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We prove in this paper a multiplicity theorem of the Ljusternik-Schnirelmann
type for locally Lipschitz periodic funcitonals and related results. The key argument
in our proofs is Ekeland’s variational principle and a non-smooth pseudo-gradient
lemma. As an application of these abstract results we solve a non-linear set-valued
elliptic problem.  © 1995 Academic Press. Inc.

INTRODUCTION

In PDE, two important tools for proving existence of solutions are the
mountain-pass theorem of Ambrosetti and Rabinowitz (and its various
generalizations) and the Ljusternik—Schnirelmann theorem. These results
apply to the case when the solutions of the given problem are critical points
of an appropriate energy functional f, which is supposed to be real and C',
or even differentiable, on areal Banach space X. One may ask what happens
if f, which often is associated to the original equation in a canonical way,
fails to be C' or differentiable. In this case the gradient of f must be replaced
by a generalized one, in a sense which is to be defined.

The first approach is due to Chang [8] and Aubin and Clarke [2], who
considered the case of a locally Lipschitz function f. For such functions,
Clarke [11] defined a generalized gradient, which coincides to the usual
ones if fis C' or convex. Still denoting this generalized gradient by df,
critical points of f are all points x such that 0 € f(x). In this setting, Chang
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[8] proved a version of the mountain pass lemma, in the case when X is
reflexive. For this aim, he used a “Lipschitz version’ of the deformation
lemma. The same result was used for the proof of the Ljusternik—
Schnirelmann theorem in the Lipschitz case. As observed by Brézis, the
reflexivity assumption on X is not necessary.

Our main result is a multiplicity theorem for locally Lipschitz periodic
functionals, their set of periods being a discrete subgroup of the space
where they are defined. This result can be regarded as a Ljusternik-
Schnirelmann type theorem for non-differentiable functionals.

Following [8], authors usually impose measurability conditions to some
a priori unknown functions in order to be able to find af. We first show
that these conditions are automatically fulfilled and then we prove the
existence of critical points, which are shown to be solutions of a multi-
valued PDE.

1. THE THEORETICAL SETTING

Throughout, X will be a real Banach space. Let X* be its dual and (x*, x),
for x € X, x € X*, denote the duality pairing between X* and X. We say
that a function f: X — R is locally Lipschitz (f € Lip.(X, R)) if, for each
X € X, there is a neighbourhood V of x and a constant & = k(V) depending
on V such that

lf(y) = f)| = kly — 2l

for each y, z € V.

We recall in what follows the definition of the Clarke subdifferential and
some of its most important properties (see [10] for details).

For each x, v € X, we define the generalized directional derivative at x
in the direction v of a given f € Lip..(X, R) as

folx,v) = lim sup fy =+ AK) _f()’).

AN0

Then f°(x, v) is a finite number of | f%(x, v)| = k|jv||. The mapping v —
f(x, v) is positively homogeneous and subadditive, hence convex continu-
ous. The generalized gradient (the Clarke subdifferential) of f at x is the
subset df(x) of X* defined by

af(x) = {x* € X* fx, v) = (x*, v), for all v € X}.
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If f is convex, df(x) coincides with the subdifferential of f at x in the
sense of convex analysis. The fundamental properties of the Clarke subdif-
ferential are:

(a) For each x € X, af(x) is a nonempty convex weak-* compact
subset of X*.

(b) For each x, v € X, we have
fx, v) = max{(x*, v); x* € af(x)}

(c) The set-valued mapping x —> df(x) is upper semi-continuous in
the sense that for each x, € X, £ > 0, v € X, there is § > 0 such that for
each x* € af(x) with lx — x| < &, there exists x} € df(x,) such that
e — x¥, v)] < e

(d) The function f%(-, -) is upper semi-continuous.

(e) 1If fachieves a local minimum or maximum at x, then 0 € af(x).

(f) The function

Mx) = min |lx*|
X*ENf(x)

exists and is lower semi-continuous.

(g) Lebourg’s mean value theorem. If x and y are distinct points in
X, then there is a point z in the open segment between x and y such that

fy) = fx) € 3f(2). y — x).

DeFINITION 1. A point u € X is said to be a critical point of f €
Lip(X, R) if 0 € af(u), namely f*(u, v) = 0 for every v € X. A real
number c is called a critical value of f if there is a critical point u € X such
that f(u) = c.

DerNITION 2. If f € Lipio(X, R) and c is a real number, we say that f
satisfies the Palais—-Smale condition at the level ¢ (in short (PS).) if any
sequence (x,) in X with the properties lim,_... f(x,,) = c and lim,_,. A(x,) =0
has a convergent subsequence. The function f is said to satisfy the Palais—
Smale condition (in short (PS)) if each sequence (x,,) in X such that ( f(x,))
is bounded and lim,_.. A(x,;) = 0 has a convergent subsequence.

Let Z be a discrete subgroup of X, that is,

inf |z||> 0.
E2440)
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A function f: X — R is said to be Z-periodic if f(x + z) = f(x), for every
xE€E Xand z € Z.

If f € Lipioo(X, R) is Z-periodic, then x — fO(x, v) is Z-periodic for all
v € X and af is Z-invariant; that is, af(x + z) = daf(x) for every x € X
and z € Z. This implies that A inherits the Z-periodicity property.

If 7: X — X/Z is the canonical surjection and x is a critical point of f,
then 7~ !(m(x)) contains only critical points. Such a set is called a critical
orbit of f. Note that X/Z is a complete metric space endowed with the metric

d(m(x), m(y)) = inf llx =y — z|.

DEeriNITION 3. A locally Lipschitz Z-periodic function f: X — R is said
to satisfy the (PS)z-condition provided that, for each sequence (x,) in X
such that ( f(x,)) is bounded and A(x,) — 0, then (7(x,,)) is relatively compact
in X/Z. If ¢ is a real number, then f is said to satisfy the (PS); -condition
if, for any sequence (x,) in X such that f(x,) — ¢ and A(x,) — 0, there is
a convergent subsequence of (1(x,)).

Denote Cr(f, ¢) the set of critical points of the locally Lipschitz function
f: X — R at the level ¢ € R; that is,

Cr(f,c) ={x E X, f(x) =c and A(x) =0}

2. THE MAIN RESULT

THEOREM 1. Let f:X — R be a bounded below locally Lipschitz
Z-periodic function with the (PS) z-property. Then f has at least n + 1 distinct
critical orbits, where n is the dimension of the vector space generated by the
discrete subgroup Z.

Before beginning the proof, we shall recall the notion of category and
some of its properties, which will be required by the proof of the main result.

A topological space X is said to be contractible if the identity of X is
homotopical to a constant map; that is, there exist iy € X and a continuous
map F:[0, 1] X X — X such that

F(0, 1) = idy and F(Q1, ) = uyp.

A subset M of X is said to be contractible in X if there exist uy € X and
a continuous map F:[0. 1] X M — X such that

F(O. ') = ldM and F(l, ) = Uy.
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If A is a subset of X, we define the category of A in X as
Caty(A) = 0,if A = &.

Caty(A) = n, if n is the smallest integer such that A can be covered
by n closed sets which are contractible in X.

Caty(A) = =, otherwise.
LeEmMMA 1. Let A and B be subsets of X. Then the following hold:

(i) If A C B, then Caty(A) = Caty(B).
(ii) Caty(A U B) =< Caty(A) + Caty(B).

(i) Leth:[0,1] X A— X be a continuous mapping such that h(0, x) =
x forevery x € A. If A is closed and b = h(1, A), then Caty(A) =< Caty(B).

(iv) If n is the dimension of the vector space generated by the discrete
group Z, then, foreach 1 < i =< n + 1, the set

A; = {A C X; A is compact and Cat,xm(A) = i}

is nonempty. Obviously, sy D d; D - D Ay, .

The only nontrivial part is (iv), which can be found in [19].
The following two lemmas are proved in [26].

LEMMA 2. For each 1 < j = n + 1, the space HA; endowed with the
Hausdorff metric

8(A, B) = max{sup dist(a, B), sup dist(b, A)}
a€A be

is a complete metric space.

LEmMma 3. If1 =i =n+ 1and f € C(X, R), then the function
n:A; — R defined by

m(A4) = max £(x)

is lower semi-continuous.

If n is the dimension of the vector space generated by the discrete group
Z,onesets foreachl =i=n + 1,

C; = inf T](A)

AEH,;

For each ¢ € R we denote [f=c¢] = {x € X f(x) = c}.
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3. PrROOF OF THEOREM 1

It follows from Lemma 1 (iv) and the lower boundedness of f that
0 K 0SS S Gy < 00

It is sufficient to show that,if l =i=j=<n + 1and ¢, = ¢; = c, then
the set Cr(f, ¢) contains at least j — i + 1 distinct critical orbits. We argue
by contradiction and suppose that, for some i < j such that ¢; = ¢; = ¢, the
set Cr(f, c) has k = j — i distinct critical orbits, generated by xy, ..., x; € X.
We construct first an open neighbourhood of Cr(f, c) of the form

V,= ’LIJ U B(x,+ z,r).

= IEZ

Moreover, we may suppose that r > 0 is chosen such that 7 is one-to-
one on B(x;, 2r). This condition ensures that Cat,x,(7(B(x;, 2r))) = 1, for
each!/=1,..,k. Here V, = Jif k = 0.

Step 1. We prove that there exists 0 < & < min{; r} such that, for
eachx €[c —e=f=rc+ &]\V,, one has

A(x) > Ve. (1)

Indeed, if not, there is a sequence (x,,) in X\V, such that, for each m = 1,

1 1 1
S = 2 —
c msf(xm)..c+m, /\(x,,,)sm.

Since f satisfies (PS),, it follows that, up to a subsequence, 7(x,,) — m(x)
as m — o, for some x € X\V,. By the Z-periodicity of f and A, we can
assume that x,, — x as m — . The continuity of f and the lower semi-
continuity of A imply f(x) = ¢ and A(x) = 0, which is a contradiction, since
x € X\V,.

Step 2. For e found above and according to the definition of ¢;, there
exists d € s, such that

max f(x) <c+ &2
XEA
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Setting B = A\V,,, we get by Lemma 1 that

j = Catyx(m(A)) = Catyx(m(B) U n(V,))
< Cat, x)(m(B)) + Catyn(m(V,))
= Cat,x(7(B)) + k = Cat, x(7(B)) +j —i.

Hence, Cat,x(7(B)) = i; that is B € «..

Step 3. For £ and B as above we apply Ekeland’s principle to the
functional 7 defined in Lemma 3. It follows that there exists C € «, such
that, for each D € d;, D # C,

WC) = n(B) = pA) = c + &,
8B, C) = &,
(D) > n(C) — &8(C, D). (2)

Since B N V,, = J and 8(B, C} < & < r, it follows that C N V, = .
In particular, the set F=[c ~ e =< f]|N Ciscontained in[c — e = f=
ct+eland FNV, =

LEMMA 4. Let M be a compact metric space and let ¢:M — 2X" be a
set-valued mapping which is upper semi-continuous (in the sense of (¢)) and
with weak-* compact convex values. For t € M denote

y(t) = inf{|lx*); x* € (1)}
and
v = inf y(¢).
1EM

Then, given & > 0, there exists a continuous function v: M — X such that
forallt € M and x* € ¢(1),

lo@ =1, (X o=y -«

Proof of Lemma. We may suppose y > 0 and 0 < g <. If B, denotes
the open ball in X'* centered at 0 with radius r, then, for each t € M, one has
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By—s/Z N (p(t) = @
Since ¢(t) and B, _,; are convex, weak-* compact, and disjoint, it follows
from the Theorem 3.4 in [24], applied to the space (X*, o{X*, X)) and

from the fact that the dual space of the above one is X: for every 1 € M,
there is some v, € X, |Jv,|| = 1, such that

(€, v) = (x*, vy,

for each £ € B, ,; and x* € ¢(¢). Therefore, for each x* € ¢(t),

xX*vy= sup (Lu)=1vy—¢el2
€B

H y-el2

Because of the upper semi-continuity of ¢, there is an open neighbour-
hood V(¢) of ¢ such that, for each t' € V(r) and each x* € ('),

<X*7 vl> > ’y - E&.
Since M is compact and M = U ¢,V (1), we can find a finite subcovering
{Vi, ... V.} of M. Let vy, ..., v, be on the unit sphere of X such that

(x*v)>y—egforalll =i=n €V, and x* € o(1).
If p(1) = dist(z, aV,), define

A = pi(t) = N . )
40 ﬁ——E}’:,p,(t)’ v(r) ;Q(t)v,-

The function v is the desired mapping. |

Applying Lemma 4 to ¢ = df on F, we find a continuous map v: F — X
such that, for all x € F and x* € af(x),

lvl=1, ¥ o) = infA(x) —e=infA(x) — e = Ve —e,

where the last inequality is justified by (1).
1t follows that, for each x € F and x* € af(x),

fOx, —v(x)) = max (x*, —v(x)) = - min (* v(x))<e- Ve< —g,
X*Eaf(x) x*€af(x)

from our choice of e.
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From the upper semi-continuity of f° and the compactness of F, there
exists § > O such thatif x € F,y € X, |y — x|| < &, then

oy, —v() < —e. (3

Since C N Cr(f, ¢) = J and C is compact, while Cr(f, ¢) is closed, there
is a continuous extension w:X — X of v such that w|c,y = 0 and
[w®)| =<1, for all x € X.

Let @: X — [0, 1] be a continuous Z-periodic function such that o = 1
on[f=zcland a = 0on [f=c — ¢€]. Let h:[0, 1] X X — X be the
continuous mapping defined by

h(t, x) = x — tda{x)w(x).
If D = A(1, C), it follows from Lemma 1 that
Catyx)(m(D)) = Catyx(n(C)) = i

which shows that D € #;, since D is compact.

Step 4. By Lebourg’s mean value theorem we get that, foreachx € X,
there exists 8 € (0, 1) such that

fR(1, x)) = f(R(O, x)) € {3f(h(8, x)), —Sa(x)w(x)).
Hence, there is some x* € af(h(6, x)) such that
f(a(1, x)) = f(h(0. x)) = ox)(x*, —aw(x)).
It follows by (3) that, if x € F, then

f(R(1, x)) = f(R(0,x)) = Se(x){x*, —w(x)) )
< Sa(x) f(x — 08a(x)w(x), —v(x)) = —eda(x).

It follows that, for each x € C,
frQ1, x)) = fx).
Let xo € C be such that f(2(1, x0)) = n(D). Hence,

¢ = f(h(1. x0)) = f(x0).
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By the definition of « and F, it follows that a(xs) = 1 and xy € F. Therefore,
by (4), we get

flh(L, x0)) — f(xp) = —€6.
Thus,

(D) + &6 = f(xy) = n(C). (5

Taking into account the definition of D, it follows that
8(C, D) =6

Therefore,

n(D) + &5(C, D) = n(C),
so that (2) implies C = D, which contradicts (5). 1

4. A MuLTIVALUED GENERALIZED VERSION OF THE
ForceEp-PENDULUM PROBLEM

As an application of the above results, we shall study the periodic multi-
valued problem of the forced-pendulum

")+ () e(gxn). gx(n)], aerte(0,1)
x(0) = x(1),

(6)

where

fe L1 for some p = 1, (7)
g € L*(R), glu +T) =g forsome 7> 0,ae.u € R, (8)

gu)y= lir{} essinf{g(v); lu —v| <&} g(u) = lin& ess supi{g(v); lu — v| <&},
j:g(u) du = J(l)f(t) dr = 0. 9)

We shall prove the following.
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THEOREM 2. If f, g are as above, then the problem (6) has at least two
solutions in

X:= Hper(0.1) = {x € H'(0, 1); x(0) = x(1)},

which are distinct in the sense that their difference is not an integer multiple
of T.

Define the function ¢ in L*(0, 1) by

P(x) = J; <f':s) g(u) du> ds.

It is obvious that ¢ is a Lipschitz map on L*(0, 1). Let G(u) = f: g(v) dv.
The following results show that the description of d¢ given in [8] holds
without further assumptions on g.

LeMMA 5. Let g be a locally bounded measurable function defined on
R and g, g as above. Then the Clarke subdifferential of G is given by

3 G(u) = [g(u), g(u)] foreveryu € R.

Proof. The required equality is equivalent to G%u, 1) = g(u) and
G u, —1) = g(u). As a matter of fact, examining the definitions of G, g,
and g, it follows that g(u) = —(=g)(u) and G°u, —1) = —(—=G)°(u, 1),
so that the second required equality is equivalent to the first one.

Now the inequality G°(u, 1) < g(u) can be found in [8], so we have only
to prove that G%u, 1) = g(u). Suppose that G%u, 1) = g(u) — & for some
e > 0. Let 6 > 0 be such that

G(r+A)-G(n)__ . &
/\ <g(u) 2’
if |7 — u/ < §and 0 < A < 8. Then
%fmg(s) ds <g(u) - % ifjr—u| < 8,1>0. (10)

We claim that there exist A, ™ 0 such that

%IM" g(s) ds— g(7) ae. 7€ (u— 6u+ o). 1)
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Suppose for the moment that (11) has already been proved. Now (10)
and (11) show that

g(1) <g(u) —g 1€ (u—8.u+é),

so we obtain the contradictory inequalities
g (u) < ess sup{g(s); sE[u—6u+d}=gu)—e/2.

All that remains to be proved is (11). Note that we may cut g in order
to suppose that g € L™ N L'. Then (11) is nothing but the classical fact
that for each ¢ € LY(R),

T(¢)— ¢ asA N 0, 12)

where
Tool(ut) = %j‘ o(s)ds  forA>0,u € R, ¢ € LI(R).

Indeed, it can be easily seen that T, is linear and continuous in L'(R)
and lim,.¢ Th¢ = ¢ in D(R) for ¢ € D(R). Now (12) follows by a den-
sity argument. |

Returning to our problem, it follows by Theorem 2.1 in {§] that
Y (x) C dgx). (13)

In order to obtain information on ai, we shall need an improvement of
the Theorem 2.1 in [8].

THEOREM 3. [Ifx € L*(0, 1), then
() C[g(x(1).g(x(1))]  aer€(0,1),
in the sense that if w € 0yi(x) then

glx() =w(t) =g(x(1)) aete(0,1) (14)
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Proof. Let h be a Borel function such that # = g a.e. on R. It follows
that the set

A ={r€(0,1); g(x(1)) # h(x (1))}

is a null set. (A similar reasoning can be done for g and k).
Therefor«la we may suppose that g is a Borel function. We would like to
deal with fU g(x(1)) dt, so we have to prove that g is a Borel function.

Lemma 6. Let g:R — R be a locally bounded Borel function. Then g
is a Borel function.

Proof. Since the requirement is local, we may suppose that g is bounded

by 1, for example, and it is nonnegative. Since

g = lim lim g, .,

now pp—®

where

u+lin 1im
Gmatt) = ( [ lgm(s) ds) ,

it suffices to prove that g,,,, is Borel. Let

M ={g:R— R;|g| = 1and g is a Borel function}
N = {g € M; g,,.. is a Borel function}.

It is known (see [3, p. 178]) that M is the smallest set of functions having
the following properties:

(i) {g€ CR R);[gl =1} C M
(i) g® € M and g% 5 gimply g € M. Note that here we have an
“‘each point™ convergence.

Since N contains obviously the continuous functions and (ii) is also true
for N, by the dominated convergence theorem, it follows that Ml = N. ]

Proof of Theorem 3 Continued. Let v € L*(0, 1), v = 0. Then, for
suitable A; ~» 0 and h; — 0 in L”(0, 1) one has

¥’(x,v) = lim

i-x

g(s) ds dt

1J' x(fy+h()+ap ()
AiJodx@+min
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We may suppose that h; — 0 a.e., so that

1 () +R(D+A ()
YO(x,v) = lim X J[M}] J g(s) ds dt

i—>oc x(Hy+hi1)

xX{()+h(D)+Av
sj (lim sup j“) S )d5>
[v>0] i )\ x()+h(r)
=] BxOw@) s,

so that

W)= [ FaOwo d (15)

[v>0]
for such v.

Suppose now that (14) is false, that is, for example, there exist £ > 0, a
set E with |E| > 0, and w € 3¢(x) such that

w(t)=g(x()) +e onkE. (16)

Now (15) with v = 1 shows that
w.oy = [, w=e0) = [ EGx(0) dr.

which contradicts (16). 1

Proof of Theorem 2. Define on the space X = H(0, 1) the locally
Lipschitz functional

o(x) = % [Lx2w - [ oy ar+ [ Gy a

The critical points of ¢ are solutions of (6). Indeed, it is obvious that

09() ="+ f— au on(®) i H(O, 1),

per

If x, is a critical point of ¢, then there exists w € 5! (o.1)(x) such that

per

"+ f=w inHY0,1).
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Since ¢(x + T) = ¢(x), we are going to use Theorem 1. All we have to
do is to verify the (PS);, condition, for each ¢, and to prove that (6) has
a solution x, that minimizes ¢ on H (0, 1). To do this, it suffices to show
that ¢ is coercive. Note first that every x € H.(0, 1) can be written

(1) = J Lx(s)ds +T(1)  with¥ € H)0,1).
Hence, by the Poincaré’s inequality,
1_, 1 _ 1
o) =5 jzx 1) dt — fﬂ FOR () de + fﬂ G(x(1)) dt

1, _
o1 a1 17 g e TR

l-— o s — o,

(72 = Cllfller-Ix

1,
= 2IF -l

where p’ denotes the conjugated exponent of p.
We verify in what follows the (PS),. condition, for each ¢. Let (x,) C
X be such that

e(x,)—c (17)
A(x,) — 0. (18)

Let w, € dp(x,) C L=(0, 1) (because gox, =w, < g-x,and g,g €
L*(R)) be such that

Ax,)=—xp—f+w,—0 inH'0,1).
Then, multiplying (18) by x, we get
] 1 1
[Leay = [ o+ [ wara = 0l

and, by (17),

= [ [ G-,
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so that there exist positive constants C,, C, such that

N

H
(x;i)z = Cl + (/WZHJCHIIHl .
0] r

ote that G is also T-periodic; hence it is bounded.
Replacing x, by x,, + kT for a suitable integer k, we may suppose that

x,(0)E€[0,T]

so that (x,) is bounded in H},.

Let x € H} be such that, up to a subsequence, x, — x and x,(0) —

x(0). Then

j:} )P ={—xt—f+w,x,—x)+ f:) wp(x, — x)

o _ o, 1,
jof(x,, x)+j“x,,x —>J0x

because x,, — x in L?, where p’ is the conjugated exponent of p. It follows
that x, — xin H,. 1

1.
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