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Professor Häım Brezis on his 65th birthday

ABSTRACT

Eigenvalue problems involving the Laplace operator on bounded domains

lead to a discrete or a continuous set of eigenvalues. In this paper we

highlight the case of an eigenvalue problem involving the Laplace operator

which possesses, on the one hand, a continuous family of eigenvalues and,

on the other hand, at least one more eigenvalue which is isolated in the

set of eigenvalues of that problem.
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1. Introduction and the main result

Throughout this paper we assume that Ω ⊂ R
N is a bounded domain with

smooth boundary. By an eigenvalue problem involving the Laplace operator we

understand a problem of the type

(1)

⎧⎨
⎩
−Δu = λf(x, u), in Ω,

u = 0, on ∂Ω

where f : Ω × R → R is a given function and λ ∈ R is a real number. We say

that λ is an eigenvalue of problem (1) if there exists u ∈ H1
0 (Ω) \ {0} such

that for any v ∈ H1
0 (Ω),∫

Ω

∇u∇v dx− λ

∫
Ω

f(x, u)v dx = 0.

Moreover, if λ is an eigenvalue of problem (1) then u ∈ H1
0 (Ω)\{0} given in the

above definition is called the eigenfunction corresponding to the eigenvalue

λ. In this paper we are interested in finding positive eigenvalues for problems

of type (1).

The study of eigenvalue problems involving the Laplace operator guides our

mind back to a basic result in the elementary theory of partial differential

equations which asserts that the problem (which represents a particular case of

problem (1), obtained when f(x, u) = u)

(2)

⎧⎨
⎩
−Δu = λu, in Ω,

u = 0, on ∂Ω,

possesses an unbounded sequence of eigenvalues 0 < λ1 < λ2 ≤ · · · ≤ λn ≤ · · · .
This celebrated result goes back to the Riesz–Fredholm theory (see Brezis [2])

of self-adjoint and compact operators on Hilbert spaces.

In what concerns λ1, the lowest eigenvalue of problem (2), we remember that

it can be characterized from a variational point of view as the minimum of the

Rayleigh quotient, that is,

(3) λ1 = inf
u∈H1

0 (Ω)\{0}

∫
Ω |∇u|2 dx∫
Ω
u2 dx

.

Moreover, it is known that λ1 is simple, that is, all the associated eigenfunc-

tions are merely multiples of each other (see, e.g., Gilbarg and Trudinger [6]).

Furthermore, the corresponding eigenfunctions of λ1 never change signs in Ω.
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Going further, another type of eigenvalue problem involving the Laplace op-

erator (obtained in the case when we take, in (1), f(x, u) = |u|p(x)−2u) is given

by the nonlinear model equation

(4)

⎧⎨
⎩
−Δu = λ|u|p(x)−2u, in Ω,

u = 0, on ∂Ω ,

where p(x) : Ω → (1, 2∗) is a given continuous function and 2∗ denotes the

critical Sobolev exponent, that is,

2∗ =

⎧⎨
⎩

2N
N−2 if N ≥ 3,

+∞ if N ∈ {1, 2}.

Obviously, the case when p is a constant function on Ω is allowed, but we avoid

the case when p ≡ 2 since this case is the object of problem (2), discussed above.

For this problem the growth rate of the function p is essential in the description

of the set of eigenvalues. First, assuming that minΩ p > 2 it can be proved (by

using a mountain-pass argument) that any λ > 0 is an eigenvalue of problem

(4). Next, in the case when minΩ p < 2 it can be proved (by using Ekeland’s

variational principle) that the problem has a continuous family of eigenvalues

which lies in a neighborhood of the origin (see, e.g., Mihăilescu and Rădulescu

[10] or Fan [3] for some extensions). Finally, we point out that the above result

can be completed in the particular case when maxΩ p < 2. More exactly, in this

situation it can be proved that the energy functional associated to problem (4)

has a nontrivial (global) minimum point for any positive λ large enough. In

other words, if maxΩ p < 2 then there exist two positive constants μ1 and μ2

such that any λ ∈ (0, μ1) ∪ (μ2,∞) is an eigenvalue of problem (4).

We notice that in all the situations presented above on (4) the set of eigenval-

ues is not completely described, excepting the case when minΩ p > 2. However,

in all the cases the set of eigenvalues possesses a continuous subfamily.

In what concerns the eigenvalue problems involving quasilinear operators we

remember, in the case of homogeneous elliptic operators, the contributions

of Anane [1], de Thélin [14], Lindqvist [7] and Filippucci–Pucci–Rădulescu

[5], while in the case of nonhomogeneous elliptic operators we point out the

recent advances of Fan–Zhang–Zhao [4], Mihăilescu–Rădulescu [10, 11, 12],

Mihăilescu–Pucci–Rădulescu [8, 9] and Fan [3].
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Motivated by the above results on problems (2) and (4) which show that the

eigenvalue problems involving the Laplace operator lead to a discrete spectrum

(see the case of problem (2)) or a continuous spectrum (see the case of problem

(4) in the different forms pointed out above), we consider it important to sup-

plement the above situations by studying a new eigenvalue problem involving

the Laplace operator which possesses, on the one hand, a continuous family

of eigenvalues and, on the other hand, at least one more eigenvalue which is

isolated in the set of eigenvalues of that problem.

We study problem (1) in the case when

(5) f(x, t) =

⎧⎨
⎩
h(x, t), if t ≥ 0,

t, if t < 0,

where h : Ω × [0,∞) → R is a Carathéodory function satisfying the following

hypotheses:

(H1) there exists a positive constant C ∈ (0, 1) such that |h(x, t)| ≤ Ct for any

t ≥ 0 and a.e. x ∈ Ω;

(H2) there exists t0 > 0 such that H(x, t0) :=
∫ t0
0

h(x, s) ds > 0, for a.e. x ∈ Ω;

(H3) limt→∞
h(x,t)

t = 0, uniformly in x.

Example: We point out certain examples of functions h which satisfies the hy-

potheses (H1)–(H3):

1. h(x, t) = sin (t/2), for any t ≥ 0 and any x ∈ Ω;

2. h(x, t) = k log(1 + t), for any t ≥ 0 and any x ∈ Ω, where k ∈ (0, 1) is a

constant;

3. h(x, t) = g(x)(tq(x)−1 − tp(x)−1), for any t ≥ 0 and any x ∈ Ω, where

p, q : Ω → (1, 2) are continuous functions satisfying maxΩ p < minΩ q,

and g ∈ L∞(Ω) satisfies 0 < infΩ g ≤ supΩ g < 1.

The main result of the present paper establishes a striking property of the

eigenvalue problem (1), provided that f is defined as in (5) and satisfies the

above assumptions. More precisely, we prove that the first eigenvalue of the

Laplace operator in H1
0 (Ω) is an isolated eigenvalue of (1) and, moreover, any

λ sufficiently large is an eigenvalue, while the interval (0, λ1) does not contain

any eigenvalue. This shows that problem (1) has both isolated eigenvalues and

a continuous spectrum in a neighbourhood of +∞.
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Theorem 1: Assume that f is given by relation (5) and conditions (H1), (H2)

and (H3) are fulfilled. Then λ1 defined in (3) is an isolated eigenvalue of problem

(1) and the corresponding set of eigenvectors is a cone. Moreover, any λ ∈ (0, λ1)

is not an eigenvalue of problem (1) but there exists μ1 > λ1 such that any

λ ∈ (μ1,∞) is an eigenvalue of problem (1).

Finally, we notice that similar results to those given by Theorem 1 can be

formulated for equations of type (6) but replacing the Laplace operator Δu by

the p-Laplace operator, that is Δpu := div(|∇u|p−2∇u), with 1 < p < ∞. Cer-

tainly, in that case hypotheses (H1)–(H3) should be modified accordingly with

the new situation. This statement is supported by the fact that the first eigen-

value of the p-Laplace operator on bounded domains satisfies similar properties

to the one obtained in the case of the Laplace operator (see, e.g., [1]) combined

with the remark that the results on problem (10) can be easily extended to the

case of the p-Laplace operator.

2. Proof of the main result

For any u ∈ H1
0 (Ω) we denote

u±(x) = max{±u(x), 0}, ∀ x ∈ Ω.

Then u+, u− ∈ H1
0 (Ω) and

∇u+ =

⎧⎨
⎩
0, if [u ≤ 0],

∇u, if [u > 0],
∇u− =

⎧⎨
⎩
0, if [u ≥ 0]

∇u, if [u < 0]

(see, e.g., [6, Theorem 7.6]). Thus, problem (1) with f given by relation (5)

becomes

(6)

⎧⎨
⎩
−Δu = λ[h(x, u+)− u−], in Ω,

u = 0, on ∂Ω,

and λ > 0 is an eigenvalue of problem (6) if there exists u ∈ H1
0 (Ω) \ {0} such

that

(7)

∫
Ω

∇u+∇v dx −
∫
Ω

∇u−∇v dx− λ

∫
Ω

[h(x, u+)− u−]v dx = 0 ,

for any v ∈ H1
0 (Ω).

Lemma 1: Any λ ∈ (0, λ1) is not an eigenvalue of problem (6).
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Proof. Assume that λ > 0 is an eigenvalue of problem (6) with the corre-

sponding eigenfunction u. Letting v = u+ and v = u− in the definition of the

eigenvalue λ we find that the following two relations hold true:

(8)

∫
Ω

|∇u+|2 dx = λ

∫
Ω

h(x, u+)u+ dx

and

(9)

∫
Ω

|∇u−|2 dx = λ

∫
Ω

u2
− dx.

In this context, hypothesis (H1) and relations (3), (8) and (9) imply

λ1

∫
Ω

u2
+ dx ≤

∫
Ω

|∇u+|2 dx = λ

∫
Ω

h(x, u+)u+ dx ≤ λ

∫
Ω

u2
+ dx

and

λ1

∫
Ω

u2
− dx ≤

∫
Ω

|∇u−|2 dx = λ

∫
Ω

u2
− dx.

If λ is an eigenvalue of problem (6) then u �= 0, and thus at least one of the

functions u+ and u− is not the zero function. Hence, the last two inequalities

show that λ is an eigenvalue of problem (6) only if λ ≥ λ1.

Lemma 2: λ1 is an eigenvalue of problem (6). Moreover, the set of eigenvectors

corresponding to λ1 is a cone.

Proof. Indeed, as we already pointed out, λ1 is the lowest eigenvalue of prob-

lem (2), it is simple, that is, all the associated eigenfunctions are merely mul-

tiples of each other (see, e.g., Gilbarg and Trudinger [6]) and the correspond-

ing eigenfunctions of λ1 never change sign in Ω. In other words, there exists

e1 ∈ H1
0 (Ω) \ {0}, with e1(x) < 0 for any x ∈ Ω such that

∫
Ω

∇e1∇v dx− λ1

∫
Ω

e1v dx = 0 ,

for any v ∈ H1
0 (Ω). Thus, we have (e1)+ = 0 and (e1)− = −e1 and we deduce

that relation (7) holds true with u = e1 ∈ H1
0 (Ω) \ {0} and λ = λ1. In

other words, λ1 is an eigenvalue of problem (6) and, undoubtedly, the set of its

corresponding eigenvectors lies in a cone of H1
0 (Ω). The proof of Lemma 2 is

complete.

Lemma 3: λ1 is isolated in the set of eigenvalues of problem (6).
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Proof. By Lemma 1 we know that in the interval (0, λ1) there is no eigenvalue

of problem (6). On the other hand, hypothesis (H1) and relations (3) and (8)

show that if λ is an eigenvalue of problem (6) for which the positive part of its

corresponding eigenfunction, that is u+, is not identically zero, then

λ1

∫
Ω

u2
+ dx ≤

∫
Ω

|∇u+|2 dx = λ

∫
Ω

h(x, u+)u+ dx ≤ λC

∫
Ω

u2
+ dx,

and thus, since C ∈ (0, 1), we infer λ ≥ λ1/C > λ1 . We deduce that for any

eigenvalue λ ∈ (0, λ1/C) of problem (6) we must have u+ = 0. It follows

that if λ ∈ (0, λ1/C) is an eigenvalue of problem (6), then it is actually an

eigenvalue of problem (2) with the corresponding eigenfunction negative in Ω.

But, we already noted that the set of eigenvalues of problem (2) is discrete and

λ1 < λ2. In other words, taking δ = min{λ1/C, λ2} we find that δ > λ1 and

any λ ∈ (λ1, δ) cannot be an eigenvalue of problem (2) and, consequently, any

λ ∈ (λ1, δ) is not an eigenvalue of problem (6). We conclude that λ1 is isolated

in the set of eigenvalues of problem (6). The proof of Lemma 3 is complete.

Next, we show that there exists μ1 > 0 such that any λ ∈ (μ1,∞) is an

eigenvalue of problem (6). With that end in view, we consider the eigenvalue

problem

(10)

⎧⎨
⎩
−Δu = λh(x, u+), in Ω,

u = 0, on ∂Ω.

We say that λ is an eigenvalue of problem (10) if there exists u ∈ H1
0 (Ω) \ {0}

such that ∫
Ω

∇u∇v dx − λ

∫
Ω

h(x, u+)v dx = 0,

for any v ∈ H1
0 (Ω).

We notice that if λ is an eigenvalue for (10) with the corresponding eigen-

function u, then taking v = u− in the above relation we deduce that u− = 0,

and thus we find u ≥ 0. In other words, the eigenvalues of problem (10) pos-

sess nonnegative corresponding eigenfunctions. Moreover, the above discussion

shows that an eigenvalue of problem (10) is an eigenvalue of problem (6).

For each λ > 0 we define the energy functional associated to problem (10) by

Iλ : H1
0 (Ω) → R,

Iλ(u) =
1

2

∫
Ω

|∇u|2 dx− λ

∫
Ω

H(x, u+) dx,
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where H(x, t)=
∫ t

0
h(x, s)ds. Standard arguments show that Iλ∈C1(H1

0 (Ω),R)

with the derivative given by

〈I ′
λ(u), v〉 =

∫
Ω

∇u∇v dx− λ

∫
Ω

h(x, u+)v dx,

for any u, v ∈ H1
0 (Ω). Thus, λ > 0 is an eigenvalue of problem (10) if and only

if there exists a critical nontrivial point of functional Iλ.

Lemma 4: The functional Iλ is bounded from below and coercive.

Proof. By hypothesis (H3) we deduce that

lim
t→∞

H(x, t)

t2
= 0, uniformly in Ω.

Then for a given λ > 0 there exists a positive constant Cλ > 0 such that

λH(x, t) ≤ λ1

4
t2 + Cλ, ∀ t ≥ 0, a.e. x ∈ Ω,

where λ1 is given by relation (3).

Thus, we find that for any u ∈ H1
0 (Ω),

Iλ(u) ≥ 1

2

∫
Ω

|∇u|2 dx− λ1

4

∫
Ω

u2 dx− Cλ|Ω| ≥ 1

4
‖u‖2 − Cλ|Ω| ,

where ‖ · ‖ denotes the norm on H1
0 (Ω), that is, ‖u‖ = (

∫
Ω |∇u|2 dx)1/2. This

shows that Iλ is bounded from below and coercive. The proof of Lemma 4 is

complete.

Lemma 5: There exists λ�>0 such that, assuming λ≥λ�, we have infH1
0 (Ω) Iλ<0.

Proof. Hypothesis (H2) implies that there exists t0 > 0 such that

H(x, t0) > 0 a.e. x ∈ Ω.

Let Ω1 ⊂ Ω be a compact subset, sufficiently large, and u0 ∈ C1
0 (Ω) ⊂ H1

0 (Ω)

such that u0(x) = t0 for any x ∈ Ω1 and 0 ≤ u0(x) ≤ t0 for any x ∈ Ω \ Ω1.

Thus, by hypothesis (H1) we have∫
Ω

H(x, u0) dx ≥
∫
Ω1

H(x, t0) dx−
∫
Ω\Ω1

Cu2
0 dx

≥
∫
Ω1

H(x, t0) dx− Ct20|Ω \ Ω1| > 0.

We conclude that Iλ(u0) < 0 for λ > 0 sufficiently large, and thus infH1
0 (Ω) Iλ <

0. The proof of Lemma 5 is complete.
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Lemmas 4 and 5 show that for any λ > 0 large enough, the functional Iλ

possesses a negative global minimum (see [13, Theorem 1.2]), and thus any λ > 0

large enough is an eigenvalue of problem (10) and consequently of problem (6).

Combining that fact with the results of Lemmas 1, 2 and 3 we conclude that

Theorem 1 holds true.
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