ON THE GINZBURG-LANDAU ENERGY WITH WEIGHT
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1. Introduction

In a recent book [BBH4|, F. Bethuel, H. Brezis and F. Hélein studied the vortices
related to the Ginzburg-Landau functional. Similar functionals appear in the study of
problems occuring in superconductivity or the theory of superfluids.

In [BBH4], F. Bethuel, H. Brezis and F. Hélein have studied the behavior as e — 0 of
minimizers u. of the Ginzburg-Landau energy

1 2 1 212
B =5 [ 1VuP +g [a-lup)
in the class of functions
1 _ 1/ D2\, .
H, (G) ={u e H (G;R”); u=g on 0G},

where:
a) € > 0 is a (small) parameter.



b) G is a smooth, simply connected, starshaped domain in R2.

c) g: 0G — St is a smooth data with a topological degree d > 0.

They obtained the convergence of (uc, ) in certain topologies to u,. The function wu,
is a harmonic map from G \ {a1,...,aq} to S*, and is canonical, in the sense that

0 6u* 6 6u . /
6_1:1(u*/\8_a:1)+8_x2< /\81'2)_0 1n D(G)

Recall (see [BBH4]) that a canonical harmonic map u, with values in S and singu-
larities by, ..., by of degrees dy, ..., dx may be expressed as

x—b1 @ ( x—bk )dk ipo(x)
U (T ) = _ - e'¥o ,
o=(r=m) (e

Apg=0 in G.

with

They also defined the notion of renormalized energy W (b, d, g) associated to a given
configuration b = (by,...,by) of distinct points with associated degrees d = (dy, ..., dy).
For simplicity we set W(b) = W (b,d,g) when k = d and all the degrees equal +1. The
expression of the renormalized energy W is given by

_ 1
W(b,d,g):—WZdidjlog|bi—bj]—1—5/8 Do(g A gr) deRO :
i#]

where ®( is the unique solution of

( k
ADy =27 d;d, , inG
j=1

(1) 8(30:9/\5]7, on 0G

0
/ (I)():O
\ JOG

k
Ro(x) = ®o(z) — Y djlog |z —b; | .
j=1

and

The functional W is also related to the asymptotic behavior of minimizers u. as
follows:

(2) lim {E.(us) — 7d | loge |} = min W(b) + dv,
e—0 beG?



where v is an universal constant, £k = d, d; = +1 for all ¢+ and the configuration a =
(a1,---,aq) achieves the minimum of W.

We study in this paper a similar problem, related to the Ginzburg-Landau energy
with the weight w, that is

y 1 1
B =5 [ 1Vul g [ 0= lupye.

with w € C'(G), w > 0 in G. Throughout, u. will denote a minimizer of E*. We mention
that u. verifies the Ginzburg-Landau equation with weight
A ! 2 i
3) - u5:€—2u5(1—|u5| Jw in G
us =g on 0G.

Our work is motivated by the Open Problem 2, p. 137 in [BBH4]. We are concerned
in this paper with the study of the convergence of minimizers, as well as with the corre-
sponding expression of the renormalized energy. We prove that the behavior of minimizers
is of the same type as in the case w = 1, the change appearing in the expression of the
renormalized energy and, consequently, in the location of singularities of the limit u, of
U, . In our proof we borrow some of the ideas from Chapter VIII in [BBH4|, without
relying on the vanishing gradient property that is used there. We then prove a correspond-
ing vanishing gradient property for the configuration of singularities obtained at the limit.

In the last section we obtain the new renormalized energy by a variant of the “shrinking
holes” method which was developed in [BBH4], Chapter I.

2. The renormalized energy

Theorem 1. There is a sequence €, — 0 and exactly d points a1, ...,aq in G such
that
ue, — uy in HL (G \ {ai,...,aq}; R?),

where u, is the canonical harmonic map associated to the singularities a1, ..., aq of degrees
+1 and to the boundary data g.

Moreover, a = (a1, -, aq) minimizes the functional
(4) W(b) =W(b) + 5 > “logw(b;)
j=1

among all configurations b = (by,...,by) of d distinct points in G.
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In addition, the following holds:

d
(5) nll_)rréO {EY (uc,) —nd | loge, |} = W(a) + g Zlogw(aj) +dry,
=1

where ~y is some universal constant, the same as in (2).

Remark. The functional W may be regarded as the renormalized energy correspond-
ing to the energy E.

Before giving the proof, we shall make some useful notations: given the constants
c,e,m >0, set

I°(e,n) = min{ES(u); u € H'(B,;R?) and u(z) = % on 0B,}.

Here B, = B(0,7) C R*.
For z € GG, denote

M,(x)= sup w and my(r) = inf w.
B(z,n)NG B(z,n)NG
Note that
€ €
I¢(e,n) =1¢(=,1) =I'(—=,1
(e,m) (77 ) (nﬁ )
and

I (e,m) < 1%(g,m),

provided ¢; < cs.
We shall drop the superscript c if it equals 1.

Proof of Theorem 1. The first part of the conclusion may be obtained by adapting
the techniques developed in [BBH1|, [BBH2|, [BBH3], [BBH4] (see also [S]). We shall point
out only the main steps that are necessary to prove the convergence:

a) Using the techniques from [S] we find a sequence &,, — 0 such that, for each n,

1

= (1— | ue, 2w <C.
n JG

(6) <

b) Using the methods developed in [BBH4], Chapters 3-5, we determine the “bad”
disks, as well as the fact that their number is uniformly bounded. These techniques allow
us to prove the convergence of (u.,) weakly in H} (G \ {ai,...,ar}; R?) to u,, which is
the canonical harmonic map associated to ai, ..., ax with some degrees dy, ..., d; and to the
given boundary data.



¢) The strong convergence of (u.,) in HL (G \ {a1, ..., ax}; R?) follows as in [BBH4],
Theorem VI.1 with the techniques from [BBH3], Theorem 2, Step 1. Now the local con-
vergence of (uc, ) in G\ {a1,---,ax} in stronger topologies, say C2, may be easily obtained
by a bootstrap argument in (3). This implies that

1— 2
) e By v, .

uniformly on every compact subset of G \ {a1, ..., ax}.

d) For each 1 < j < k, deg (ux,a;) # 0. Indeed, if not, then as in Step 1 of
Theorem 2 [BBH3]|, the H'-convergence is extended up to a;, which becomes a “removable
singularity”.

e) The fact that all degrees equal +1 may be deduced as in Theorem VI.2, [BBH4].

f) The points ay, ..., aq lie in G. The proof of this fact is similar to the corresponding
result in [BBHA4].

The proof of the second part of the theorem is divided into 3 steps:
Step 1. An upper bound for EX (u.).
We shall prove that if b = (b;) is an arbitrary configuration of d distinct points in G,

then there exists 19 > 0 such that, for each n < 7,

d
1
(8) E¥(u.) gz )—I—W(b)+7rdlog5+0(n) asn— 0,

\/ v/ M, (b;)°

for € > 0 small enough. Here O(7n) is a quantity which is bounded by Cn, with C' indepen-
dent of n > 0 small enough.

The idea is to construct a suitable comparison function v.. Let n < ng, where
Ny = max{dist (bj,0G),| bj — by |}. Applying Theorem 1.9 in [BBH4] to the configuration

b, we find u : G, —G\UB ;1) — S* with 4 = g on 9G and a; € , | a; |= 1 such that

j=1
~ Z—bj
u=aj——— on 0B(bj,n)
Tz —bj | ’
and
1 . 1
9) 2 | Vu | :WdlogE—I—W(b)%—O(n), asn— 0.
G

m

We define v, as follows: let v. = u on G,, and, in B(b;,7n), let v. be a minimizer of
EY on H}(B(b;,n);R?), where h = @ loB(b;,)- We have the following estimate

10 E* (v ) < IM) (e o) = [(———— 1)
(10) & (Ve |B(o;m) < (e,m) (77 L) )



The desired conclusion follows from (9),(10) and E¥ (u.) < EX(v.).
Step 2. A lower bound for E (ue, ).

We shall prove that, if aq, ..., ag are the singularities of u,, then given any n > 0, there
is Ng = No(n) € such that, for each n > Ny,

d
€n 1
(11) EY (ue,) 221<—,1) + md log — + W(a) + O(n).
j=1 arf moﬂl(aj) n
Here o = 1+ n and O(7) is a quantity with the same behavior as in (8).
Indeed, for a fixed a;, supposed to be 0, u, may be written
u, = !t
where 9 is a smooth harmonic function in a neighbourhood of 0. We may assume, without
loss of generality, that ¥ (0) =
In the annulus A, o, = {z € R?; n <| z |< an} the function u., may be written, for
n large enough, as

e, = prel@nt0)

where 1, is a smooth function and 0 < p,, < 1. Define, for n < r < an, the interpolation

function
Un(T, 0) — r—n + Pn(777 9)(0[7’] - ’f’) z[na(‘g 71)¢n(n,9)+9] .
n(a—1)

We have

1 oo an
L[ amtmpre s B UL e e =
n

£ "

n JApan n

1 1— | uy, [?)?
:Hw”Lm‘a+ 772/ —( |Q; |)d0—>0, as n — o0 .
2 0B, €n

This convergence is motivated by (7). We also observe that the convergence of (u. ) in
IOC(G \ {a17 ) ad}; R2) implies

(12) / | Vo, |2—>/ | Vv |2, as n— 0,
A ATI,OHI

n,an

where
v(n,d) = oilata=ny ¥ (n,0)+6]

Thus, we may write, for n > Ny,
w 1 2
Eé‘n (Un |An,an) =35 | VU | +0(]‘) °

2 An,an
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We prove in what follows that

(13) /A |V 2= 0(n).

n,an

Indeed, since
2

%(777 9) +1

|V’U |2: ¢2(777‘9) 1 |: an—r

?(a—1)2 " 12 |p(a—1)
and

1/1(7“, 9) < C’l“, | ¢r(ra 9) |§ C= | ¢9(T7 9) |S CT7

the desired conclusion follows by a straightforward calculation.
We obtain

(14) EZ( ) > I (e, am) + O(n) .

ven lB(aj 1)

On the other hand, by the convergence of (u., ) in HL (G \ {a1,...,aq}; R?) it follows

loc
that

(15) B2 (e, la,) = [ 1 Vu. P +O(m).

G"?
for €,, sufficiently small.
Taking into account (12)-(15) we obtain the desired result.
Step 3. The final conclusion.

It follows from [BBH4], Chapter IX that

(16) I(s,n):w]log§\+’y+0(1) as E—>0,
Ui n
where the constant v represents the minimum of the renormalized energy corresponding
to the boundary data x in Bj.
From (8) and (11) we obtain

d
(17) W(b) + g Z log M,,(b;) — mdloge,, + dy + o(1) >
j=1

d
1 1
> Wi(a)+ g Zlogmn(ai) —ndloge, + md logﬁ — 7d log p +dy+o(1),
i=1

where o(1) stands for a quantity which goes to 0 as €, — 0 for fixed 1. Adding 7d loge,,
and passing to the limit firstly as n — oo and then as 7 — 0, we obtain that a = (a1, ..., aq)
is a global minimum point of W. We also deduce that

d
lim {EY (uc,) —nd |loge, [} = W(a) + ngogw(aj) +dy .
j=1



We now generalize another result from [BBH4] concerning the behavior of ..

Theorem 2. Set

1
W, = 122 (1— | ue, ’2)270

n

Then (W,,) converges in the weak x topology of C(G) to

d
We=13 > 0.

j=1

Proof. The boundedness of (W,,) in L!(G) follows directly from (6). Hence (up to

a subsequence), W,, converges in the sense of measures of G to some W,. With the same

techniques as those developed in [BBH3] (Theorem 2) or [BBH4] (Theorem X.3) we can
d

obtain that, for any compact subset K of G \ U {a;},
j=1
1

o) 11— | ue, [l x) < Ck -
n

Hence
d

supp W, C U{aj}.
j=1

Therefore

W* = ijéaj with m; cR.

We now determine m; using the same methods as in [BBH4|. Fix one of the points
a; (supposed to be 0) and consider Br = B(0, R) for R small enough so that B contains
no other point a; (i # j). As in the proof of the Pohozaev identity, multiplying the
Ginzburg-Landau equation (3) by x - Vu. and integrating on Br we obtain

R ou 1 1
1 - e 2, L 1 5 1 - by o
(18) 2aBR|8y|+252/BR( |us|)w+42 ( | ue |*)*(Vw - )

R ou: » R
| +452

1— 2\2
L (- . [

Br

Passing to the limit in (18) as ¢ — 0 and using the convergence of W,, we find

R 8“* R 8“*
1 — +2m; =
(19 R ARCIE Y
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Using now the expression of u, around a singularity we deduce that, on 0Bg,

Oy g 00 OV 5 DU

(20) | ov =l ov  Ov ov |

Ou, o , 00 8¢ 2 1 2 éhp B
Inserting (20) and (21) into (19) we obtain

R R oY
22 = 242 = — |?
(22) s |, VG =re S [ 2

On the other hand, multiplying A = 0 by x - Vi and integrating on Br we find

R oY R oY
(23) = | 5 = / | o 2
8Bgr v dBr T

2 2

Thus, from (17) and (18) we obtain

3. The vanishing gradient property of the renormalized energy with weight

The expression of the renormalized energy W allows us, by using the results obtained
in [BBH4], to give an expression of the vanishing gradient property in the case of a weight.
From (4) it follows that

(24) DW(bh...,bd) = DW(by,...,bq) + g(vw(bl) vw(bd)) :

w(b) 77 w(bg)

for each configuration b = (by, ..., bq) € G4.
Recall now Theorem VIII.3 in [BBH4|, which gives the expression of the differential
of W in an arbitrary configuration of distinct points b = (b, ..., bg) € G%:

@) W) = 2n| (G200 G0 ) (Gt Gk )| =

_ 27{(_ (?;;21 (by), gfll (bl)), (— gf: (ba), aafj (bd)>] .
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Here Sj(z) = ®o(z) —log | z — b; | in G and ®( the unique solution of

( d

Ady =21 &, ,in G
j=1

P
0%q =gAg,,on 0G
ov

/ by = 0.
\ JOG

The function H; is harmonic around b; and is related to u, by

T=bj iny@)

EE , near b; .

uy(x) =

Let
Ro(x) = Sj(x) — Y log |z —b; | .
i#]
Our variant of the vanishing gradient property in [BBH4] (Corollary VIIL.1) is:

Theorem 3. The following properties are equivalent: N

i) a = (ay,...,aq) is a critical point of the renormalized energy W .
1

ii) VS;(a;) = Vu()(a;)

1 0 0

o ( w (CLj)’ 8;1)1 (aj)), for each j.

a;j—a;  1Vw(ay)

for each j.

4w

iv) VRo(a;) + Z
i#]
The proof follows by the above considerations and the fact that, for each j,

VRO( Z r — a;

a2
l#]‘w ai|

= — for each 7.
(aj—a 2 4 w(ay) !

4. Shrinking holes and the renormalized energy with weight

As in [BBH4|, Chapter 1.4, we may define the renormalized energy by considering a
suitable variational problem in a domain with “shrinking holes”.

Let, as above, G be a smooth, bounded and simply connected domain in R? and let
b1, ..., by, be distinct points in G. Fix dy, ...,d; € and a smooth data g : 0G — S of degree
d=dy + ... + di. For each n > 0 small enough, define



where

n
n= B[ b, .
Win (J w(bj))

&y ={ve Hl(G};’;Sl); deg (v,0w;,) =d; and v=g on O0G}.

Set

We consider the minimization problem

(26) min / |Vl
ueg,};’ G;]U

The following result shows that the renormalized energy W is what remains in the

energy after the singular “core energy” wd |logn | has been removed.

Theorem 4. We have the following asymptotic estimate:

1

k
5/ | Vu, P=7()_d3) |logn | +W(b,d,g) + O(n), asn—0,
Gw ,

n J=1

where

k
- T
W0.d,9) = Wd.g) + 5 (3 dlogutsy)).
j=1

Proof. Asin [BBH4], Chapter I we associate to (26) the linear problem:

Ad, =0, inGy
P, = C; = Const. , on each dw;
0P
/ 6_’7 =2nd; , foreachj=1,..k
(27) Owsn O
0P
inll/} = g A g,r s on aG
ov
[ -0
oG

With the same techniques as in [BBH4] (see Lemma 1.2), one may prove that

@y — Pol| Lo (Guwy = O(n),

where @ is the unique solution of (1).
Note that the link between ®, and an arbitrary solution u, of (26) is

Ouy _ 0%y

(28) N ey T om0
U % = % in GY
K 8%2 N 8$1 n
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From now on the proof follows the same lines as of Theorem 1.7 in [BBH4]. O
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