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Abstract

In this paper, we study the critical fractional Choquard equation with a local per-
turbation (—A)u = Au + pluld2u + Iy * |u%)u)®s2u, x € RN, having
prescribed mass fRN udx = az, where I, (x) is the Riesz potential, s € (0, 1), N >

25,0 <o <min{N,4s},2 <q <2} = % is the fractional critical Sobolev expo-

nent, and 2;_5 = %VA: _2‘;‘ is the fractional Hardy—Littlewood—Sobolev critical exponent,

a >0, € R.. Under some L?-subcritical, L>-critical and L2-supercritical perturba-
tion su|u|?~2u, respectively, we prove several existence and non-existence results. The
qualitative behavior of the ground states as .+ — 07 is also studied. The mathematical
analysis carried out in this paper can be considered as a counterpart of the Brezis-
Nirenberg problem in the context of normalized solutions for fractional Choquard
equation. In this framework, several related results are extended and improved.
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1 Introduction and Main Results

In this paper, we study standing waves of prescribed mass to the fractional Choquard
equation with combined power nonlinearities

iy = (=AY — ulY 972 — o+ [P I 1P2y in RxRY, (1.1

where N > 25, : Rx RV — C,u > 0,a € (0, N). Here, I, : RM\{0} — Ris
the Riesz potential, which is defined by

AN,a
x|

Iy(x) =

)

r3

with Ay o = PAET e

and (—A)*® is the fractional Laplacian defined by

u(x) —u(y) N
N mdy, xeR s

(=AY u(x) == Cy. P.V./
R

where P.V. means the Cauchy principal value on the integral and Cy  is some positive
normalization constant, see [19].

Problem (1.1) has the characteristics of double nonlocalities and it has important
applications arising in the study of exotic stars. For instance, minimization properties
related to problem (1.1) play a fundamental role in the mathematical description of the
gravitational collapse of boson stars [24, 41] and white dwarfs stars [28]. Actually, the
study of the ground states to (1.1) gives information on the size of the critical initial
conditions for the solutions to the corresponding pseudo-relativistic equation [35, 43].
Particularly, when s = 1/2, N = 3, ¢ = 1, we have

«/—_Au+ku=(

s |ul? ) lulP%u, x e R,
27 | x|

related to the well-known massless boson stars equation [22, 30, 36], where the pseudo-
relativistic operator /—A + m collapses to the square root of the Laplacian. For other
applications in relativistic physics and quantum chemistry, we refer to [4, 27]; see also
[45] for the study of graphene, where the nonlocal nonlinearity represents the short
time interactions between particles.

In the limiting local case s = 1, when N = 3,« = 1 and p = 2, Eq. (1.1) has
been introduced in 1954 by Pekar in [57] to describe the quantum theory of a polaron
at rest. Successively, in 1976 it was arisen in the work [40] suggested by Choquard
on the modeling of an electron trapped in its own hole, in a certain approximation to
Hartree—Fock theory of one-component plasma (see, e.g., [22, 23]). In 1996 the same
equation was derived by Penrose in his discussion on the self-gravitational collapse
of a quantum mechanical wave function [54-56]; see also [52] and in that context it
is referred as Schrodinger-Newton system. After that, variational methods were used
to derive existence and qualitative results of standing wave solutions for more generic
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values of « € (0, N) and of power type nonlinearities |u|” 2y, see [1,12, 34,47, 48,
50]. The case of general functions F', almost optimal in the sense of Berestycki-Lions
[8], has been treated in [15, 51].

The fractional power of the Laplacian appearing in (1.1), when s € (0, 1), has
been introduced by Laskin [33] as an extension of the classical local Laplacian in the
study of nonlinear Schrédinger ezquations, replacing the path integral over Brownian
motions with Lévy flights [2]. This operator arises naturally in many contexts and
concrete applications in a wide range of fields, such as optimization, finance, crystal
dislocations, charge transport in biopolymers, flame propagation, minimal surfaces,
water waves, geo-hydrology, anomalous diffusion, neural systems, phase transition
and Bose-Einstein condensation, we refer to [19, 24, 44] and the references therein.
Equations involving the fractional Laplacian together with local nonlinearities have
been investigated extensively, and some fundamental contributions can be found in
[11, 21]. Existence and qualitative properties of the solutions for general classes of
fractional NLS equations with local sources have been studied in [9, 13, 20] and the
references therein. For the existence results on the fractional critical problems, we
refer to [7, 58] and references therein.

Mathematically, doubly nonlocal equations have been treated in [14, 18, 29, 48] in
the case of pure power nonlinearities, obtaining existence and qualitative properties of
the solutions. Other results can be found in [45, 59] for superlinear nonlinearities, in
[26] for L2-supercritical Cauchy problems, and in [63] for concentration phenomena
with strictly noncritical and monotone sources.

When searching for stationary waves of problem (1.1) with the form (7, x) =
e~ My(x), where A € R is the chemical potential and u(x) : RY — C is a time-
independent function, and u satisfies the equation

(=A)u = Au + plul?%u + Iy = |ulP)|ul”>u, x e RV. (1.2)

When looking for solutions to (1.2) one choice is to fix A < 0 and to search for
solutions to (1.2) as critical points of the action functional

1 . 1
T(u) = -/ (l(—A)?ulz—kuz) dx——/ (10,*|u|f’)|u|f’dx—ﬁ/ |9 dx.
2 RN 2p RN q RN

see for example [18, 59] and the references therein. Another choice is to prescribe the
L2-norm of the unknown u, that is to consider the problem

(1.3)

(=AY u = A+ plul92u + (I * |ulP)|u|P~2u, x e RV,
ue H'®RY), [onlul?dx = a?,

for fixed @ > 0 and unknown A € R. In this direction, define on H*(R") the energy
functional

1 s 1
E(u):—/ |(—A)7u|2dx——f (Ia*|u|p)|u|pdx—E/ |u|?dx.
2 Jry 2p Jry q JrN
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It is standard to check that E € C! under some assumptions on p and ¢, and a critical
point of E constrained to

S, = {u e H'(RVY) : / lu)? = az}
RN

give rise to a solution of (1.3). Such solution is usually called normalized solution of
(1.3) on S,, which is the main purpose of this paper.
When studying normalized solutions to the fractional Choquard equation

(=AY’ u = du + (I * [u|?)|u)?2u, xRV, (1.4)

the number p := 2 + 23'1;“ is the L>-critical exponent or mass-critical exponent

with respect to p. The Hardy-Littlewood-Sobolev upper critical exponent 2j ; =
%\,N_E‘;‘ and the lower critical exponent p := ZNN_ ¢ play an important role. For p €
(max{2, p}, 25 5), the existence of normalized ground state to (1.4) was studied by
Li and Luo [42] by considering the minimizer of E constrained on S,. In [62] Yang
considered the existence and asymptotic properties of normalized solutions to the

fractional Choquard equation

(=AY u = A+ [u|972u + pn(ly * |ulP)|ul?2u, x e RV, (1.5)
with conditions p € (p,2; ), and ¢ € (2 + %‘Y, 2¥]. Using a refined version of
the min—max principle, the author showed that (1.5) admits a a mountain pass type
solutions under suitable assumptions on the related parameters. In [15], Cingolani et
al. prove the existence of a symmetric ground state solution for (1.5) with a general
nonlinearity. For more results on the ground state solutions for the nonlinear Choquard
equation with prescribed mass, we refer to Bartsch et al. [5], Li and Ye [41], Ye [64]
and the references therein.

We note that the number p = 2 + %S is the L’-critical exponent in studying
normalized solutions to the fractional Schrodinger equation

(=A)u = du + plul?2u + ul”u, x eRY, (1.6)

which satisfies the prescribed mass

/ lu)?dx = a2, (1.7)
RN

where 2 < g < p < 2% and 2} = Nz_st is the fractional Sobolev critical exponent.

We refer to [3, 16, 46, 65] for more details about the existence of normalized solutions
of (1.6-1.7); to [5, 6, 32, 61] for the results on normalized solutions of classical
Schrodinger equations.

Motivated by the above mentioned works, in this paper, we aim to study the exis-
tence of normalized solutions for the following critical fractional Choquard equation
involving local perturbation
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{(—A)su = it + |92 + (I * %) [u) %520, x € RV, 08

ue H'RY), [onlul?dx =a?,

where s € (0,1), N > 25,0 < o < min{N, 4s}, a is a positive constant. We shall
pprove several existence and non-existence results by distinguishing the three cases:
(1) L2-subcritical case: 2 < q <p < 2a 55 (1) L2-critical case: q = p, and L2-
supercritical case: p < ¢ < 2 ;. The qualitative behavior of the ground states above
as i — 07 is also studied.

Before we state our main results, we first introduce some notations. Let H* (RV)
be the Hilbert space of function in R endowed with the standard inner product and
norm

(u, v) == /RN((—Aﬁu(—Aﬁu +uv)dx, ully gy, = (0, ).
The work space D*2(R") is defined by

. 2
D 2@RY) ={u e LZ®RY) : // dedy < +oot,
Ry x =y [V

endowed with the norm

lu(x) —u(y)|?
el 2=l oz vy = ffR sy,
According to Propositions 3.4 and 3.6 of [19], we have that,
s |u(x) —u(y)|?
lul = [(—2)u |2—// ey ey, (1.9)

by omitting the normalization Cy . For an elementary introduction to the fractional
Laplacian and fractional Sobolev spaces, see [19, 49].
The energy functional associated to problem (1.8) and the constraint is given

L) = %fRN (=AY S uldx

* * l/l/
- / (Ia*|u|2a-3)|u|2wdx——/ |u|?dx (1.10)
22(1“? RN q Jrv

and

S, = {u e H'(RY) : / lu)?dx = az} .
RN

In the sequel we give some preliminary materials that will be useful in our approach.
To begin with, we recall that the key point to apply variational method for problem
(1.8) is the following standard estimates for the Riesz potential (see Theorem 4.3 [42]).
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Proposition 1.1 (Hardy-Littlewood-Sobolev inequality, [42]) Let r,h > 1 and 0 <

o < N be such that% — % = N;“. Then the map

feLl ®Y)— Iy« f e L"RY)

_ 2N—«a

. . . . | 1 .
is continuous. In particular, if r,t € (1, 400) verify st =55 then there exists

a constant C = C(N, a, r,t) > 0 such that

/ (Iy % g)hdx
RN

forallg € L"(RN) and h € L'(RV).

= Cligllr Iz

Remark 1.1 As a direct consequence of this inequality, we have

1 1

« « %, %
(/N([a % |u|2a,s)|u(x)|2a~5dx> < CN"%SHMH%;«, Yue DS(RN),
R :

where Cn o.s > 0 1is a constant depending on N, « and s.

From Proposition 1.1 we can define the best constant

Jan 1(=A)2udx

Sni = inf

ueDs2RN)\{0} ( —

o (Lo o) P ) %

and from [29, 53] we know that S}, ; is attained in RN by the function

~ (N—a)(2s—N) ~28=N__ ~
Us,y(x) = § 5W=a52) CN Y, (x) i= Cy g Uey (), x,y € RY,
and for any fixed y € RN and ¢ > 0, lNJS, y(x) satisfies the equation
(=AY u = (g * Jules)|ules2u, x e RY,
with

2N—«

/ [(—A)2 U y|Pdx = / (Iy % |Ug y %) | Uy |Pasdxc = S, %75,
RN RN ’
where the function

_N=2s
Uey(x) = k(> +x —y|H)~ 2,

(1.11)

(1.12)

(1.13)

(1.14)

(1.15)

solves the equation (—A)*u = |u|zzf 24, x € RY, and achieves the infimum of the

problem
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. . flul?
S = inf

R (1.16)
ueD* ®M\(0} a2

The constant « is given by

N-2s5
SN/(ZS)F(N) 2N
“ \7N21(N)2) ’
see [17, 29]. In addition, one has the relationship for the constants Sy 7, S and Cy o.5:

1

Sii = SCy = . (1.17)

To enumerate our main results, we introduce the following three constants:

N(g —-2)

= — 1.18
Yq.s 2gs ( )
2—qvq,s
2% —1 2 _ ] o\ 252
Ky = — 4G =D TYas_pn sy . (1.19)
CN.g.s(22% s — qvqs) \ 225 — qVgs
2N-a)(2—qyq,s)
Ky= ME2 i Shﬂ“izjy? (1.20)
2N —«a (22:;,3 - qu,S)CN,q,s ’
and
(N—-a) (2§ ~2)+25 (2§ ~47g.5) %
Ky:i=S > Cyo?, (1.21)

where C 4  is the fractional Gagliardo-Nirenberg-Sobolev constant from (2.1) below.

Theorem 1.1 Assume that N > 2s,a,ju > 0and2 < q <p := 2+ 4s/N. If there
exists a constant k = k(N, q, s) > 0 such that

pad="ves) < k.= min{K,, K2}, (1.22)

then I,,|s, has a ground state u which is a positive, radially symmetric function and
solves (1.8) for some % < 0. Moreover, Mg, < 0andu is an interior local minimizer
of I,,(u) on the set Ay = {u € S, : ||ul|| < k}, for suitable k small enough; and any
other ground state solution of 1, on S, is a local minimizer of I, on Ay.

Theorem 1.2 Assume that N > Zﬁs, a,u>0and2 <q=p:=2+4s/N.If
uaP' =) < pQ2CN ;) (1.23)

then I,|s, has a ground state u which is a positive, radially symmeztric function and
NA2s—a S N+2raoz

20N =) and u is a

solves (1.8) for some % < 0. Moreover, 0 < Mg,y <
Mountain Pass type solution.
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Theorem 1.3 Assume that N > 2s,a,u > 0andp < q < 2}. If one of the following
conditions holds:

(1) N > 4s and pa?1=7as) < y—*
q,s

(2) N=4sorq722s<N<490r2s<N§quzz&

then I,|s, has a ground state u which is a positive, radially symmeztric function and
N

N+42s—a SN+2raoz

22N—a)

solves (1.8) for some . < 0. Moreover, 0 < my , < and u is a

Mountain Pass type solution.

Theorem 1.4 Let a > 0 and i = 0. Then we have the following assertions:

(1) If N > 4s, then Iy on Sa has a unique positive radial ground state Ug o defined in
(1.13) for the unique choice of ¢ > 0 which gives ||U5 oll L2y = a.
(2) If2s < N < 4s, then (1.8) has no positive solutions in S, for any A € R.

Theorem 1.5 Let u,, be the corresponding positive ground state solution obtained in
Theorems 1.1-1.3 with energy level m, ;. Then the following conclusions hold:

(1) If2 < q < p, thenmg ,, — 0, and |lu,, || - Om D*2(RN) as p — 0Ot.

Q) Ifp <q <2} thenmg, ), — év(;r}%“ a";SN”‘ “,and ||lu,| — 0in DS 2(RN)Y gs

uw— 0t.

Remark 1.2 We notice that, there are only few papers dealing with the existence of
normalized solutions of the fractional Choquard equation. Recently, Cao et al. [10],
Cingolani et al. [15], Li and Luo [38], and Li et al. [39], considered the subcritical
fractional Choquard equation with combined nonlinearities and proved the existence
and nonexistence of normalized solutions. However, in this paper we consider the
existence and nonexistence of normalized solutions for the critical fractional Choquard
equation with combined nonlinearities. Compared with the subcritical case, the critical
case is more complicated and needs to overcome the lack of compactness.

The paper is organized as follows. In Sect. 2, we give some preliminary results
which will be used to prove Theorems 1.1-1.3. In Sect. 3, we show some lemmas for
L?-subcritical perturbation. In Sect. 4, we present some preliminaries for L>-critical
perturbation. In Sect. 5, we give some lemmas for L?-supercritical perturbation. In
Sect. 6, we prove Theorem 1.1. In Sect. 7, we prove Theorems 1.2, 1.3. In Sect. §, we
prove Theorem 1.4. Finally, Theorem 1.5 will be proven in Sect. 9.

Notation. Throughout this paper, || - || ; denotes for the normin L? (RN); B, (x) denotes
the ball in RV centered at x with radius r; The letters C, C;,i = 1,2, --- , denote
various positive constants whose exact values are irrelevant, and u™ = max{=u, 0}.

2 Preliminaries

We recall that, for N > 2s, p € (2, 2}), there exists a constant C_, s > 0 depending
on N, p, s such that the fractional Gagliardo-Nirenberg-Sobolev inequality holds, see
[21].
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N(p=2) p_Np=2)
S

s 4s 2 4
/RN ulPdx < Cy p.s (/RN |<—A>2u|2dx) (/RN |u|2dx) @2.1)

forall u € H'(RV). Record the number

- N(p—2)
ps 2ps

’

it is easy to see that

<2,if 2<p<p,
PYps § =2, if p=p, andthatyy =1, 2.2)
>2,if p<p <2},

and
Ea s 1- .5
lullp < Cwposll (=) Zull3 lull, ", ¥ u e H RY). (2.3)

The following Pohozaev identity can be derived from [14, 37].

Proposition 2.1 Letu € H*(RN)NL®(RN) be a positive weak solution of (1.8), then
u satisfies the equality

N_ZS s 9 NA 2
[((—A)2u|*dx = — |u|“dx
2 RN 2 RN

2N —
227

o * * N
/R o o) Ju s dx + 7’* /R luldx. @4

Lemma 2.1 Let u € HS(RN) be a weak solution of (1.8), then we have the Pohozaev
manifold

N ={u €Sy Py(u) =0}, 2.5)

where
Py (u) =s/ |(—A)%u|2dx—sw,,,sf |u|qu—s/ (I * |u)?es) |u|%es dox.
RN RN RN

Proof By Proposition 2.1, u satisfies the Pohozaev identity

N =2 s
S/ [(=A)3uf2dx
2 RN

NA N
_ —f |u|2dx+—“f l?dx 26)
2 JrN q Jry

2N —«a
221,

/ (I * |5 u s dx.
RN

@ Springer
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Since u is a solution of (1.8), we get

/ I(—A)Zu|2dx =x/ |u|2dx+u/ u|9dx
RN RN RN

+ / Iy * |u|?@s) u)?es dx. 2.7)
RN

Combining (2.6) and (2.7), we infer to

S/ [(—A)2ul?dx = sm/q,S/ u|?dx +s/ (Iy * |u|%s) |u)?es dx,
RN RN RN
and the conclusion follows. O
We introduce the transformation:
Ne ooy N

(txu)(x) = ez u(e'x), VxeR", teR, (2.8)

it is easy to check that txu € S,. We define the fiber map as follows
Wk () = 1, (txu)

e2st 5 9Va.s5t 6‘22;15‘” . -
= ”u” — M |M|qu— " ([a*|u| a,s)|u| asdx.
2 g Jrv 225 o Jrw

(2.9)

Clearly, wH'@® = P, (txu), hence ¢t is a critical point of Wk () if and only if
txu € Ny, and in particular u € N, if O is a critical point of W} (¢). Now we split
the manifold N, , into three parts.

NG o= 1w e Noy s (94)7(0) > 0
={ueNgu: 252 ul* > quqzyssz /RN lu|4dx + ZZZ’SSZ
x/(m*wWwM%MM
RN
ND o= € Nay: (919(0) =0}
= {u € Ny : 2% ull® = pnqy, s* /RN ul?dx + 22 (5* 2.10)
x/(m*mﬂww%mn
RN
Ny o=1{u € Nyt (919(0) < 0)

= {u € Na i : 287 ||ul* < y,quzgss2 /I;N lu|?dx +22:;’Ss2

x/(m*mﬂww%mn
RN
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Therefore, we have the decomposition

Na,u = N;u UNaO,u UNQTM'

Lemma22 Let N > 25,2 <q < 2fanda, pu > 0. Let {u,} C Sqr = Su N Hrs(]RN)
be a Palais-Smale sequence for 1,,|s, at level m, ;,, where H (RN is the subspace of
Hf (RN) consisting of radially symmetric functions. Then {u,} is bounded in H* (R™).

Proof We divide the proof into three cases.
Case 1: g < p. This implies that gy, s < 2. From P, (u,) — 0, we have

N ll® — 1yg.s fR |l fR U |t |%5) 1y |Psdx = 0, (1), (2.11)

Using fractional Gagliardo-Nirenberg-Sobolev inequality (2.1) we get

N+2s —«a M qYq,s /
1 =— ——=11- : 9dx 1
,u(“n) 22N —a) zen || q ( 222;’5 o |ue] +on(1)

N+2—a, o K 4Yq.s @Va.s g4(1=Vq.5)

> m”un” — ; 1— 22:;’S CN,q,s”un” ra 757 + 0, (1).
Since {u,} is a Palais-Smale sequence for I, |s, at level m, ,, we have that 1, (u,) <
mg , + 1 for n large. Thus,

N+2s —« M qYq,s o a(=y0 )
m”unﬂ S; 1—22% Cn g sllunl|PVesdVes) 4my | + 2,

which yields that {u,} is bounded in H*(R").
Case 2: g = p. In this case, we get pyp s = 2. By P, (u,) — 0, we have

lunll* — 1.5 f | |7dx — / Iy * g |%5) 1y |P2sdxc = 0, (1), (2.12)
RN RN
Hence,

N+2s —« * *
Ly (up) = ) /]RN([a * |un|2°“5)|un|2°“sdx +on(1) <mg, +1,

22N —«
which implies that

[ e Pt Piae < .
R
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Note that ¢ = p € (2,2%), wehave ¢ = p = 12 + (1 — 1)2} for some 7 € (0, 1),
and by Holder inequality, we have

T 1—-7
/ |un|f’dxs<f |un|2dx> (/ |un|2?‘dx) <C.
RN RN RN

Consequently, from (2.12), we see that
llunll® = M)/ﬁ,s/ |u|Pdx +/ (Lo % 1t |%5) 1 |P%sdx + 0, (1) < C,
RN RN

which implies {u,} is bounded in H*(RY).
Case 3: p < q < 2%. In this case, one has gy, s > 2. Using P, (u,) — 0 we have

||un||2—wq,s/ |u|qu—/ (I * |t |*5) || *esdx = 0, (1).
RN RN

So,

N +2s —
L(uy) = [ (y‘”q _ 1)/ |up|9dx + Ntos—a
q 2 RN 2(2N — Ol)

x/ (I * |t ]%03) 1y %25 dx 4 0, (1)
RN
S mu,/,t + 17

which implies that [py |u,|?dx and [py (e * |14 |25 ) [up |25 dx are both bounded.
Hence

lanll® = 1yg.s fR | lun|7dx + /R o [P g Py + 00 (1) < C.

The proof is completed. O

Proposition 2.2 Assume that N > 25,2 < g < 2% anda, u > 0. Let {u,} C Sg, =
Sqe N H} (RN be a Palais-Smale sequence for 1,,|s, at level mg, ,, with

N+2s —a o
msh]\j;rzs and Ma,pn ;é 0.

Mg, <
Suppose in addition that P,(u,) — 0 as n — +o00. Then, we have the following
alternatives:

() either up to a subsequence u,—u in H*(RN) but not strongly, with u being a
solution of (1.8) for some ) < 0, and
N +2s —o 2N-a

N+2s—a .

2QN —a) B

Iy(u) <mg, —

@ Springer
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(ii) or up to a subsequence u,, — u in H*(RV), 1,(u) = mgy , and u solves (1.8) for
some A < 0.

Proof By Lemma 2.3, the sequence {u,} is a bounded sequence of radial functions
in H*(RY), and hence, by compactness of H: ., (RN) < L4(RY), there exists u €
Hrsa d(RN ) such that up to a subsequence u,,—u in Hfu d(RN ), up — u strongly in
L4(RN), and a.e. in RV Since {u,} is a bounded PS sequence for I,|s,, by Lagrange
multipliers rule, there exists {A,} C R such that for each ¢ € H* (RN), one has

[ L8085 = (it sl 172104 (L P P2, ) ]
R

=on(Dell (2.13)

as n — o0o. Choosing ¢ = u,, then from (2.13) and the boundedness of {u,} in
H*(RY), it is easy to obtain, up to a subsequence, A, — A € R. By virtue of
P, (uy,) — 0and y,; ¢ < 1, we derive that

ra? = lim An/ uldx = lim (||u,,||2—/ (M|un|"+(Ia>k|u,,|2;~v)|un|22,sdx)
RN n—o00 RN

n—o0

= lim pu(yys — 1)/ lun|?dx = m(¥q.s — 1)/ lu|7dx < 0.
n— 00 RN RN
(2.14)

with A = 0 if and only if u = 0. We claim that # # 0. Assume by contradiction that
u = 0. Since {u,} is bounded in H*(R"), we may assume that |u,, 12 > ¢ > 0. By
P, (uy) — 0and u, — 0O strongly in L4 RN, we get

/ (I * it |05 |y P dxe = [Jua | — M)/q,s/ || 9dx — €.
RN RN

1
Therefore, by the definition of Sj, ; in (1.12), we have £ > S, ;€ 2s | hence

2N—a
=0 or £>8Y7

Case 1: 1If £ = 0, then we have |uyl; — 0, uy || — O and fon (L) || ) [1n] >
dx — 0, consequently, I, (u,) — 0 which gives a contradiction to the fact that
I, (uy) — mg , #0.

2N—«a
Case 2: 1f ¢ > Sh”flm’“ , from 1, (up) — mg,,, and P, (u,) — 0, we have that

ma,u+0n(l)
N+2s —« M qYq,s /

-] = " - —— |1 - == 9dx 1
1w (tn) 20N — ) lluen p ( 22 ) [tn|?dx + 0, (1)
N+2s —« 2 N+2s —«a

= - 1 = Z 1 )
2N — o el Fon(D) = Somm St on (1)
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which implies that

N+2s—a

N+2s —«a >N+2s—ot 2N o
20N —a) — 202N —a) M

Ma, =

El

and this contradicts to our assumptions. Therefore, u# % 0. From (2.14), we see that
A < 0. By a Sobolev embedding, we know that u,—u weakly in L% (RV), u, — u
a.e. in RN, Then

|25 —[u|%s weakly in L7%w (RY)
as n — oo. By the Hardy-Littlewood-Sobolev inequality, we have that
Iy # |ttn|%os I, % |u|®s weakly in L& (RY)
as n — o0o. Combining this and the fact that

. N
2upy—|u|?*s"u weakly in L¥2-a (RV)

-
RS
as n — 00, we arrive at that

* * * * . 2N
(I * |t ) %) |t ) 2o 21— (I * || %) u|?es—%u weakly in L¥+% (RV)

as n — 00. Therefore, we have for any ¢ € H® (RM),

f (Lo # |25 |t 1252w pdx — / (Lo * %) |u s 2ugpdx. (2.15)

RN RN

Therefore, passing to the limit in (2.13) by the weak convergence, we infer that
(=AY u = du + plul?2u + Iy * |u%s)|ues"2u, x e RN, (2.16)

Hence by the Pohozaev identity we infer to P, (1) = 0. Set v, = u,, —u. Then v,—0
in H*(R"), and by the well-known Brézis-Lieb lemma and [29], we get

lunll® = lvall® + llull* + 0, (1), (2.17)
and
/ (Iy 5 [ty %) |14, 205 dxe = / (Iy 5 |Vn] %) [0, 2 dxc
RN RN

+/N(I“ * )25 ) |uZes dx + 0, (1). (2.18)
R
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Hence, from P, (u,) — Oand u,, — u in L? (RV), we infer by (2.17) and (2.18) that

lonll? + fluf? =m/q,sf |u|"dx+/ (Iy * [0 2@ [vy |25 dx
RN RN

+/ (Iy 5 Ju%0s) |u s dx + 0, (1).
RN

Combining this with P,, () = 0, we have v, |12 = [ (o |y |%e) vy %25 dx 0, (1).
Thus, by the definition of S, ;, we have for some [ > 0 such that

1
lim [lv, )| = lim / (I % Vg @) [opPesdx =1 > 0 = [ > Sp 0%,
n—oo n—o0 RN

Hence we can deduce

2N—«
[=0or [ > ShN;'ZS_“

2N—a

If] > Sh"f;rZS*“ , then by (2.17) and (2.18), we obtain

e =l )

= tim (700 + 2ol = oo [ (L o) g s e
n—oo \ 2022 gy T g
N+2s —a N +2s —q 2N-e
— I Z > I N+2s—a
W)t S o ey 2 )t e S

Thus, the conclusion (i) holds. If instead £ = 0, then we can show that u,, — u
strongly in H*(R™). In fact, ||v,|| = |lu, — u|| — O establishes that u, — u strongly
in DS (RY) and hence in L% (RV) by the Sobolev inequality. We also have Sy e *

[V |23J)|v,,|22v5dx — 0 by the definition of Sy, ; in (1.12). In order to show thatu, — u
in L2(RV), we test (2.13) with ¢ = u,, — u, and multiply u,, — u on both sides of
(2.16) to get

it — ul? / (it — 2it) (1t — w)dlx
RN
= f (T 1™y — |l %u) (u, — u)dx
RN

+ / [ el P a2 = (L P =2 | =)0, (1),
R

Now the first, the third integrals tends to zero by convergence of u,, to u in D (RY)
and L7(R"); while the fourth integral tends to zero by using the Hélder inequality
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and the convergence in LE(RN). Asa consequence

n—o0

0= lim (Antty — )y — u)dx = lim x/ (up — u)’dx,
RN n—od RN
which implies that u, — u strongly in L>(R") by A < 0 and this completes the
assertion (ii). O
We conclude this section stating the following variant of Proposition 2.2.

Proposition 2.3 Assume that N > 25,2 < g < 2% anda, i > 0. Let {up,} C Sg, =
S, N H*(RN) be a Palais-Smale sequence for 1,|s, at level mq ,, such that

N +2s —a 2
Mg < mshl\jfz and Ma,n 75 0.

Suppose in addition that P, (u,) — 0 as n — +00. and that there exists {v,} C S,
and vy, is a radially symmetric for every n satisfying ||u, — v,|| = 0asn — oo. Then
one of the alternatives (i) and (ii) in Proposition 2.2 holds.

The proof is analogous to the previous one: as in Lemma 2.2, we show that {u,} is
bounded. Then also {v, } is bounded, and, since each v,, is radial, we deduce that v, —u
weakly in H*(R"), v, — u strongly in L4 (R"), and a.e. in R", up to a subsequence.
Since ||u, — v, || — O, the same convergence is inherited by {u, }, and we can proceed
as in the proof of Proposition 2.2.

3 L2-Subcritical Perturbation

For N > 2sand 2 < g < 2+ 4s/N, we recall that

2—qvyq,s

g2y —1 R R R e
: 201 rSh ! :
22:;,5 - qu,s " ’

K| := ”
CN,q,S(zza,s - qu,s)

We consider the constrained functional /,|s,. For each u € §,, by the fractional
Gagliardo-Nirenberg-Sobolev inequality (2.1) and inequality (1.13), one has

1 2 M _ 1 —2% *
— -z 9Yq.s g4(1=vqs) _ s 1228 ¢
I,(u) > 2IIMII p, CN.g.sllun |7 a e 5. Spa Muf[Fes.(3.1)
Now, we introduce the function & : RT — R
1 1 2% %
Wty = =12 — Ecy g a?0 109705 — S, 12, (3.2)
2 q N e

Since 0 > 0 and gy, s < 2 < 2¥, we see that h(0T) = 0~ and h(400) = —o0.
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Lemma 3.1 Suppose that the inequality pa'=v4)9 < K/ holds, then the function h
has a local strict minimum at negative level, a global maximum at positive level, and
no other critical points, and there exists a Ry and Ry both depending on a and ., such
that h(Rog) =0 = h(Ry) and h(t) > 0, if and only ift € (Ry, R1).

Proof Fort > 0, we have h(t) > 0 if and only if

I I=yps) o Lo gy L =200 20 g
1) > =Cn.gsa?17709)  with @(r) = =19V — S, s TV
@) q N,q,s @(1) 3 22:;’5 nl
Notice that
* j— *
(ﬂl(f) — M[l—q}’q.s _ Msh_?a’stzzé,s_l_q}/q.s.
2 22% ¢ ’

It is easy to see that ¢(¢) has a unique critical point at

1

_ 2 _ o 225 -2

7= - qu,s 2:{ R Shocl.x ,
225 —aves "

and ¢(2) is increasing on (0, 7) and decreasing on (7, +00). Moreover, the maximum
level is

2—qvq,s

- 2% —1 2—qy, 2 05,2
P(f) = === 0% S, .
22(?(,5 - qu,s 22@(,5 - qu,s

Therefore, h is positive on a open interval (Rg, R) if and only if ¢(f) >
%CN,q,xa’I(l_V%A‘), which implies that

2-qyq,s

q(Z;,S -1 ( 2—q¥q.s % )223@;—2

Ma‘{(lfyq,x) <

" - 205501
CN,q,s(zza,s —4Yq.s) 22a,s —qYqs T

By virtue of 2(0") = 0~ and h(+00) = —oc and h being positive on open interval
(Ro, R1), we see that & has a global maximum at positive level in (R, R1), and has a
local minimum point at negative level in (0, Rp). Since

0%
B (t) = 19V~ [tz—quﬁs — 1YgsCn g sa?0 7109 — S, ?a.st22;s—qy,x] -0
if and only if
)

Y (1) = 1y sCn.gsa?17709) with @ () = (2 0s — 5, 7 12200V,
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Clearly, ¥ () has only one critical point, which is a strict maximum. So, if
max;~o ¥ (1) < 1yg.s CN’q,Saq“’quf), then we get a contradiction to the fact that 4 is
positive on the open interval (R, R1). Hence, max;~q ¥ (t) > MyquCN‘q’saq(l—Vq,s)’
this implies that /& only has a local strict minimum at negative level, a global strict
maximum at positive level, and no other critical points. O

Lemma 3.2 Assume that Ma(l—yq,x)q < Ky, then ./\/2“ = ) and ./\/a,ﬂ is a smooth
manifold of codimension 1 in S,.

Proof Suppose by contradiction that there is a u € ./\/'a0 .. such that

||u||2=wq,s/ |u|qu+/ (Lo * ue)Ju s dx, (3.3)
RN RN
and
2ul® = ugy? Idx + 22* Zas ) u| % dx 3.4
ull® = nqyy [ul?dx + 22, ¢ (L * |ul"s)|ul"esdx. 3.4
RN RN
Therefore, from (1.12), (2.1), (3.3) and (3.4), we have

WYgs@ = 4vg.s) / ulfdy = (225, —2) / (L oo
RN RN

22 —qyy. . +
lul® = —"f (T a0 ] P dx
2 - qVq,s RN
22%  — ¢ —2% *
< s q4Vq.s 5, o ]| 225 (3.5)
2 - qYq,s ’
228 = qVYq.s
il = gy e —9¥as / juldx
225 =2 Jrw
220 s — qVq.s _
< W55 CN sl |70 a 1),
o,s
(3.6)
Combining (3.5) and (3.6) we deduce that
1 -

— . * 22;,.;*2 22* o — —qYq,s
—2 Vg5 S;Zlalvx < | myy f—— a.s Cnyg sal=7a.) ,
222,5 —49Yqs ’ 22:;,5 -2 H

which implies that
2—qvq,s
* s
et 170) > e 27 4res 2o\ T 5
N Vq,sCN,q,s (222,5 - qu,s) 22373 —4Yq.s
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Next, we show that the right hand of (3.7) is greater than or equal to Ky, and this
would lead to a contradiction to our assumption. To show:

2**61}/11,5
222’3, -2 2 — qVq.s Szzx 224,52
Yq.s CN,q,S(ZZ(";’S —qVq.s) 22:;,5 —4qYq.s bt
) gy 3.8)
- g2, —1) 2—qvys Y Szj;J P52
a CN,q,s(zzé,s - qu,s) 22:;,s —4qYq.s s hl
To this aim, we only need to show that
q4Vq,s 727]/‘1'3
> . (2;"("?) 20572 < 1, 3.9)

Set gy,,s = x € (0, 2), and define the function

ro= ()" a0

We intend to prove that f(x) < 1. Indeed, it is easy to see that f(x) is increasing
on (0, (22 ; —2)/1n2j () and decreasing on ((225 ; —2)/In2j , +00). Thus, when

a,s?
x € (0,2), f(x) < f(2) = 1, which implies (3.9). From (3.9) and (3.8) we have
uaq(]’V‘H) > K, which contradicts to our assumption. Thus, J\/‘?, w= @.

Next, we show that AV, 18 a smooth manifold of codimension 1 on S,. To see this,
note that NV, ,, = {u € H*RY) : P,(u) =0, G(u) = 0}, for G(u) = [pn u’dx—a?,
with P, and G being of class C Lin H5(R"). Thus, we have to show that the differential
dGu),dP,(w)) : HSRY) > R2is surjective, for every u € N ,. If this is not
true, then d P, (1) must be linearly dependent from d G (u), that is, there exists some
X € R such that for every v € H*(RY),

ZS/ (—A)%u(—A)%vdx—suqu,S/ lu|? > uvdx
RN RN
—szzg‘”f (I * |u] %) u|%as 2 uvdx
S Jan

= A/ uvdx,
RN

which derives to
25(—=A)Y'u = hu + s,uqu,s|u|q72u + 5225 Iy * |u|2;v~¥)|u|23vlv72u in RV,

Using the Pohozaev identity for the last equation, we obtain
287 |u]|* = qu;,ssZ/ ul?dx + 222’Ss2/ (L 3 |2 )t o dix,
RN RN
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thatisu € /\/0 , which leads to a contradiction. Thus, u € N, , is a natural constraint.
O

Lemma 3.3 Foreachu € S,, the function WH (1) has exactly two critical points o, <
t, € R and two zero points ¢, < d,, € R satisfying o, < ¢, < t, < dy. Furthermore,

(i) ay*u € N tyxll € ./\/_ and if txu € Ny, then eithert = o, ort = t,.
(ii) |ltxu|| < Rofor eacht < ¢y, and

I (oy*u) = min{l, (txu) : t € R with |txul| < Ro} < 0.

(iii) 1, (ty*u) = max{l, (txu) : t € R} > 0 and Wh () is strictly decreasing and
concave on (t,, +00). In particular, if t, < 0, then P, (u) < 0.
(iv) The maps: u — oy, u — t,, Yu € S,, are of class cl.

Proof Letu € S,, then rxu € N, w if and only if WY @) =o. Firstly, we show that
W/ (1) has at least two critical points. From (3.1), one has

Wi (0) = Ly (txu) = h(|ltxul)) = h(e™ [lul).

Thus, the C? function W/ (7) is positive on (s ~! In(Ro[lu| "), s~' In(Ry |lu]|~!)) and
WH(—o00) = 07, W/ (+00) = —o0, therefore, it is easy to see that W (1) has a local
minimum point «,, at level in (0, s~ n(Ro|lu|~")) and has a global maximum point
t,, atpositive level in (s~ In(Rolu|| =), s~ In(Ry [lu||~")). Next, we show that W/ (1)
has no other critical points. In fact, 't =0 implies that

gt) = Sﬂyq,s/ |ue|?dx
RN
with
g(t) = se@ Va5t |y )% — Se(”ﬁ,.r'ﬂ’q,s)”/ (I * |5 |u)%es dx.
RN

It is easy to see that g(¢) has a unique maximum point, thus the above equation has
at most two solutions. From u € S,, ¢ € R is a critical point of Wk () if and only if
tHu € Na,ﬂ, we have o, 1, € Na’u; Conversely, t*xu € Na,u if and only if = «,,, or
t = t,.In view of o, being alocal minimum point of W}, (1), we see that (¥}, ,,,)" (0) =
(W) () = 0. As N | = 0, we get that (W, .,)"(0) = (V)" () > 0. which
implies that a,xu € N . Similarly, we deduce thatz,xu € N, ,. By the monotonicity
and the behavior at infinity of WX (1) we see that W/ (¢) has exactly two zero points ¢, <
d, with e, < ¢, < t, < d, and W () has exactly two inflection points, especially,
Wk (1) is concave on (1, +00) and so, if #, < 0, then Py(u) = (¥/H)'(0) < 0. Finally,
we show that u € S, : o, € Randu € S, : #, € R are of class CL. In fact,
we can apply the implicit function theorem on the C! function ® (¢, u) = (W) (1),
therefore, ® (a,, u)(Wh) (o) = 0, 8, P (e, u) = (V)" () > 0, by the implicit
function theorem, we have that u — «,, Yu € S,, is of class C!. Similarly, we can
prove that u — t,,, Yu € S, is of class cl. O
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For k > 0, we define

Ar={ueS,: |ul®> <k} and mg, = inf I,(u).
MEARO

By Lemma 3.3, we can deduce the following conclusion.

Corollary 3.1 The set N\, is contained in

Ay, ={u e S,: ||u||2 < Ro}, and sup I,(u) <0< infi 1, (u).

ueNt, ueNa,u
Lemma 3.4 The level m,,,, € (—0o0,0), and satisfies

mg,, = inf I, = inf I, and m,, < inf I,
a, qu ARO\ARO_’

forr > 0 small enough.

Proof For any u € Ag,, we have

1 >h > in h(t —00.
() > (”“”)—zer[?fgo] (t) > —o0

Thus, m,,;, > —o0. Furthermore, forany u € S,, we have |[txu|| < Ro and I, (t*u) <
0forr « —1and somg,, < O0.Since N;f, C Ag,, we have that m, , < ianjH 1.

On the other hand, if u € Ag,, then o xu € ./\/a'f” C Ag, and
I (oyxu) = min{l, (txu) : t € R and |txul| < Ro} < I, (u),

which implies that inf -+ [, < mq . By virtue of [, > 0 on N, . we see that
inf Nt I, = infy;, 1. Finally, by the continuity of /& there is > 0 such that

a,p

h(t) > m“T“ if t € [Ry — r, Rp]. Consequently,

Ma,

[;L(u) > h(llul)) > > Mg

forany u € u € S, with Ry —r < |ju|| < Rp. This completes the proof. m]

4 [2-Critical Perturbation

In this section, we deal with the case N > Zﬁs, 2 < g = p and a, pu satisfy the the
inequality

4s _ _
na¥ < p(2Cy p.s) 1 “.1)
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We recall the decomposition of

Na,u = N;u UNC?,M UNa_,u'

Lemma 4.1 ./\/C?# = @ and Ny, is a smooth manifold of codimension I in S,.

Proof Suppose by contradiction that, there exists a u € N, 2 - Then

lull® = 1y, s / lu?dx + / (Iy * |u|?s ) u s dox, (4.2)
RN RN
and

20l = vl [ e +22, [ G uPeouPiodn, @3
RN RN

from which, we get fRN (I * |u|2;,x)|u|23,5dx = 0, this is not possible since u € S,,
here we used the fact gy, s = 2. The remainder parts of the proof is similar to that of
Lemma 3.2, and so we omit the details. O

Lemma 4.2 Under the condition (4.1), then for each u € S,, there exists a unique
ty € R such that tyxu € Ny, where t, is the unique critical point of the function of
W and is a strict maximum point at positive level. Moreover,

() Na,u ZNaT y
(il) W (t) is strict decreasing and concave on (t,, +00) and t, < O implies that
P, (u) < 0;
(ili) The mapu € Sy : t, € Risof C';
(iv) If Py(u) <O, thent, <O.

Proof Note that
1 _
k@) =1,(t%u) = [—||u||2 _ E_/ |u|pdx] o251
RN

e Ot S
223

/ (I # |u]%es )| %es dx, 4.4)

and the fractional Gagliardo-Nirenberg-Sobolev inequality (2.1) implies that

15 ,u/ 5 1w ds 2
S - B de > (= - Loy jpa .
2||M|| 5 Jox lu|”"dx > 275 N.psaN | ull

.. 45 _ . _
By the condition ua® < P(2CN,13,s)_l, we infer to %||u||2 — %fRN lulPdx > 0.
From (4.4) we see that W/ has a unique critical point #,, which is a strict maximum
point at positive level. Moreover, if u € Na, w»> then t, = 0 is a maximum point, and
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(W) (0) < 0.1In view of N2, = ¢, we have (W) (0) < 0. Thus, N, = N ,.
To see that the map u € S, : t, € Ris of C!, we can apply the implicit function
theorem as in Lemma 3.3. Finally, since (¥/})'(r) < 0 if and only if t > #,, so

P, (u) = (¥))(0) < 0if and only if #, < 0.

Lemma4.3 mg,, = infp; , 1, > 0.

m}

Proof Let u € Ny ,, then P,(u) = 0, and by the fractional Gagliardo-Nirenberg-

Sobolev inequality (2.1) and Hardy-Littlewood-Sobolev inequality (1.12),

2 = * *
flu]? =u—_/ |u|f’dx+/ (I  [u|?es ) ul%es dx
P JrN RY
2 45 2% *
< = Cnpsa laal® + ), flu]| s
Combining (4.1) and the last inequality, we get
2% 2 2 4 2 . 2
e 2 8,75 (1= n=Cnpsa™ ) el® = fnf ul® > 0.
a,

Therefore, from P, (1) = 0 and (4.5), we have

N +2s — 2 _
L) =212 "¢ ||u||2———Mf ) Pdx
22N — o) p Jry

>N+2s—oz 1 2C 4 Ll > 0
s —— — U= s u > U.
= 202N - WG oN.bs

Hence,

My, =/{}1f 1, > 0.
a,p

we get

(4.5)

O

Lemma 4.4 For k > O sufficiently small, we have 0 < supz Ly < ma . Moreover,

ue A= I,u) >0, P,(u) >0,

where Ay = {u € S, @ |ull® < k.

Proof By fractional Gagliardo-Nirenberg-Sobolev inequality (2.1) and Sobolev

inequality (1.12), we infer that

L_n % 2 -2 22
I (u) = (- - —-CN,,s,saN> fJul|* — Sy )| > 0,
2. p 22
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and
P,(u) = s/ |(—A)%u|2dx — s,uy,;,S/ |u|ﬁdx — s[ Iy * |u|2;»f)|u|2;vxdx
RN RN RN
21 20%
>s|1- F CNpsaN fluel|? —SSh, u]|“Fes >0,

provided that u € Ay for k small enough. By Lemma 4.3 we see that m,,, w > 0, thus
if k is small enough, we also have

1 2
Ip.(u) = E”MH < Mg, -

The proof is complete. O

We shall employ Proposition 2.2 to recover compactness. To this aim, we first
estimate from above for the value m, , , = inf 7, wNSr I1,,, where S, , is the subset
of the radial functions in S,.

Lemma 4.5 Assume that condition (4.1) holds, and N > 2/2s, then we have My g <
N+2s—«a S N241~VZS aa
22N—a) :

Proof Let n(x) € C{° (RN, [0, 1]) be a cut-off function such that 0 < n<Iln=1
on Bs(0) and = 0 on R\ Bys(0). Set

~ ~ ~ ﬁs Ug
ug(x) =nx)Ug(x), Ve=a—=— =a
llzze |2 lluell2

where ug (x) = n(x)Ug(x), (78 and U, are given in (1.13) by taking y = 0, the origin
point. By [58], we have the following estimations:

lue (x) — ue (y)]? N _
lugl® = /Rzzv dedy < 8% 4+ 0(eV7¥). (4.6)

Ce® + 0(EN™2), if N > 4s;
/ uldx = { Ce* log(1/¢), if N =4s; 4.7
RN CeN=2 + 0(e%), if N < 4s.

/RN X dx = §% + 0@). (4.8)

CeN-"TP £ 0(e™TP) if N> L2
/ lug|Pdx = Cs% log(1/2) + 0@?), it N=-272s:
RN _

Ce" TP 4 0(eN-"TEP) if N < 7272

|"tﬂ

0@EN-"3P), if N >
= 0(8%|10g8|), if N=
0(8 7 Py, if N < 7

g 2s;
2s; 4.9)
2s.

ST ST
| [

| |"§|
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Using the Hardy-Littlewood-Sobolev inequality, on one hand, we get

it ()| 25 [ (y) |20 Cw. 27,
[ e s o U

—_ o
=l N (4.10)
CNOlS‘ N N 2N1\7a CNO[Y 2N—«a N
= Ny (st+0(s )) = DN o255 L oM.
AN,O: AN,a

On the other hand, by the definition of u,, we have the estimate

/ / |ue(x)|2§,x|ug(y)|2§,xdxdyZ/ / Ius(x)lzz'flue(yﬂzz“dxdy
RN JRN |x_y|a Bs J Bs |X—y|a
- f / Ve @ [Us s
Bs J Bs |x_y|a
U 22,3 U 2;,3 U 2;,3 U zz,s
=/ / [Ue (xX) |75 |Ug ()] dxdy—2[ / [Ueg (x)] 75 |Ue ()] dxdy
RN JRN [x — y|* RN\ Bs J By lx — y|*

* * 4.11
_ / / Ve P U )P @D
RN\ B; JRV\Bj |x — y[¥

T 15 [T () 2
5 f / G L TP
o, RN RN

lx — y[«
s
a+2s
—~22§ Shl —2D — E,
AN’O‘CN,&,A
where
U X Zz,s U 2;‘,?
2/ / |Ue (x)] 75 [Ug ()| drdy
RN\ Bs J Bs |x — y|¥
and

U zmr U 2015
/ / [Ue (x)| 75 |Ug ()] dxdy.
RN\ B; JRN\ By lx — y|*

By the Hardy-Littlewood-Sobolev inequality and a direct computation, we know
22%
/ / P dxdy
RN\By J By (62 4 |x[2)CN=0/2(e2  |y|2)CN=)/2|x — y|o

e 1 o
< Cye?N—@ (f —dx) (/ —dy)
rM\B; (€2 + |x|D)N By (€2 + y|HN

2N—a EXl At
1 SN ) N—-1 2N
= Gt ( f de) ( / ﬁd’>
RV\B; x| o (e2+719)
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o 212&)(/3/5 pN-1 ) )2%“
= Fol —_—
o 1+ )N
o 2Nz_a)(/ﬂo pN-1 . )2]§A7a
< £ —_—
= o d+pN
2N—«a
—0( 7Y, (4.12)
and
1
E =gV« / f dxd
RN\Bs JRN\B; (€2 + |x]2)N=0)/2(g2 4 |y|2)CN=0)/2|x — y|a Y
1 oy 1 oy (4.13)
o) ()
RM\B; |X| RM\B; |V
= 0(e*N 7).
It follows from (4.11), (4.12) and (4.13), we have that
1
* * 2:{.5
( / (o * |us|2w-r>|us|2a=sdx>
RN
_ y
1 5% W-o IN—a o
2| S T 06 T) = 0ETT) (4.14)
L “N.,a,s
— 1
2*
1 _2N—a 2N—a s
=| S -0 )
L N,d,s

Since v, € C° (RV), and ¥; € S, 4, from Lemma 4.2, we see that

Mg = inf I, < I, (t5,%Vs) = max I, (txVg).
a,umsr,u teR

We next give a upper estimation for

I, (15, %Vg) = max I, (1%0g).
teR

Step 1) Consider the case 1 = 0 and estimate

max W (1) = Io(txve).
teR €

In view of

2st ~ 622§1sst
%P -
o,s

e
W (1) =
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it is easy to see that for each U, € S, the function \IJ% () has a unique critical point
1.0, which is a strict maximum point and is given by

e = T o 4.15)
AT ARSAR

Using the fact that

2N—«
2 22, —
t oo N+2s—a a N+2s—a
sup;~g (—2 a— oo b) = 2oN—a) (bl/ZZ,s) , for any fixed a,b > 0,

we can deduce by (4.6), (4.14), that

2N—«
~ 2 N+2s—a
W0 (10) = N T2 %
e 2(2N_a) (fRN(I *|Ug|2‘“)|v |20‘5d_x) %S
2N—«
N+2s—a
_N+2-a Nk
T 202N -« - - ;
| P\ e P g P )
2N—«a
N+2s—a
_N+2 -« S5 4 0(eN-2)
- 212N — .
( “ N a+2s 2N—a Zas (4.16)
»-223;Y S -0k 7))
N,a,s
_20N-a)

N +25 —a S5 N2+2v acN+25 a (1 + O(EN ZS))
- 2(2N _ Ol) 2N 7a)(N- %s) Ve
Sy (1 — 0(87))
@N— a)22
N+2s—a S 7 (1+06E")

2 2N _ (2N a)(N—2s) —a
( Ol) Sh’EN—a-%—Zs)z (1 _ 0(82N2 ))

N +2s —a A5 _
S 2N —a o HOET

Step 2) Let £, ;, be the unique maximum point of the function

2st

~ e ~
W (1) = 1, (tx7,) = &

llve

ue ~ 5
- /RNwsde— 7 f (L [T [ [0 [ i,
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and we estimate on 7, ,,. Since P, (t; ;,xU;) = 0, we have that

~ 12 ~ IE
0225~ Dste s _ [l || _ 2u Vel

~ 2% N~ 2% = ~ 2% N~ 2%
fRN(Ioz X Vg |7es ) [V | 7es p fRN(Ia * Vg [T ) [Vg |7

2u s 10 112
>1- —_CN,ﬁ,saN> PUR . T
( p ARSI PARE

Step 3 Now we estimate on sup, . Wi, . By steps 1 and 2, we see that

Wy (te 1)

13
= W0 (te) — > e pA

2
2 _2
E 5 ~ 2 22% -2
0 " 24 45\ 225 2 oA s oo
<sup ¥y — = (1 — —Cn,jsaV PO T F ”Ua”§
R p p :

2% NITY 12
Jrn (o [T 700 [T s

N 4+ 2s — 2N )
< SN+2V o 0 N—2s
= 20N —a) +O0(e )
_2 ) ﬁ 4s p
mn 21 a5\ 28,2 llue | ws=2 aw |lugll;
- = 1 — CN NA sa N 2% 2% 4s.
p P fRN o * |ug|s)Jug|"es llueell
- N +2s — SNZH? i 40N 23) ||Ms||§
= 22N —a) M ¥
||Ms||2
4.17)
From (4.7)-(4.9), we have the following estimate:
N—N=2s 5 ﬁ .
i Ce 7 PTN = C, if N > 4s;
luee 5 Ce™=5P5|Ing|~2 = C|Ing|~2, if N = 4s:
4 N—N=2s = 25(N-2s) 25(4s—N) ., P (418)
e | Y Ce 7 P Noo=Ce N if 2525 < N <ds
el2 N _N-2s4s 25
Ce2~ "2 W|lng|, if LIZ =N.
Therefore, we deduce from (4.17)-(4.18) that
N+2s —a -
m = inf I, <maxW{ (1) < —— —§NF
PO N unSea T 1eR cAY) 202N —a) M
and the proof is completed. O

5 L2-Supercritical Perturbation

In this section, we deal with the case N > 2s and p < g < 2}. We recall the following
decomposition of the Pohozaev manifold:
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Na,u = N;u UNaO,u UNHTM'

Lemma5.1 N,

Proof Suppose by contradiction that, there exists some u € N, (?’ ,0» then

||u||2=uyq,s/ |u|‘fdx+/ (I 3 Jue| %05 ) [u %o dx,
RN RN

and

= @ and N, is a smooth manifold of dimension I in S,.

5.1

25 ul® = gy, s / ul?dx + 227 (s> / (o 5 Jues) | Pesdx,  (5.2)
RN RN

from which, we get

2 = Vg Vs / ulfdx = 225, —2) / (Lo # [P P i,
RN RN

Since 2 — qy,5 < 0, 22;‘;. — 2 > 0, we see that u = 0, which is not possible since
u € S,. The remainder parts of the proof is similar to that of Lemma 3.2, and so we

omit the details here.

]

Lemma5.2 Let u € S,, then there exists a unique t, € R such thatt, X u € Na,ﬂ,
where t, is the unique critical point of the function of V! and is a strict maximum

point at positive level. Moreover,

() Na,u ZNaT y

(il) Wi (t) is strict decreasing and concave on (t,, +00) and t, < O implies that

P, (u) < 0;
(ili) The mapu € Sy : t, € Risof Cl.
(iv) If Py (u) <O, thent, <O.

Proof Since

eZst
n _ —
W) = I, (txu) =

quq,.rSf
) — “—/ Jul¥dx
q RN
225

st
/ (I * |05 ) u s dx,
]RN

8

22
and
(WY (1) = s> ull? = pyg.sse?es / | dx
]RN

«
_sezz?i,x“/ (Iy * |u|%s)|u|?es dx,
RN
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it is easy to see that (W})/(¢) = 0 if and only if

2 —2)s
P =y e [

* . * *
|l dr e a2 /R o uPen)lufPesdx £ £ ().

It is easy to see that f(¢) is positive, continuous and increasing and f(t) — 0% as
t - —ooand f(f) - +ooast — +o00. Therefore, there exists a unique point #,, such
thatz,*u € Ny, w» Where t,, is the unique critical point of Wk (¢) and is a strict maximum
point at positive level. Since 7, is the maximum point, we have that (W) () < 0. By
Ngﬂ = ), we have (W})"(t,) # 0, this implies that #,xu € N and Ny = N7,
since W) (¢) has exactly one maximum point. To see that the mapu € S, : 1, € R
is of C!, we can apply the implicit function theorem as in Lemma 3.3. Finally, since
(WY (1) < 0if and onlyif t > t,, so P, (u) = (WY(0) < 0if and only if, < 0.0
Lemma5.3 mg,, = infa;, , 1, > 0.

Proof Let u € N ,, then by the fractional Gagliardo-Nirenberg-Sobolev inequality
(2.1) and Sobolev inequality (1.12), we have

2 _ qu I 223‘ Q‘Zxdx
lull® = nyq,s lul®dox + | (Lo * ] s ) |ue] e
RN RN
1— _2*.‘ 2%
< /-’Lyq,SCN,q,Sa( Vq,s)‘f”u”(lyq.s + Sh’loz,a ||M|| s |

Hence, by above inequality and u € S,, we have

_ _ —2% *
MVq,SCN,q,sa(l yq’S)q”u”qu"s 2 + Sh la’S”u”ZZQ'S 2 >1, Yue Na,us

this implies that infue/\/w [lu|| > O and so

inf [,uyq,S/ |u|qu+/ (I * |u|2;1s)|u|2§,sdx:| > 0.
RN RN

ueNg u
Then, by P, (1) = 0 and the last inequality, we get

inf 1,(u)

ueNg

1 M 1 * %
= inf | =|u|?®- —/ ul?dx + / To o ue| %o ) |u| s dx
wer |:2|| l 7 Jen || 25, ]RN( o * |u|es)ul

. M (qVq.s N+2s—a/' o o
= f —( —1)/ Idx+———— I a.s asd 0.
e‘/“v[ o T 2N Zay Jy e e dr >

This completes the proof. O
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Lemma 5.4 For k > O sufficiently small, we have 0 < supz Ly < ma . Moreover,
ueA= I,(u) >0, P,(u) >0,

where Ay = {u € S, |lull® < k}.

Proof By fractional Gagliardo-Nirenberg-Sobolev inequality (2.1) and Sobolev
inequality (1.12), we have

—*
Sy ™ ]2 > 0,

1 W
I.w) > —llul> = Z¢ a?=va.s) |,y | 9Yas —
() = = lul g Vs [Juel 25

and

Pu<u)=s||u||2—swq,s/ |u|‘1dx—s/ (L 0P Pos
RN RN

2 1— =25 11, 122%
> sllull” — SM)/q,sCN,q,sdq( V) ||y || 9Yas — 58, 77 >0,

provided that u € Ay for k small enough. By Lemma 5.3 we see that 1, u > 0, thus
if necessary replacing k with smaller quantity, we also have

1
I (u) < Enun2 < Mgy

This completes the proof. O

In order to apply Proposition 2.2 and recover compactness, we need to estimate
from above for the value m; 4, = infu;, s, , Iu, Where S, 4 is the subset of the
radial functions in S,,.

Lemma 5.5 If one of the following conditions holds:

({) N > 4s and pad' =79 < %;
(ii) N =4s orquz2s <N <4sor2s <N < quZZS.
2N—«a

N+2s—a ¢ N+2s—a
Then we have m, 4, < 0N —a) Sp1 .

Proof From the definition of #, and v, in Lemma 4.5, we know that u, €
CSO(RN, [0, 1]) and ¥, € S, ,. By Lemma 4.2, we have

Mpg = inf I, <I,(ty, ,*V;) = max I, (1%0,).
' a,umsr,a ' teR

By a similar argument as in the step 1 of Lemma 4.5, we have

N 2 _ 2N—«
+ o aSN‘FZS*Dt +0(8N_2S).

0
w5, (15, 0) = 20N —a)
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Step 1) Let 7, be the maximum point of

W (1) = I, (1x0¢)

2st

e ~ " Zusst
== ||v£||2—;em-s“/w|vs|‘7dx— 7. f (Lo # v ) e [ dx

and we estimate on #3,. By (lIJ~ ) (t5,) = P (ty.xv,) = 0, we get

% f (T [0 [P ) [T s dx
RN

= BT — g s f | Ieldr < 20 2,
R

which implies that

1
~ 2 prr)
e < e (5:3)
fRN(Ia * Vg [T ) [g [“es dx
From (5.3), qy,,s > 2 and U = au,/||u.||2, we infer that
6(22:;'5_2)“;5
~ 2 AL
_ ”Us” — Wy, e(q}’q,sfz)sl'ie fRN |U£| dx
= — — s — —
AR S PAR T S Ul # [T [ | % dx
qvq,s =2
~ ~ *
- AR oy AR P52
— 2% q,s ~ 2% ~ 2%
Jn U [T [ ) [T |7 dx S g [T |7 [ |7 dx
fRN Ve |9dx

fRN(I AL CALANE:

-2
||u5||2 llue |I?
a?as™2 [on (I # lug| %) |ug [ %0 dx

22% —q q
||u6||2 “ ||u8||q

58 —
TP fo (o % g %) Jue o dx

qvq,s—2
225 52

22* -2
llue | llue 1
2
@252 fon (T # e s ) Jug %o dx

9vq.s—2
2 E

22% — E -
lluell5 (Ilotg [|?) 252

a2 ™2 fon o (e o9) ug % dx
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22*,-*‘1}’{1,5 1— . q

| () o — pygsat ) e lg
) 2 P ) S e 4T

(S (e J1ag ) g oo i) s 2 T2

54

By the estimates in (4.6), (4.10—4.14), we can infer that there exist constants
C1, C2, C3 > 0 depending only on N, ¢, s such that

Zzé,s —qYq,s

(leel?) 257 = ¢y and €

qvq,s =2
o o 2% -2 1
< (Lo * ug|™s)|ug|"sdx <= (5.5)
RN Cy
and
N—-2s .
C3eN="2 47900709 = (3, if N> 4s;
_ (rg.s—1)
C3eN =152 0=500-709) | Ing| 75— | if N = 4s;
llue llg VN2 (N2940-vg) g
W_ C3£ 7 4 2 y if qu2S<N<4S;
q.s
u N _N-=2s .
lluell, Cie 2~ 7700709 | Ing), if N= qu]Zs;
N-=2 N-=2
Cie 7 4= 7 10y, if 25 < N < 4725,
(5.6)
Next, we show that
lueliy
* N u "
8(220«&—2)5‘&,5 > C—EZZE - (57)
a o5
under suitable conditions.
Case 1: N > 4s. In this case, it holds that
N-2s
eNT a0y = 0 = (5.8)
and from (5.4-5.6) we have
2% 2
* Cllugll, ** C3
(22 =2)sty, ell2 q(1=yg,s)
e o8 e > —_—— C — a q,s) —— S
= 22,2 1 — MYq,s C,

and we see that inequality (5.7) holds only when uyqysaq(l’yq-s) < C{C,/C3. Thus,
we have to give a more precise estimate, let us come back to (5.4) and observe that by
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well-known interpolation inequality, we have

luae |1
qvq,s—2
ooy (T 1t [Pt [P ) P2 g 40770
22§ -q) 25 (q-2)
el ™ Hutellys
_ :
B 2% e Y:Z q(1=vg.s5) (5.9)
(Jian (T ¢ e |2 ) a4 | Poes i) s =2 Jlug 507
%42
lue 15"
- qvq,s—2 "

(frw e # |t [P g | ) s =

Therefore, by (5.4) and (5.9) we have

qvq,s—2
225 2 o\ L2
o2 ~Dst > Iluallz (Iloee | ) 5 *
a2 fRN (I, * |M5|2°‘»‘)|u5|201v3‘dx
LD (5.10)
&5~ — 2% 2
22?217‘”/? “Vq,saq(l y"“v)||ue||2*’
x| (lluel?) 272 — ;
’ qvq,s =2

(fraw T # [t 12505 | % ) s =

From the estimations (4.10),(4.6) and (4.14), we see that the right hand side of (5.10)
is positive provided that

Zzots_qus _
A (AR
Ml/q,saq Yas) < W (/ (Lo * |ute| a°)|u€| MdX)
¥
IIMsllz;f
Y 223,5*(11’%5
(58 + on2)

IA

2N—« 7% o
N Ny 252
Sz +0(@EN))™
N (2%.s—avgs  g=2 ), @N-o)(gygs=2)  9Yg.s=2

2 (W_z*q)"'w 225 52 -
— S s o, s $(224,5—2) CN:Z;’YS 1+ O(SN 23)

(N-0)QF-2)+25QF —qrg,s)  LVq572
=S 25225 5 —2) C 225,52

[ (1+0(8N*2S)) — K34+ 0@V,

where K3 is given in (1.21). Therefore, if N > 4s and pa?(177s) < % we have

2% =2
02— Dsty, Clluell, .
=T %2
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Case 2: N = 4s. In this case we have 3 < g < 4, and

(vg,5=1)
¢ = nelf > 0as e— 0.  (5.11)
Consequently,
”I/l ”q ‘I(Vqr 1)
e = 0e(D).
luelly ™ ™
Therefore, we get
-2 22k =2
- llu || Cllugll,
0220 = 2)st, > 8222—7 Ci — uyg, aq(l Y, J) 0e(1) #
Case 3: 2s < N < 4s. By the definition of y, ; and a direct computation we
get
N =25 (N=25)q(1— yg.s)
N — _ :
2 ! 2
(g —2)N N —4s 2N
=(N-2 —q— = — N -2 0.
( s)|:N—2s 1 4s 4s 1 N —2s ( $) >
Thus,
e 0 as ¢ — 0,
and so
lluee |1 e NN W)
e 2070 ¢ = oe(D).
8
Therefore, we get
2652 2% =2
£ llu || Cllugll,
0220 = 2)st, > '522%—7 Ci — uyg, aq(l Ya. J) 0s(1) #
Case 4: —52s = N. In this case, we may rewrite
N N -—2s N N -—2s N(N —2s)
5 ) = 5~ (g = 2) = (N=28) (g~ 2).
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Set h(t) = % — Nfzst — (N —2s) + %s_zs)t, we see that i(¢) is increasing about
t € R. Thus,

N N2s
2

N
(1 = yg.0) =hig =2) > h(0) =25 = — > 0.

Using the L"Hospital’s principle, we have

gy —t5tal- Yas)|Ing| — 0 as & — 0.
Therefore, we get
2552 2% 2
20% —2)sty ””8”2 L=y, s C””s”z “
@22 > CT C1 — pyg. a7 ) 0g(1) == mr
Case 5:2s < N < quZS. In this case we see that
N —2s N —2s N —2s
T q(1 —yq,s) = 5 Vas > 0,
and so
luelly _
luee 15770
Thus, we have
-2 20% 2
_ IIMsII Clluell o
(220” 2)sty, > C 22% — Cl Myq’saq(l Yq, r) (1) a22;i_2
Step 2 We estimate for max,cg \IJ#S (1). Note that
" " 0 equ,sStvg N
max WL (1) = WL (17,) = WY (17,) — u—/ pARRE:
teR € € q RN
Cu |lug |27 g4
<supwt — Clucly ot / g 9dx
R g a®’ ug|ly Jry
o Cura?1=vs) [on |ugl9dx (5.12)
= Supy, - a(=70)
R 4 ||u8||2 -
o 1=yq.s
< N+2S - SN2-I]—V25 —a + O(EN 25) Cl'l/aq( un) f N |u£|qu
~ 202N — ) q e 8”2(1 Ya.s)
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Using estimation (5.6), we can derive that
N+2s —a -«

= inf [, <max WL (1) < ———— SN, 5.13
Mrap = A0 TS MEx P50 < 50N Zg) Sh -13)
for ¢ > 0 small enough, which is the desired result. |

6 Proof of Theorem 1.1

Let {v, } be a minimizing sequence for inf 4 %o I, and we may assume that {v,} C S, 4
is radially decreasing for every n € N (if this is not the case, we can replace v, with
|vn|*, the Schwarz rearrangement of |v, |, and we obtain another function in A g, with
I, (lval*) < I(Jva|). By Lemma 3.3, for every n we can take oy, *v, € N'a+/4 such
that ||y, *v, || < Ro and

1, (oty, *xv,) = min{l, (txv,) : t € R and |[[t%xv,|| < Ro} < 1, (vy).
Therefore, we can get a new minimizing sequence {w, = oy, *v,} with w, € S, , N
N, j ,, Tadially decreasing for each n. By Lemma 3.4, we have [|w, || < Ro —r for every
n and hence by Ekeland’s variational principle in a standard way, we know that the
existence of a new minimizing sequence {u,} C Ag, for m, , with |w, —u,|| — 0
as n — 400, which is also a Palais-Smale sequence for /,, on S,. Combining the
boundedness of {w}, |w, — u,|| — 0, Brezis-Lieb lemma and Sobolev embedding
theorem, we infer to

el = llwn = wa I + wa [* + 0,(1) = Jwy > + 0, (1),
f |un|pdx:f |un_wn|pdx+/ |wn|pdx+0n(]):/ lw, |Pdx + 0,(1),
RN RN RN RN
for Vp € [2, 2}]. Now, we set

2% 2% 2% —1 N
[ty |7 = |wp|es +22,s|wn + O Uy — wy) "™ (U, —wy), x € RY,

where 6, = 6,(x) € [0, 1]. Thus, by the fact that |lu,, — w,|| - 0asn — oo, and
the Hardy-Littlewood-Sobolev inequality (1.12), we can deduce that

f (Lo # [t %) [ [ s dx = / (Lo % [wi|%) [, |25 dx
RN RN
+225 f U w2 [y + 6 G — wp) P ™y — wy)Jdx
R

+ 25’ /R (o L o+ 6 — w) oo™ty = wi)])
X Lwn + O (i — wi) ™"ty — wy)ldx

= /Nua s [wy %0 ) [wy | 22 dx + 0, (1).
R
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Thus,
P, (uy) = Py(wy) +0,(1) - 0 as n — 4o0.

Hence, one of the alternative in Proposition 2.2 occurs. We show that the second
alternative in Proposition 2.2 holds. Suppose by contradiction that, there exists a
sequence u,—u weakly in H*(R") but not strongly, where u # 0 is a solution of
(1.8) for some A < 0, and

N+2s —a o

N+2s—a

202N —a)

I;L(”) <mgy

Since u being a solution of (1.8), by the Pohozaev identity we have P, (u) = 0, that
is

/ |(=8)2ud :Myq,s/ Iulqu+/ (I * |ul?es ) u s dox.
RN RN RN

Thus, by the Gagliardo-Nirenberg inequality

N+2s —a 2N«

N+2s—a

mg = I/,L(u) +

202N —a) M
N 25 — 2N—« N 2s —
_Ntis—a Nina +2s a”u”?_ﬁ 1 - s / lu|?dx
22N —a) 22N —a) q 2255 ) Jry
— _2N—a —
. N+2s —« hN?_zs_a n N+2s —«a ]2
22N —a) ™ 22N —a)
n qu,s (I=v4.5) Yq.s
g (1 - 22:';,s> O g0 705

Next, we show that the right side of the above inequality is positive, which leads to a
contradiction with m, ;, < 0. For this aim, Let

g() = w# L V4.5 Cn.g ca?U=Yas)pdves  yr >,
22N —«a) q 225 o

Since gy, s < 2, the function g(¢) has has a global minimum at negative level when
t = tmin > 0 such that

& (tmin) = min g(r)
>0

2

: s (€ 225 =4 s 2N — « b= T
- —_ I:Maq(lf)/q,x):lz—qm.s _,“—q,“ |:—:| L
2

q 228 N+2s —«
< 0.
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By the assumption (1.22), one has

* Q2N-a)(2—qyq,s)
N+2s —a 22a,xq T2(N+2s—a)

Maq(l_yq.S) < ” h.l k)
2N —« (220“ — q)/q,s)CN,q,s ’

which implies that

N+2s —a 2N«

o _ N+Zs—a
& (fmin) > —2(2N—Oé) nl
Therefore, we obtain
N +2s —o 2-a N +2s —q 2N-a

Shl\’l?'zx—a + g(llul) = 2(2]\/—_“5}:{;&5—& + g(tmin) > 0,

> ____—
M= 20N —a) )

which contradicts to the fact that m,, < 0. Hence, u, — u strongly in
HS@RN), I,,(u) = myg,, and u solves (1.8) for some A < 0. In order to show that any
ground state is a local minimizer for /,, on Ag,, we use the factthat /,, (u) = m, , <0,
and then u € N, ;, so by Lemma 3.3 we have that u € Na'fu C Ag, and

I,(w) =mgy , = /%\nf I, and |Jull < Ro.
Ro

We next prove that the ground state solution is positive. Put u™ = max{u, 0} the
positive part of u. We note that all the calculations above can be repeated word by
word, replacing J with the functional

1 s
+ _ _ 5,12
Iﬂ n) = 2,/RN [(—=A)2u|“dx

1 * *
- / (L ™ 1) Ju™ [P — ﬁf utedx (6.1
22;“? RN q JRN
Using u~ = min{u, 0} as a test function in (6.1), in view of (Ilj)/(u)u’ = 0, and

(a—=b)a —b") > |a— — b |2, we conclude that

|2 < // (u(x) —u(y)((u”(x) — u’(y))dxdy —o.
RO

|x _ y|3+2s

Thus, #~ = 0 and # > 0 is a solution of (1.8). By some arguments from [14, 37], we
can obtain that u € L®(R3) N C%*(R3) for some a € (0, 1). Next we only need to
prove that the solution « is positive. Otherwise, if u#(xg) = 0 for some xy € R3, then
(=A)*u(xg) = 0 and by the definition of (—A)*, we have [19]:

Cs [ ulxo+y) +ulxo—y) —2ulxo)
— s P —
(=A) u(xo) 2 s N dy.
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Hence, [p3 %%dy = 0, which means that u = 0, a contradiction. Thus,
u(x) > 0in R3. This completes the proof. O

7 Proof of Theorems 1.2 and 1.3

We first collect some preliminary results, which are useful in proving Theo-
rems 1.2, 1.3. These materials can be found in [25].

Definition 7.1 ([25]) Let B be a closed subset of X. We say that a class F of compact
subsets of X is a homotopy-stable family with boundary B if

(i) each set in JF contains B.
(ii) for any set A in F and any n € C([0, 1] x X; X) satisfying n(z, x) = x for all
(t,x) € (0 x X) U ([0, 1] x B), we have n(1 x A) € F.

Proposition 7.1 ([25]) Let ¥ be a C! function on a complete connected C'—Finsler
manifold X (without boundary) and consider a homotopy-stable family F of compact
subset of X with a closed boundary B. Set ¢ = c({, F) = inf gqcr maxyca ¥ (x) and
suppose that

sup ¥ (x) < c.

xeB

Then, for any sequence of sets (A,)neN in F such that lim, supy, ¥ = c, there exists
a sequence {xp}neNn C X such that

Iim ¥(x,) =c¢, lim |[dy(x,)|| =0 and lim dist(x,, A,;) =0.
n—+00 n—+o0 n— 400

Moreover, if dvr is uniformly continuous, then x, can be chosen to be in A, for each
n.

Now we are ready for the Proof of Theorems 1.2,1.3.
Case 1. L?-critical perturbation for g = p. Letk > 0 be defined by Lemma 4.4, we
use the ideas introduced in [31] and use the functional /,, : R x H? (RY) = R as

~ 1
L) : =1t xu) = [_”u”z_ﬁ_/ |u|qu] !
2 P JRN

22 s

S22

/RN(Ia s [ 2 ) |u %o dx (7.1)

K
Clearly, ZL is of class of C!, and T 1 18 invariant under rotations applied to u, a Palais-

Smale sequence for /,,[rxs, , is a palais-Smale sequence 1, [rx s, - Set I, be the closed
sublevel set {u € S, : I,,(u) < c}, we give the minimax class

Mi={y = (@ pB) € CU0, 11, R x S, »)ly(0) € (0, A), y(1) € (0, [;)} (7.2)
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with associated minimax level

o(a, ) = inf max INM(I, u).
yel (r,u)ey([0,1])

Since ||r*ul*> — 0* ast — —oo and I, (txu) — —oo ast — +oo. Letu € S, 4.
There exist fo << —1 and #; >> 1 such that

Yu: T€[0,1] = (0, ((1 =)o+ 7t1) xu) e Rx S 4 (7.3)

is a path in . Then o (a, ©) is a real number. Now, for any y = («, B) € I, we
introduce the function

T, : 1 €[0,1] - P,(a()xB(1)) € R.

By Lemmas 4.3, 4.4 we see that T}, (0) = P, (8(0)) > 0. By virtue of \Ilg(l) (t) > Ofor

eacht € (—o0, 15(1)) and \Ilg(l)(O) = 1,(B(1)) <0, wehave t5(1) < 0. Therefore, by
Lemma 4.2, we have T, (1) = P,,(B(1)) < 0. Moreover, the map T > a(7)*B(7) is
continuous from [0, 1] to H*(R"), so we infer that there exists 7, € (0, 1) such that
T, (1) = 0, consequently, a(z, )*B(t)) € Nu,m which implies that

max I, > I, (y(t,)) = L(a(t)) % B(ry)) = _inf =m )
e Tu = Ly (o)) = Lu(a@) » flry)) = | il = mra

Therefore, o (a, ) > my 4,,. On the other hand, if u € Na,u N Sy 4, then y, defined
in (7.3) is a path in I" with

Iu:max]~>aa, R
w0 ya((0,1) "~ @ )

which implies that

My g > o(a, ).

Combining this with Lemmas 4.3, 4.4, we obtain

oa, ) =myq, > sup I, = sup I~u
(ARUIENS, 4 (0, A, U0, IEHNRX Sy 4)

Applying Proposition 7.1 we see that {y([0,1]) : ¥y € I'} is a homotopy stable
family of compact subsets of R x S, , with closed boundary (0, AU, I ﬁ) and the
superlevel set {’Ivﬂ > o(a, p)} is a dual set for I'. By Proposition 7.1, we can take any
minimizing sequence {y, = (&, Bn)} C I, for o (a, n) with the property that «;, = 0
and B,(r) > 0 a.e. in RNNfor every T € [0, 1], there exists a Pais-Smale sequence
{(tn, wn)} C R x S, 4 for I |Rxs,, atlevel o(a, n), such that

3Ty (tn, wp) — 0 and [|8, (14, wy)|| = O as n — 400, (7.4)
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with the property that
|t | + distys (wy, B, ([0, 1])) - 0 as n — +o0. (7.5)

By the definition of TM (ty, wy) in (7.1), and (7.4) we infer that P, (t,xw,) — 0, that
is

d 1, (tpxwy)[tnx@] = 0n (DB = 0, (1)[[1a x|
as n — +oo foreach ¢ € Ty, Sr 4. (7.6)

Let u, = ty*wy, by (7.6), we see that {u,} is a Palais-Smale sequence for /,]s, , at
level o (a, ) = my 4, and P, (u,) — 0. Hence, by Lemmas 4.3-4.5, we infer that

2N—«
myq . € (0, %S hAf l””" ), so by Proposition 2.2, one of the alternatives occurs.

Assume (i) of Proposition 2.2 occurs, then up to a subsequence u,, —u weakly in
H* (RV) but not strongly, where u # 0 is a solution of (1.8) for some A < 0, and

N +2s —a
L) <mp g — 20N —a) <0

Thus, by Pohozaev identity, P, (#) = 0 holds, which implies that

2/L =~ * *
||u||2 — 7 AN lu|Pdx — AN(IO[ * |u|2”v‘)|u|2dvfdx =0.

Therefore,
1 2 18 D 0% 0%
L (u) = S llull” = ?fRN |u|Pdx — 7 /RN(IO, s Jue| s ) |ue | s dix
N 2 - * *
e M‘/ (IC( * |M|2‘7"S)|I,t|2°"5dx = O.
22N — ) JrN

This contradicts the fact that

N+2s —a 2N«

I,u(u) =Mrau— m h/\f;—Zx—a <0
Thus, the alternative (ii) of Proposition 2.2 holds. There exists a subsequence u, — u
strongly in H* (RV), I, (u) = m; 4, andu solves (1.8) forsome A < 0.By B,(r) > 0
ae. in RV, (7.5) and the convergence implies that u > 0, and so by Proposition 2.17
in [60], we see that u is positive. Finally, we show that u is a ground state solution.
Note that any normalized solution in NV, ,, satisfies that

L,(u)y=m = inf
N r.a,pm s
Na,uNSrq
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It is sufficient to show that

" " a,p
M,p. Sr,a -/\/’u,ﬂ

Suppose by contradiction that, there is a w € Na,M\SM such that I, (w) <
infn, ,ns,, I Letv = |w|* be the symmetric decreasing rearrangement of w. Then
by the properties of symmetric decreasing rearrangement, we have

lvl? < wl?, 1,(v) < L,(w) and P,(v) <0 = P,(w).

If P,(v) =0, then P, (v) = P, (w) = 0, a contradiction to the above inequalities. If
P, (v) <0, then by Lemma 4.2, we have that ¢, < 0 satisfying

I/L(w) = Iu(tv*v)

« o N 4+2s — * %
ZZMMUM/ (Ia % |v|2a,s)|v|2ot,sdx
20N —a) Jan

_ 622[’;,.@%1#(11)) < I(w),

=e

which is a contradiction, here we we use the fact that ¢, x v, u € ./\/;1, - Thus,

Mg, = Mra,u,

and so, u is a ground state solution.

Case 2: L?—supercritical perturbation for p < g < 2%. Proceeding exactly as in
the case ¢ = p, we can obtain a Palais-Smale sequence {u,} C S,  for I,|s, at
level o(a, u) = my 4, and P, (u,) — 0. Therefore, by Lemma 5.5, we have that

2

N—a
my(a, ) € (0, év(;rj\zf_ _Of; S hA,, l”‘““ ), so by Proposition 2.2, one of the alternatives occurs.

Assume (i) of Proposition 2.2 occurs, then up to a subsequence u, —u weakly in
H*(RM) but not strongly, where u # 0 is a solution of (1.8) for some A < 0, and

N+2s —a -«

N+2s—a <0

I(u) <my g, — m n.l

Thus, by the Pohozaev identity, P, (1) = 0 holds, which implies that
ww—umﬁf wa—/(u*m%wwWMx=a
RN RN

Therefore, by gy, s > 2, we get

1 M 1 * *
Iy (u) = 5”””2 ) /RN |ul?dx — /RN(Ia s Ju |2 ) |u s dox

225 s
2 (CIVq,S )/ N+2s —«a / 2k 2
= — — 1 qu —_— 1 a,s ‘Y~5d 0
(5 [t o [ s s dx >
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This contradicts the fact that

N+2s —a 2N«

N+2s—a < 0

202N — @) M

Iu(u) =Mrau—

Thus, the alternative (ii) of Proposition 2.2 holds. There exists a subsequence u,, — u
strongly in H* (RM), I, (u) = mg, , and u solves (1.8) for some A < 0. By 8,(r) >0
ae. inRY, (7.5) and the convergence implies that u > 0, and by Sect. 6, we see that u
is positive. The remainder part of the proof is similar to that of Case 1. This completes
the proof. O

8 Proof of Theorem 1.4

In the case u = 0, the functional of (1.8) is given by

1
225

1 * *
To(u) = = llull” - AAQ*m%ww%wx

on S,. The associated Pohozaev identity is

Nao = {u € Sa: sllul? —s/ (I * |u| %) u)?es dx = 0}
RN
={ues.: @y =0},

where

2st 227 st

e
llull* —
2 22%

e * *
w0 = AJQ*WWQM%ML

Recall the decomposition
+ 0 -
Na,O :Na,OUNa,OU a,0°

It is easy to see that for each u € S,, the function \1/3 (t) has a unique critical point
t,.0, which achieves a strict maximum point and is given by

1
' JJul? 75,2
e ) Ju % : (8.1)
(fRN (o * |M|2°‘~5)|u|211,.vdx

From the definition of NZO, we see that N;O =0.Ifu e Nc?,O’ then u € N, o and
(9)’(0) = 0, that is,

2llull® =:2223!AQN<IQ»<n4ﬁéw)nnzisdx =22 lull?
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which implies that [|u|| = 0, contradicting to u € S,. Then Ny o = N,
Next, we show that NV, o is a smooth manifold codimension 1 on S In view of

Nao = {u ISV ||u||2 —/ (Iy * |u|2§,x)|u|2f§,sdx — 0} i
RN
N0 can be characterized as Py(u) = 0, G(u) = 0, where

Po(u):s||u||2—s22zs/ (I * |u|)|u)%sdx and G(M):/ lu)?dx = a>.
JRY RN

Since Py(u) and G (u) are class of C!, it is sufficient to check that d(Po(u), G(u)) :

HYRY) > R is surjective. If this is not true, d Pp(u) has to be linearly dependent
from d G (u), that is, there exist a v € R such that

2s/ (—A)%u(—A)%¢dx—s22;S/ (I * )25 [u]2es 2ugdx =v/ ugpdx
RN ©JRN

RN

for each ¢ € H* (RN, which shows that
25(=A)'u = vu + 5227, /RN(Ia s |u)2es)|u 2 "2y x € RV,
Using the Pohozaev identity for above equation, we infer that
2slul? =225 s /RNua s P P,

thatisu € Ng,o’ which yields a contradiction. Thus, u € N ¢ is a natural constraint.
Indeed, if u € N, is a critical point of Io| Naos then u is a critical point of Ip|g,.
Thus, for each u € S,, there exist a unique 7, o € R such that 1, gxu € N, o and 1,9
is a strict maximum point of \I/B (1), if u € Ny o, we have that 7, 0 = 0 and

Io(u) = max Io(txu) > inf max Io(t*u).
ueS, teR

On the other hand, if u € S,, then 1, gxu € N, 0, and

max lo(txu) = Iop(t, o*xu) > inf Iy(u
max o(txu) = Io(ty,0xu) > ot o(u).

Therefore,

inf Iy(u) = inf max Io(t*u).
ueNg o ueS, teR
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Now, we have by (8.1),

inf  Io(u)

ueNg,0

= inf max Io(t*u)

ues, te
1 u 2 0% -2
= inf |:— ” 2”* 5 ||I/t||2
ueNao L2\ fn (o [l e es de
223,3
1 flae]|? 252 N .
T PRI (T Jue o) e Posdx
22a,s fRN Ly * |u|“es)|u| asdx RN
222,5
2 223‘[“?—2
. N+2s —« llue]|
= 2eN —w I
€Ng, - * * o
e (fo (L Py P i) s
2N—a
2 N+2s—a
N+2s—a lul
= in
HS@®M)\{0} 22N — o B B 1
ue ( )\{ } ( ) (fRN (Io[ * |M|2°"S)|M|2°"de) 205,5
Thus, it follows from the definition of Sy, ; that
2N—a
N+2s—a

_ N+2s—a ]|
inf
ueHs®RV\(0} 22N — «)

1

(fian (o a5 a0 dx) %

N+2s —a 2N-«

_ N+2s—a

T 202N —a) M

and the infimum is attained if and only if by the extremal functions 175, y defined in
(1.13) when N > 4s and stay in L?(RN). In the case 2s < N < 4s, we show that
the infimum of Iy in NV, o is not achieved. Suppose by contradiction that there exists a
minimizer u, let v = |u|* the symmetric decreasing rearrangement of u. Then by the
properties of symmetric decreasing rearrangement, we infer to

> < lul®,  Io(v) < Io(u) and Po(v) <0 = Po(u).
If Py(v) < O, then by (8.1), we have t,, o < 0, and so

N+2s —«a ” ”2
—||v
22N — «)

< 2stv,0 N + 2S - ||M||2

- 2(2N — a)

= X0 Lo () < Io(u).

To(u) < Io(ty oxv) = €*700
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which is a contradiction. Thus Py(v) = 0, and so v € N, . Since A, ¢ is a natural
constraint, we obtain

(=AY = Av + (Iy % |v)%es) s v >0 in RV, (8.2)

for some 2 < 0. By Py(v) = 0, we see that 2 = 0. Using the maximum principle
[15], we have v > O irLRN. From [29], we know that v = 68U, ¢ for some 6 > 0, this
is not possible, since U o ¢ H*(RY) for 25 < N < 4s. This completes the proof.

9 Proof of Theorem 1.5

In this section, we prove Theorem 1.5. The following two lemmas are necessary to
the proof.

Lemma9.1 Leta > 0,0 >0, p < g < 2% and (1.22) holds. Then

inf 1,(u) = 1nf max I, (¢ * u).
ueNg ueSy teR

Proof Since p < g < 2¥ and u > 0, by Lemmas 4.2 and 5.2, we have that
Nao =N, Forany fixedu € S, there is aunique 7, , € Rsuch thatz, ,*u € Ny,
and t,, ,, is the unique critical point of the functional W} So, if u € N ,, we have that
tu,, = 0 and

I, (u) = max[ (t*u) > inf max I, (txv).
eR veS, teR

On the other hand, if u € S,, then 1, ,*u € N, 1 and hence

max [, (txu) = tyu*xu) > inf I,(v
nax w(xu) = Iy (ty pxu) > vt (V).

This completes the proof. O

Lemma9.2 Leta > 0, p < g < 2}, u* = 0 such that (1.22) holds. Then the function
w e [0, w*1 = myg,, € Ris monotone and non-increasing.

Proof Let0 < ) < pup < p*, by Lemma 9.1, we know that

Mgy, = inf max Iy, (txu) = 1nf Ly (tu, pup *1t)
ueS, telR

. eq}/q’sSl‘
= inf [Im(tu,m*u) + (1 — w2) / |u|‘1dx]
q RN

UES,

A

inf max /I, (txu) = mg y,,
ueS, telR

and the conclusion follows. O
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Proof of Theorem 1.5 We divide the proof into two cases.

Case 1: 2 < q < p < 2§. Since u,, is a positive ground state solution of /,, on
(u € S, + |ul®> < Ro}, where Ry is given in Lemma 3.1, such that h(Rg) = 0,
and /4 is defined in (3.2), we can check that Ry = Rgy(a, ) — 0. Therefore,
||u,L||2 < Ry — 0as u — OF. Forany u € S,, by (2.3) and (1.11)

1 " _
0> mg, = I,(uy) > Enuun2 — =Cp gyl || 7785 @1 as)

1 —2% *
~ e St Ml P — 0
2% "

aspu — 0t.

Case2: p < g < 2. Let u* > 0and (1.22) holds. Firstly, we show that the family
of positive radial ground states {u, : u € (0, u*)} is a bounded set in H* RMN). If
gq=p=2+ %, then by Lemma 9.2 and P, (u,) = 0, we deduce that

N+2s —«a 2 =
Mao 2 Mo = lu) = S50 [uun2 ~ fR |u|de}

N+2s —« 2 5 4s
> | 1= =Ch.an | lul’.
22N — ) p P

If p < g < 2¥, by asimilar argument as above we infer to

Ma,0 = Mgy = I/L(M/L)
_ N+2s —«

% x K (4Yq.s
=" 2y P dx + = ( _ 1) / aqy.
202N — ) /RN(“*W"' Hitul x+q 2 RN sl

Therefore, {u,} is bounded in LI(R™) N L% (RY). By P, (u,) = 0, we also have
{u,} is bounded in H*(R"). Since

32 2 2% 2%
Apa” = lluy|” — M/ |uu|qu _/ (Lo * |y |7es ) |y, | 7os dx
RN RN

— (s — 1)/ ¢y — 0
RN

as u — 0. Therefore, u,—u weakly in H*(RY), D*(R"), L% (RV) and u,, — u
in LY(RN), %, — 0. Let ||lu,||> - € > 0.1If £ = 0, then u,, — 0in D*(R"), and so
I,,(u,) — 0.But,by Lemma 9.2, we have 1, (u,,) > m,, ,+ > Oforeach u € (0, u*),
a contradiction. Hence, £ > 0. From P, (u,) = 0, we have

2% 2% 2
/ g * |y |75 )|y asdx = oy ll” — MVq,s/ |u,u|qu — £, as pu— ot.
RN RN
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N+2s—a
Recalling the definition of Sy ; in (1.13), we have £ > §, le ~* . Meanwhile, we see
that
N +2s — N +2s — y "
ug — lim M/ (I * IM,LIZ%S)IMMIzw-de
22N —a) u—0t [ 22N —a) Jrn
I (q)/q,s ) /
L 1 a4
4_q 2 RN|MM| *
. N+2s —a #
= Jim T Smao = 5o Sh
N+2s—a
Therefore, £ = S h,le ~® and the conclusion follows. O
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