {u,} is bounded. By Theorem 3.14, the embedding X < L") is compact. Thus, up
to a subsequence, we have CID’f(un) — CID’f (up) in X*. By Lemma 4.7, L1 is continuous from X* to X, then
up, — L7 to s (up) in X.

We only need to prove that {uy} is bounded in X.

We argue by contradiction. Suppose not, then there exist ¢ € R and {u,} C X satisfying:

O(un) = ¢, [ (un)llx- L+ [[unll) = 0, fJunll = +o0.

We observe that

1

1
s(x) tn

< —|

1
Ls() S -

v,
s(z)

S
Lr()

Un|psC) IVun| ooy + Cltn] o) -

Thus,

ﬁun < C'||uy]|. Therefore (®'(uy), ﬁun) — 0. We may assume that

¢t 12 ®up) — (& (un), - ) Un)

/%w Vuy,)d / (z) S dm—/F(x,un)dac
a(z) J
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_{/ Az wn)v%dw/%un

RN

—/S(%)f(%un)undx—/#x)unA(%Vun)Vsdm}

RN RN

a(z) dx

Lu x, Vu,)Vsdz B ) [ty | dz
2/32@) Al V) Vst + [ = L) ) d

RN

/{ (@) — F(z, un)}da.

It follows that

xun - T, up) pdx L—L z) [un | dz
/{ F( n>}d+R£<() V@)

< Cl(/ |tn| |A(x, Vuy,)| dx + 1)

RN

p(x)
|A($,Vun)‘1)(w)—1 / () )
S p(z)—1
A B o R [ [P [In(e + )75~

RNﬂAvun RNmAvun

q(x)
|A(x7vun)|W / q(m) -
n 1 a1
+o / (e + [un]) dr + C(0) |t [In(e + |un))] dz + Cy

]RNOACVML

oC / Nﬁuﬁu"d o 4C0) [ ual line PO

RNNAG,

RNﬁAvun

+C(0) / fua| ") [In(e + fun )} da 4 1, (36)
RNmACWn
where o is a small positive constant.

Note that 1 € X, and HWH < Cs |Juy||. Let be a test function. We have

Uy
et Ta(e+lunl)

Up,
RN
V() [u,| ")

A n ——d — — d 1
/ z, V) (e+|un|) “/ e+ [y 22 +el)
RN

A Az, Vi)V, | _/ [un| Az, Vi) Vi, /V( ) )
In(e + [un]) (e + [unl)[In(e + |ua|)]? (e + Junl)

dx + o(1).

We observe that

|un| < 1 1
(e + [un|)[In(e + [un)]* ~ 21n(e + [un|)’
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It follows that

1 [ A(z,Vu,)Vu, V() |t
= [ A V) Vil @)l 4o
2/ In(e + |uy|) m+/ In(e + |uy|) vt
RN RN

Up,
< [t
RN

3 [ Az, V)V, V() Jun| ™
<= ———d —d Cs.
*2/ In(e + [un]) “/ (e + [u,) 06
RN

By (36), (37) and condition (#%), we have

_Un L 2l 19 g
R[ f(x’u")ln(e+|un|)d +RZ(a(m) s(x))v( ) [un] d

- / (Jua) ™™ + [un ") de

[un|<M

(HZ T, U
/{ n)Un F(x,up)}dx + /((1) - %)V(m) |un|a(m) dx

RN
(.’IJ, Vun)vun / p(x) —
< . 1 ANPE 1
07{0/—1n(e+|%|) dz + C(0) [nP@ [in(e + Jun POz
RN RNQAVU”

+C(0) / [ |*) [In(e + u, )] da + Cs)

RNNAG,,

a(z)
2 e+ Iunl) In(e + [un|)
RN

+C(o) / [ " [ + )P dae

RNﬂAvun

+C(0) / a7 [In(e + |un|)] 7@ dz + Cho.

RN nA"Vun

Thus, from condition (H2) and the above inequality, we deduce that
f

. 1 1 ,
J 10l e+ a2+ [ (o5 = V@ ) da
RN RN
_C / (|un|a(w) + |un|7(x))dx
lun|<M

§C’11/f(m,un)hleuﬁdm—i—/(———)‘/(x) |t | @) g
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< Cra / [P (e + )PV 4 / | *) [In(e + [un )] + Cry

RNﬁAvun RNHACVun

< Ci2 / (Jun P + Jun| Y (e + [u,])] 9@ da + Cro.

RN

Notice that V(z) — oo as |x| — oo, then

L w12 g — w19 4 1y PO g
[~ V@ ¢ [ ual™ )

RN |un | <M
1 1 1 ()
> = [ —
RN
Therefore
/ | [In(e + fun )2l + / (%) - %)V( 2) |un|*® dz
RN
<C /f(x " 7dx+/(ifi)1/(x) | da
= T (e + [un ) a(z)  s(x) "
RN RN
< Oy / (|tn]P @ + [un |7 [In(e + [un])]9® " da + Cho. (38)
]RN

Claim 1. The sequence { [n f(,un) |)alx} is unbounded.

Un
In(e+|uy

We suppose the contrary. Up to a sequence, we obtain that { [ox f(z,un) da:} is bounded.

Let & > 0 satisfy e < min{1,a~ — 1, =5 }. Since ||’ (u,)] x.

In( e+|u )
U || — 0, we have

/A(x,Vun)Vundx+/V( ) |t |4 da

RN

_ /f(:c,un)und:nJrO(l)

=R[ )l )1 [ £ o | ool
wye [ (U@ O]
< Co(1+ fual) / sl S C0 ] o)

< Cra(1+ [Jun|)'* + Cra.

On the other hand, we have

/A(w,Vun)Vundx+ /V(x)\un|°‘<x> d

RN RN

el / IV [P da + / V|1 d) + /V(x)|un|“<”>dx

Ava, AS,, RN
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2 C(|Vun|;2p(.)+Lq(.) + |an|z$(') - 2)

> Clun || —3C.

It follows that the sequence {u,} is bounded, a contradiction. Thus, Claim 1 is valid. Therefore

{/(|un|p(m) + un " [In(e + |up|)]9® " da} is unbounded. (39)
RN

Note that a > ¢ in RY, then there is a positive constant M# > 1+ M (where M is defined in (#7))
such that

[In(e + [¢])]*®) 9@ > 14C1,, V |t| > M#, Vo e RV,

Claim 2. We have

— 1
T [ (o el e+ D) e < 5[ (a7 e+ )1
n—oo

|un|>M# RN
We argue again by contradiction. Up to a sequence, we have
1
([ 4 ") I + [ )7l > / (" + ") I + Ju )7 . (40)
Iunle# RN
Combining (39) and (40), we obtain
/ (|Un|p($) + \un|q($))[ln(e + |un|)])9® " Yde — +o00 as n — +oo. (41)
‘un‘ZM#
According to the definition of M# and (40), we deduce that
14C, / |7 [In(e + |y )] 9@~ dae
|1 | > M#

: / [ ") [In(e + Ju )] der

[un|>M#

= / ‘unlqm) [In(e + |Un|)]a(m)71d$
RN

<201 [ (a4 un ) e+ o)1)+ Cre
RN

<1204 / |7 [In(e + 1 ]2~ + Cho.

| > M#

Therefore, f‘u > M a7 [In(e + |un|)]?®~tdz < Cia, which contradicts (41). We conclude that
Claim 2 is valid. From Claim 2, for large enough n, we have
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x x xT)— ]- xT xT x)—
([ 4 ") I + )7 > / (P + fuan| ) I - Ju )7 . (42)

[ | < M# RN

Relations (38) and (42) yield

1 1 u, |P@)
o W(z) |
(a(x) s(a:)) (z) M# v
RN N[y, | <M#]
1 1 Up |@(2)
< ———)V — d
- / (oz x) s(:v)) (z) M# v
RN N[|uy | <M#]
() ()
< 204 / ((M#)p(ac) ]\127; i + (M#)q(w) Un_ | )[In(e + |Un|)]Q(w)_1da:—|—C’12
RN A[|un, | < M#]
+ | w p(x) + | w q(z) z)—
<20n [ et ] e ety | linte + a1 e+ o
RN N[y | <M#]
Un p(w)
< A(M#)207 10y, ‘W dx + Cyy.

RN ([|un | < M#]

Notice that V(z) — 400 as |z| — 400. Then there exists R > 0 such that

1 1 .
- = #\2q
Therefore
()
(M#)2q+012 / (M#)q+ Z\%ﬁ " da < Cha.

RN AO[|uy |[<M#]

Obviously, {fRNn“unKM#](M#)f|%’q<x) dx} is bounded. We deduce that the sequence
S engs (" + | ") In(e + fun])]7*) 1 da is bounded,

Thus, {fRN(|un|p(m) + Jun TN [In(e + |un|)]7@~1dz} is bounded, which contradicts Claim 2. The proof
of Lemma 4.8 is complete. O

Denote

x—wz9  Vp(ao)
"z — a0l [Vp(zo)]

B(z0,6,6,0) = {z e RN | § < |z — x| < € > cos b},

where 6 € (0, 5). Then we have the following property.

Lemma 4.9. (see [/2, Lemma 2.8]) If p € C*(Q), xo € Q satisfy Vp(xo) # 0, then there exists a small
positive € such that

(x — o) - Vp(z) > 0,Vz € B(xo,¢,46,0), (43)

and

max{p(z) | x € B(zo,¢)} = max{p(z) | z € B(xo,¢,¢,0)}. (44)
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Lemma 4.10. Suppose that F(x,u) satisfies
Ch )@ [In(e + [u)))*® < F(z,u), V|ul >M, VzeQ,

where a(z) > q(x) on Q, and x¢ € Q with Vp(xg) # 0. Let

0, T — x| >¢€
h(gc):{g' | ol ’

x—xo|, |r—z0| <€

where € is defined in Lemma 4.9. Then we have

/&7(33, Vith)dz + / % |th\°‘<x) dx — /F(x,th)dx — —00 as t — +00.

RN RN RN

Proof. Note that

/%(:&Vth)da: <C / 1P da for ¢t > 1.

Q B(zo,e)
We observe that
|4
c / 7 dor + / % |th|*™) dz — / Cy [th|") [In(e + [th])]*@dz — —occ as t — +oo.
alx
B(zo,¢) B(=o,¢) B(xo,¢)

The proof of Lemma 4.10 is complete. O
5. Proof of Theorem 1.1
Let us consider the following auxiliary problem:
—divA(z, Vu) + V(@) [u*® 2w = fH(z,u) , (E)

where

— f(l',u), if f(x,u) >0
fH(z,u) = { 0, if f(z,u) <O0.

The corresponding Euler—Lagrange functional is

a(x)

RN RN

u) = x, Vu)dz Muam x — x,u)dx,
<1>+()R[¢(V)d+/ [ *@) g /F+( )d

where FT(z,u) = [ f*(z,t)dt.

Similar to the proof of Lemma 4.8, we deduce that ®* satisfies Cerami condition.

Next, we prove that ®T (u) satisfies the conditions of mountain pass lemma.

Obviously, ¥ (0) = 0. By Lemma 4.10, we have ®*(th) — —oo as t — +o00, where h is defined as in the
proof of Lemma 4.10.

We only need to prove that there exist » > 0 and ¢ > 0 such that ¢(u) > ¢ > 0 for every v € X and
Jul| =7
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Since a(x) < y(x) < p*(z) and v(-) € C(RY) is Lipschitz continuous, the embedding X «— L) is
compact, then there exists Cy > 0 such that

ul, oy < Collull  Vue X.
By the assumption (’H}), we have

1

p(x)

Let o € (0, 12+ Vo), where Vj is defined in (Hy)-(ii). We have

1
/d(x7vu)dx+/@|u|a(x) dl‘—O'/ |u|a(a:) da
RN

Fta,t) <o— [t|"™ + C(o) |t]"™, V(z,t) € RY x R.

a(z) p(x)
RN RN
>3 / (o (2, V) + % P da
RN

Since v(-) € C(RY) is Lipschitz continuous and a(z) < v(z) < p*(z), we can divide the domain RY

into a sequence of disjoint equal small cubes Q; (i = 1,--- ,00) such that RY = OleQ—Z and
1=

sup g(x) < infr(z) < supy(z) < infp*(z).

i i

Let

€= 1S1§1Sfoo{1£1211f’y($) — suip Q(Z‘)}’

By our assumptions, we observe that € > 0 as long as the side length of €; is made sufficiently small.
Let [[ull, denote the Orlicz—Sobolev norm of u on Q;, that is,

[l Q= |VU|LP<~)(gzi)+Lq(~>(gzi) + |U|L3(A>(Qi)-

We observe that [lulg, < [|ul|, and there exists §; € Q; such that

0y = [l e,
Q;

Jull, < [ (e v+ % 1))

Q;

When ||| is small enough, we have

C(U)/|u|7(m) dx:c*(a)z/w@f) dz
Q i:lﬂl_

= C(0)Y [ul}) g, (where & € )

=1
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<C ul|X&) (by Corollary 8.3.2 of [18
Q;

=1
e +
< Ol S lulls;
=1

=Clul*Y /(%(x, Vu) + V=) u|*®))da

= a(@)
Q;
— Ol AR CO NTNCO N
= C|lul R[W V) + e ")
1 o)+ V@) )y g,
< /(ﬂ(,va(x)u )da,

Therefore

Vix)
a(x)

|u|°‘(m))dx when ||u|| is small enough.

1
> 5/(%(:5,Vu)+

RN

Thus, there exist r > 0 and 6 > 0 such that ®(u) > § > 0 for every u € X and ||ul| = 7. Then (£7) has
a solution u, and it is easy to see that u > 0, so u is a solution of (&).

Similarly, we establish the existence of a non-positive solution. 0O
6. Proof of Theorem 1.2

In order to prove Theorem 1.2, we need to recall some preliminary results. Since X is a reflexive and
separable Banach space (see [56, Section 17, Theorems 2-3]), there exist sequences {e;} C X and {e;} Cc X~
such that

X =span{e;, j=1,2,---}, X* :span“’*{e;,j: 1,2,---},

and

For convenience, we write
k 00
Xj = Span {ej}, Yk = '@1Xj, Zk = @kX] (45)
j= J=

Lemma 6.1. (see [/2, Lemma 5.1]) Assume that © : X — R is weakly-strongly continuous and ©(0) = 0,
v > 0 is a given number. Let

Br = Br(v) = sup{O(u) | |lul| < v,u € Zy}.

Then Br, — 0 as k — oo.
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To complete the proof of Theorem 1.2, we recall the following critical point lemma (see, e.g., [58, The-
orem 4.7]). If the Cerami condition is replaced by the well known (P.S.)-condition, we refer to [9, p. 221,
Theorem 3.6] for the corresponding version of the critical point theorem.

Lemma 6.2. Suppose that ® € C1(X, R) is even and satisfies the Cerami condition. Let V¥, V= C X be
closed subspaces of X with codim V' +1 = dimV ~, and suppose that the following conditions are fulfilled:
(1°) ®(0) = 0;
(2°) 37 >0, v > 0 such that Vu € V*: |jul]| = v = ®(u) > 7;
(3°) 3p > 0 such that Yu € V=: ||u|]| > p = ®(u) < 0.
Consider the following set:

I'={geC%X,X)|gisodd, g(uv)=u ifuc V™ and ||lul| > p}.

Then

(a)¥6>0,g€l, S Ng(V™)#a, here S§ ={ue V*t||ul| =6}

(b) the number w := inf sup ®(g(u)) > 7 > 0 is a critical value for ®.

g€l yev-

Proof of Theorem 1.2. According to our assumptions, ® is an even functional and satisfies the Cerami
compactness condition. Let V," = Z;,, which is a closed linear subspace of X and V,:' DY 1=2X.

We may assume that there exists z,, € 2 such that Vp(z,) # 0.

Define h,, € Co(B(xn,en)) as

o () = 0, |z — 2| > en
" En — T —xn|, |T—2xn] <eén.

By Lemma 4.10, we may let small enough &,, > 0 such that
O (th,) — —o0 as t — +o0.
Without loss of generality, we may assume that
supp h; Nsupph; =0 , Vi # j.

Set V,. = span{hy,---,ht}. We will prove that there are infinitely many pairs of V,:r and V,, such
that ¢ satisfies the conditions of Lemma 6.2. We also show that the corresponding critical value wy =
inf sup ®(g(u)) tends to +o0o when k — oo, which implies that there are infinitely many pairs of solutions

ueV,~
to the problem (&).
For any £ =1,2,---, we prove that there exist pr > 7, > 0 and large enough k such that

(A1) b :=inf {®(u) |ue V;",|Ju| =7} — +o0 as k — +oo;
(A2) a : =max{®(u)| v eV, ,|jul| =pr} <O0.

We first show that (A;) holds. Let o € (0,Vp) be small enough, where Vj is defined in (V). By (#}),
there exists C'(0) > 0 such that

F(z,u) < olul*® + Clo) [u"™, VazeRY, VueR.

By computation, for any u € Zj with ||ul| = 7, = (20(0)&6,’?)1/(“7_“), we have
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u) = /%(x,Vu)dx—f—/MuP(I) dm—/F(m,u)dx

a(z)
RN RN RN
> 2¢4( / (VP dz + / |V 1) dx)+/%|u|“<m> dz
RNNAvw RNNAS, RN
—U/|u\a(m) dx—C(U)/|u|V(m) dx
RN RN
> e flul® = C() [ul}) = C (where ¢ € RY)
>{mw“ C(0), if Julpary <1,
2 o ot Nt
cllull® = C(@)By lul™ ,if Julpac > 1,
o~ +
> c1 [|ull C(o)By IIUH” —C(o)
a a — 1 vt /(e =t
=cl<20(a)—ﬁz jo /@ — 0(0)] (20(0 o) h ) /e =10) — (o)

C1

22C0) )T~ Cl0) = oo (as k- o0),

because o~ < v+ and 8, — 07 as k — co. Therefore, by — +o00 as k — oo.
Now, we show that (A3) holds. By Lemma 4.10, we deduce that

®(th) - —oco0 as t — +oo, VYh eV, =span{hy, -, hx} with || h|=1,

which implies that (A4s) holds.
We conclude that the proof of Theorem 1.2 is complete. O
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Appendix A

In this section we present some auxiliary results.

Define
L opw L g
H(z,t) = p(x) q(z)  plx)
— @) <.

p(z)

Lemma A.1. Suppose that 1 < p(-) < q(-) < N or1 < ¢q(-) < p(-) < N. Then H(z,-) is uniformly convez,
that is, for any € € (0,1) there exists 6 = d(¢) € (0,1) such that either |t — s| < e max{t, s}, or

(1-9)[H(x,t) + H(x,s)].

DN | =

H(x,(t+3s)/2) <



Q. Zhang, V.D. Rddulescu / J. Math. Pures Appl. 118 (2018) 159-203 195

Proof. We denote

Pq(x) (8) =

It follows that

SRS T
plx)  qlx)”

We have

H(z,t) = @44 (t) for any t <1
and

H(z,t) = ¢, () for any t > 1.

We divide the proof of the lemma in two steps.

Step 1. We assume that 1 < p(-) < q(-) < N.

We distinguish the following four cases. Without loss of generality, we may assume that ¢ > s and
[t — s| > et = e max{t, s}.

Case (i): s <t <1.

By Lemma 1.9 of [20], we know that ¢4;)(+) is uniformly convex, then for the former £ > 0, there exists
61 = 61(e) € (0,1) such that either |t — s| < emax{t, s}, or @ ) (2, (t+5)/2) < $(1 = 61)[Pg) (2, t) +
©q(x) (2, 5)]. We deduce that

H(z,(t+s)/2) < (1 —01)[H(x,t) + H(x,s)].

N | =

Case (ii): 1 < s <t.

Note that ¢, (-) is uniformly convex, then for the former ¢ > 0, there exists d2 = d2(€) € (0,1) such
that either |t — s| < emax{t,s}, or @) (2, (t 4+ 5)/2) < 2(1 = 62)[0p) (@, t) + Yp) (@, s)]. Notice that
(4 1) > 0. Therefore

p(z)  q(=)
1 1
Pp(a) ((t+5)/2) — (m - M)
< 21— ) (1) + Py ()] — (s — —)
— 2 p(=) p(@) p(x)  q(x)
1 1 1 1 1 1 1
< 5(1 — 02 ){[pp(a) (1) — (M - m)] + [©pz)(s) — (ITJJ) - @)]} - 52(@ - @)
1 1 1 1 1
< 5(1 = 02){[pp(a) (1) — (m - m)] + [Pp(a) (5) — (M - m)]}

It follows that
* 1 * *
Therefore

H(z,(t+5s)/2) < %(1 —02)[H(z,t) + H(x,s)].
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Case (iii): s <1< (t+3s)/2 <t.
We first observe that o7 ) (s) < @q(z)(s) for any s < 1. It follows that

H(z, (t+5)/2) = ©py((t +5)/2)

< 5= B0 (0) + G5 (5]
< 0= 82650 (0) + (8]
_ %(1 — 85)[H(w,t) + H(z, s)].

Case () s < (t+s)/2<1<Ht.
We only need to prove that exists d5 = d3(¢) € (0, 1) such that either |t — s| < e max{t, s}, or

1 [t+s\7® 1 < 1 1 1 1
_— < —(1—6: @) _ + sq(x)) )
( 2 ) <309 om ( j

q(x) g(z)  p(x)  g(x)
Fix HTS We may let HTS = ¢, then s = 2c — t. Let ¢ vary. Denote
1 1 1 1
g t) = _tp(m) + _ + 2¢c —t Q(I),
T R R T R

hence
g (t) = tP@=1 _(2¢ — 1)4@) =1 > 0 for any t > c.
Thus g(t) is strictly increasing, and then g(t) > g(c + %), where g = 1_5—;/2 satisfies
|t —s| =e0 > elc+ %0) = et.

Since c+ ¢ =t >1, wehave 1 — ¢ <c< 1.

Consider
1 (@)
h(c) = i
1 x 1 1 1 [ x
e (T 2P+ i e T € 31

By computation,

(z)—1 1 T 1 1 1 T
Wi = 9 (et B0+ g sy + (e~ 3)1)
e+ TP+ iy~ sy + iy (e~ DO
g @M+ 3 4 (e )Y
e+ 370+ 5~ T e~ 70T
We claim that h/(c) > 0 for any c € [1 — 5, 1].
Denote
I SR Y B S Lo €04
A v A TAN 7 Bt B A
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We can rewrite f in order to obtain

o) = (et Boyp@-1 L1 €0
£le) = (e + 2@l I+ s

p(x)  qx)
We may assume that ¢ > 3 and 5 < 1. By computation, we observe that f’(c) > 0 as € > 0 is small
enough. Obviously,

€0 _ 1 1 €0 o _
er SOy L1 o 0yq(@)-1
(c+3) @ P 2@ 2

€0, _ 4 _ %0 11 €0 11 e o g@-1
e Rl e Ll s Bl e o s L)
€0 o

_ _ _ q(z)—1
2@ ag@y T 0

Therefore f(c) >0 on [1 — %, 1] when ¢ > 0 is small enough. Thus

K (c) = ()" F(e)>0
T PP+~ o T (e~ ST
for any c € [1 — £, 1]. Therefore
h(c) < h(1).

By Case (iii), we have h(1) < (1 — &5).

Thus, relation (46) is valid for d3 = ds.

Summarizing Cases (i)—(iv), we conclude that H(z,-) is uniformly convex.

Step 2. We assume that 1 < ¢(-) < p(-) < N.

We will discuss this result in four cases. Without loss of generality, we may assume that ¢ > s and
[t — s| > et = e max{t, s}.

Case (19): s <t < 1.

By Lemma 1.9. of [20], we know that ¢,,(-) is uniformly convex, then for the former e > 0, there exists
61 = d1(€) € (0,1) such that either [t — s| < emax{t,s}, or ) (z, (t +5)/2) < (1 — 61)[pg(a) (@, 1) +
©q(x) (T, 5)]. We deduce that

H(x, (t+5)/2) < =(1— 61)[H(x,t) + H(z, 5)].

| =

Case (29):1 < s < t.
For the former € > 0, we need to find out a d; = d2(€) € (0,1) such that either |t — s| < e max{t, s}, or

H(x, (t+5)/2) < =(1 — &) [H(x,t) + H(z, 5)].

| =

By Lemma 1.9. of [20], we know that ¢, (-) is uniformly convex, then for the former ¢ > 0, there exists
8. = 6.(e) € (0,1) such that either [t — s| < emax{t, s}, or @, (z, (t+5)/2) < 2(1 = 6,)[pa)(z,t) +
Pp(x) (:U, s)]

It follows that

1 1
H(z,(t+s)/2) = Spp(x)(xa (t+s)/2) + m — m

<-(1- 5*)[‘?1)(1)(1'70 + wp(w)(x’ s)] + (— TS

DN | =
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- %( O)ep(a) (2,1) + Ppa) (2, 5)]

1 1 ! ! !
:zu—mH@ﬂ+H@@1“*”%@fhmﬂ+«m‘mw

+%(5 = 0)[@p(a) (1) + (o) (2 5)]
_ %(1 — 0)[H(x,t) + H(x, s)]

%(6 0:)[@p(a) (2, 1) + Pp) (@, 8)] + 5($ - ]%)

) 1 1 1 1 1
< U= @)+ Hz, 9+ 50 = 0)(a5 = 2es) +0(0as = o03)
< %(1 — 6)[H (x,t) + H(x,s)] when § = 61

Case (3°): s < (t+s)/2<1<t.
Notice that o7 (%,t) = 4(z)(,t). By Lemma 1.9. of [20], we know that ¢g(;)(-) is uniformly convex.
Thus, for the former e > 0, there exists d, = d.(¢e) € (0,1) such that either |t — s| < e max{t, s}, or

H(z, (t+5)/2) = g (2, (¢ + 5)/2)

< %(1 - 5*)[@(1(@)(5570 + Pg(x) (z,5)]
< 2 (1= 863, 1) + (2 9)]
- %(1 — 6.)[H (x,t) + H(x, 5).

Case (4°): s <1< (t+s)/2 <t.
Fix ”TS We let HTS = ¢, hence s = 2c¢ — t. Let t vary. Denote

pay . L1 1 o pa@
@ T e a0

9(t) =
then
g (t) = tP@=1 _(2¢ — 1)4@) =1 > 0 for any t > c.

Thus g(t) is strictly increasing, and then g(t) > g(c + %), where g¢ = 773 satisfies

\t—s\ZEOZE(c—i—%O):Et.

If s = c¢— %2 > 1, then this corresponds to Case (iii).
Ifs=c—— <1, we have 1 < ¢ <1+ %. Consider
1 p(z) _ 1
he) = oo (77 q(z) 16)

roICRI DR e e | Gl DA
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We only need to prove that h(1) < 3. Then we will get a 5 = d3(c9) = d5(e) € (0,1) such that

1—
h(c) < 03 force 1,1+ %0] as € is small enough.
Denote
1 o 1 &0 1 1
o) = — (14 Q@) 4 = (1 Oyal@) o -~
Moo= @ ) T
We observe that f/(gg) > 0 for g € (0,1), thus
fleo) > F(0) =~ on (0,1]
0 q(ac) s 4.

It follows that h(1) < 3 for ¢ € [1,1+ 2] as ¢ is small enough.
Therefore, for the former € > 0, there exists d; = d1(e) € (0,1) such that either |t — s| < e max{t, s}, or

H(z,(t+s)/2) < =(1—6))[H(z,t) + H(x,s)].

| =

Summarizing Cases (1°)—(4%), we conclude that H(z,-) is uniformly convex. O
Lemma A.2. The function H(z,|-|) is uniformly convex in RV,
Proof. From [18, Lemma 2.4.7], H(z,|-|) is uniformly convex in RY. 0O

From [18, Theorem 2.4.11], we have the following property.
Lemma A.3. Assume (A1)-(Az). Then pos(u) = [o o (x,u)dz is uniformly convex.

Lemma A.4. Assume (A;)-(iii). For any x,&,n € RY, there erists a positive constant C such that
|A(z,& +n)| < C(|A(2,&)] + [Az,n)])-

Proof. We may assume that |n| > ||, hence |2n]| > | + n].
If € +n| > 1 then |29 > 1, and we have

|A(z, €+ 1) < Ca |€ + P

p(z)—1
< { Ca 21|

G2 Cy !
Cs |2n|Q(I)*1

.

2" (Al Inl > 1.
+ z)—1

G20 Cy "

+
24" | Az, )], In| < 1.

IAIA

<
<

If |€ +n| < 1, notice that ¢(x) > p(x). It follows that

|A(z, €+ 1) < Ca |€ +n|*@71

x)—1 x)—1 + x)—1 +
{02 €+ PO < Oy f2nPO T < ooy P < Lo0T A, )] 0| > 1,

< _ z)—
Cy |2n]7 71 < Gaoa" Oy "7 < G229 |A(z, )], In] < 1.

Therefore |A(z,§ +n)| < C(|A(z,&)|+ |A(z,n)]). O
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Appendix B

In this section, we address to the readers several comments, perspectives, and open problems.

(i) Hypothesis (A;)(iv) establishes that problem (&) is described in a subcritical setting. To the best of
our knowledge, there is no result in the literature corresponding to the following almost critical framework
described in what follows. Assume that condition ¢(-) < min{N,p*(-)} in (A;)(iv) is replaced with the
following hypothesis: there exists a finite set A C RY such that ¢(a) = min{N,p*(a)} for all a € A and
q(r) < min{N, p*(z)} for all z € RV \ A.

Open problem. Study if Theorems 1.1 and 1.2 established in this paper still remain true in the above
almost critical abstract setting.

(ii) Another very interesting research direction is to extend the approach developed in this paper to
the case of double phase problems studied by Mingione et al. [14,15]. This corresponds to the following
non-homogeneous potential

G P L Co e
o/ (w.€) = S P+ 2
where the coefficients a(z) and b(x) are non-negative and at least one is strictly positive for all z € RY. At
this stage, we do not know any multiplicity results for double phase problems of this type.

We also refer to the pioneering papers by Marcellini [34,35] on (p, ¢)-growth conditions, which involve

integral functionals of the type

Wht sy /f(x,Vu)dx,
Q

where Q C RY is an open set. The integrand f : Q x RY — R satisfied unbalanced polynomial growth
conditions of the type

€17 S fx,8) SIEIT+1 with 1 <p <y,

for every x € Q and ¢ € RV,

(iii) The differential operator 7 (z, &) considered in problem (&) falls in the realm of those related to
the so-called Musielak—Orlicz spaces (see [39,41]), more in general, of the operators having non-standard
growth conditions (which are widely considered in the calculus of variations). These function spaces are
Orlicz spaces whose defining Young function exhibits an additional dependence on the x variable. Indeed,
classical Orlicz spaces L® are defined requiring that a member function f satisfies

[ < .

Q

where ®(t) is a Young function (convex, non-decreasing, ®(0) = 0). In the new case of Musielak—Orlicz
spaces, the above condition becomes

/(b(x, 1F])da < oo

Q

The problems considered in this paper are indeed driven by the function

lEP@if g <1
O(z, [¢]) = { E|a@) if |¢] > 1. "
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When p(z) = g(z) we find the so-called variable exponent spaces, which are defined by

D(x, |¢]) = [¢P™).

We conclude these comments by saying that the present paper is concerned with a double phase variant
of the operators stemming from the energy generated by the function defined in (47).

(iv) As it has been kindly pointed out by one of the referees of this paper, an interesting double phase
type operator considered in the papers of Baroni, Colombo and Mingione [6,7,14,15], addresses functionals
of the type

w /(|Vw|p + a(z)|Vw|?)dz, (48)

where a(z) > 0. The meaning of this functional is also to give a sharper version of the following energy

w / |Vw|P®) dz,
Q

thereby describing sharper phase transitions. Composite materials with locally different hardening exponents
p and ¢ can be described using the energy defined in (48). Problems of this type are also motivated by appli-
cations to elasticity, homogenization, modelling of strongly anisotropic materials, Lavrentiev phenomenon,
etc.

Accordingly, a new double phase model can be given by

&P +alx)lg]r gl <1

(I)d($7 |€|) = |£|p1 + a(];)|§|q1 if |§| Z 1’

with a(z) > 0.
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