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Abstract. We prove several existence results for eigenvalue problems involving the p-Laplacian and
a nonlinear boundary condition on unbounded domains. We treat the non-degenerate subcritical case
and the solutions are found in an appropriate weighted Sobolev space.

1 Introduction and preliminary results

The growing attention for the study of the p-Laplacian operator A, in the last few decades is motivated
by the fact that it arises in various applications. For instance, in Fluid Mechanics, the shear stress 7
and the velocity gradient V,u of certain fluids obey a relation of the form 7(z) = a(z)V,u(z), where
Vyu = |Vu|P~?Vu. Here p > 1 is an arbitrary real number and the case p = 2 (respectively p < 2,
p > 2) corresponds to a Newtonian (respectively pseudoplastic, dilatant) fluid. The resulting equations
of motion then involve div (aVpu), which reduces to aA,u = adiv (V,u), provided that a is constant.
The p-Laplacian appears in the study of flow through porous media (p = 3/2, see Showalter-Walkington
[24]) or glacial sliding (p € (1,4/3], see Pélissier-Reynaud [20]). We also refer to Aronsson-Janfalk [4] for
the mathematical treatment of the Hele-Shaw flow of “power-law fluids”. The concept of Hele-Shaw flow
refers to the flow between two closely-spaced parallel plates, close in the sense that the gap between the
plates is small compared to the dimension of the plates. Quasilinear problems with a variable coefficient
also appear in the mathematical model of the torsional creep (elastic for p = 2, plastic as p — oo, see
Bhattacharya-DiBenedetto-Manfredi [5] and Kawohl [18]). This study is based on the observation that
a prismatic material rod subject to a torsional moment, at sufficiently high temperature and for an
extended period of time, exhibits a permanent deformation, called creep. The corresponding equations
are derived under the assumptions that the components of strain and stress are linked by a power law
referred to as the creep-law see Kachanov [16, Chapters IV, VIII], Kachanov [17], and Findley-Lai-
Onaran [13]). A nonlinear field equation in Quantum Mechanics involving the p-Laplacian, for p = 6,
has been proposed in Benci-Fortunato-Pisani [6]. Eigenvalue problems involving the p-Laplacian have
been the subject of much recent interest (we refer only to Allegretto-Huang [1], Anane [3], Drabek [9],
Drébek-Pohozaev [11], Dréabek-Simader [12], Garcia-Peral [15], Garcia-Montefusco-Peral [14]).
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Let © C¢ RY be an unbounded domain with (possible noncompact) smooth boundary 9Q. We
assume throughout this paper that p, ¢ and m are real numbers satisfying 1 < p < ¢ < p* = Np_if

N—p’
p<N p*———{—ooiprN,qu<p—( L) ifp<N (g <m < +oo when p > N).
N—p

Let C§°(2) be the space of C§°(R™)-functions restricted on €.
We define the weighted Sobolev space E as the completion of C§°(£2) in the norm

1/p
1
|ullg = (/ (|Vu(a;)|p + m\u(x”p) dac) .

Q

Denote by LP(Q; w1), LI(2; wy) and L™(0N2; ws) the weighted Lebesgue spaces with weight functions
wi(z) = (1 +|z|)% (i = 1,2,3), and the norms defined by

[wllpw, = | wilu(@)[Pdz,  [ullgw, = | walu(@)|?dz
Q Q

and
i, = [ wslu(@)™ s,
N
where =N < @y < —pifp < N (a1 < —p whenp > N), —N < a3 < ¢">2 - Nif p< N (=N < a3 <0

when p > N), and —N<a3<m¥—N+1ifp<N(—N<a3<0whenp2N).
We shall use in our paper the following embedding result.

Theorem A. Under the above assumptions on p, q and m, the space E is compactly embedded in
L1(Q; ws) and also in L™(08; ws).
This theorem is a consequence of Theorem 2 and Corollary 6 of Pfliiger [22]. Furthermore, with the

same proof as in Pfliiger [21, Lemma 2], one can show

Lemma 1 The quantity
||u||p:/ a(x)|Vu|pdac+/ b(z)|ul? dS
Q 0

defines an equivalent norm on E.

2 The main results

Consider the problem

(4) —div (a(z)|VulP72Vu) = Af (z)|ulP?u + g(z)|u|"%u  in Q,

a(z)|VulP2Vu - n + b(z) [ulP~*u = h(z,u) on 09,

where n denotes the unit outward normal on 92, 0 < ag < a € L*®(Q), while b : 9Q — R is a continuous
function satisfying

c C
At T =P S Tyt

for some constants 0 < ¢ < C.
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Problems of this type arise in the study of physical phenomena, related to equilibrium of anisotropic
continuous media which possible are somewhere “perfect” insulators, cf. Dautray-Lions [7].
We assume that f and g are nontrivial measurable functions satisfying

0< f(z) <CA+|z))* and 0<g(z) <C(+|z))**, forae zel.

The mapping h : Q2 x R — R is a Carathéodory function which fulfills the assumption
(A1) |h(z,9)] < ho(@) + ha(2)]s]™ ",
where h; : 00 — R (i = 0,1) are measurable functions satisfying

ho € L™ ™1 (90; wa/"™™) and 0 < hy < Chws ae. on ON.

We also assume

) h(z,s)
(A2) i s

(A3) There exists pu € (p,q] such that

= 0 uniformly in z.

pH(z,t) < th(z,t) for a.e. x € 0N and every t € R.

(A4) There is a nonempty open set U C 9Q with H(z,t) > 0 for (z,t) € U x (0,00), where
t
H(z,t) :/ h(z,s) ds.
0

Our first result asserts that under the above hypotheses, problem (A) has at least a solution.
By weak solution of problem (A) we mean a function u € E such that, for any v € E,

/ a(x)|VulP2VuVu d:l:—}-/ b(x)|ulP?uv dS
Q o9

= )\/ f(x)\u|p_2uvdm+/ g(x)|u|q_2uvd:v+/ h(z,u)vdS.
Q Q o0

Define

X:= inf

Joal@)|Vul? dz + [y ba)ul? dS
u€EE; u#0 '

Jo f(@)|ulP dz

Our first result is

Theorem 1 Assume that the conditions (A1)-(A4) hold. Then, for every A < X, problem (A) has a
nontrivial weak solution.

In the special case h(z,s) = 0 we are able to show also a multiplicity result for problem (A). The
statement is the following

Theorem 2 Assume h(z,s) = 0 and g > 2. Then, for every A\ < X, problem (A) possesses infinitely
many solutions.
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Next we prove the existence of an eigensolution to the following eigenvalue problem

—div (a(z)|VulP2Vu) = z)|ulP2u 2)|ul?%u) in
5 div (a(e)| Vul’ 2Vu) = A (f(@)|ul" 2u+ g@)lul? %) in @,

a(x)|VulP2Vu - n + b(z)|u[P2u = Mh(z,u) on 09.

We stress that for the next existence result of the paper we drop the assumptions (A2) and (A4).
By weak solution of problem (B) we mean a function v € F such that, for any v € E,

/ a(z)|VulP2Vu - Vo dz +/ b(z)|ulP?uv dS
Q 0

=) [/ f(@)|uP2uvdz +/ g(z)|u|i 2uvdz +/ h(w,u)vdS] )
Q Q o0
We prove

Theorem 3 Assume that the hypotheses (Al) and (A3) hold. Let d be an arbitrary real number such
that 1/d is not an eigenvalue X in problem (B), and satisfying

>t (2.1)

>

Then there exists p > 0 such that for all v > p > p, the eigenvalue problem (B) has an eigensolution
(u, A) = (ug, A\g) € E X R for which one has

A €

1 1
d+r2|luglly" ™" d + pQII'udIIZ"_”] '

3 Problem (A)

Throughout this section we use the same notations as was previously done in the case of problem (A).
The energy functional corresponding to (A) is defined as F : E - R

Fu) = %/Qa(x)WuF”dac—l—%/(mb(x)|u|pd8— %/Qf(a:)|u|pd$—/aQH(x,u) ds — %/Qg(:c)|u|qda:

where H denotes the primitive function of A with respect to the second variable.
By Lemma 1 we have || - ||y =~ || - ||[z- We may write

Fw = falf - [ @l o~ [ Hwas - [ ga)lultda.

Sincep < qg<p*, —-N<a; <—pand —N < ay < qN—;B — N we can apply Theorem A and we obtain
that the embeddings E C LP(Q; wi) and E C L%(Q; wy) are compact. So the functional F' is well
defined.

We denote by Ny, = h(z,u(z)), Ng = H(z,u(z)) the corresponding Nemytskii operators.

Lemma 2 The operators
Np, : L™(09; ws) — L™ ™1 (60, wé/(lfm)), Ny : L™(09; ws) — L*(09)

are bounded and continuous.

41



Proof. The proof follows from Theorem 1.1 in [10]. [
Our hypothesis A < A implies the existence of some Cy > 0 such that, for every v € E

ol =& | f@loPds > Collol.

Lemma 3 Under assumptions (Al)-(A4), the functional F is Fréchet differentiable on E and satisfies
the Palais-Smale condition.

Proof. Denote I(u) = Il)||u||b Kp(u / H(z,u)dS, Kg(u /\I! (z,u)dr and Kg(u) =
/ ®(z,u) dz, where ®(z,u) = %f(w)|u|p and ¥ (z,u) = Eg(w)|u|q.
Q
Then the directional derivative of F' in the direction v € FE is
<F,(’U,),’U> = <II('U’)’U> - )‘<K<,I>(IU’)51U> - <K&,(U),’U> - <K}I(U),'U>,

where

(I'(u),v) = /Q o(@)|VulP 2VuVo dz + /a _b{a)lul v dS,

(K (u),v) = - h(z,u)vdS,
(K (u) /g )|ul? % uv de,
(K (u /f ) P~ 2uv da.

Clearly, I' : E — E* is continuous. The operator KJ; is a composition of the operators
Ky : B — L™(09; wg) % L™ (00 wy/ ™) 4 B*

where (I(u),v) = [y uvdS. Since

, 1/m’ 1/m
/ luv|dS < (/ |u|™ wé/(l_m) dS) (/ |v|™ws dS) ,
1) o0 0

then [ is continuous, by Theorem A. As a composition of continuous operators, K'H is continuous, too.
Moreover, by our assumptions on ws, the trace operator E — L™(99; ws) is compact and therefore,
K ;I is also compact.

Set ¢(u) = f(z) |u/P"2u. By the proof of Lemma 2 we deduce that the Nemytskii operator cor-
responding to any function which satisfies (A1) is bounded and continuous. Hence Nj and N, are
bounded and continuous. We note that

Kby E C IP(; w) ¢ p2/0=1)(Q; /(7P 1 g

where (n(u),v) = [ uv dz. Since

(r=1)/p 1/p
/ luv| dz < (/ |u|p/(p71)wi/(1—p) dm) (/ |v]Pw; d:c) :
Q Q Q
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it follows that 7 is continuous. But K&, is the composition of three continuous operators and by the

assumptions on wi, the embedding E C LP(; wy) is compact. This implies that K:I, is compact. In a

similar way we obtain that K:I, is compact and the continuous Fréchet differentiability of F' follows.
Now, let u, € E be a Palais-Smale sequence, i.e.,

|F(up)| < C for all n (3.1

and
| F' (un)|| g+ — 0 as n — oo. (3.2)

We first prove that {uy} is bounded in E. Remark that (3.2) implies that
(' (), un)| < o+ ||ug|lp for n large enough.

This and (3.1) imply
1
C + llunlls = F(un) — ;(F'(un),un)- (3-3)

But

(F' (), un) = / ()| VP dz+ / b(x) un|? dS—A / F(2)|un]? do— / 9(2) [un|? dz— / h(z, ), dS.
Q o0 Q Q o0N

We have

Fuw) = () ) = (=) (Il =2 [ f@)lulvde)

— (/ H(z,up)dS — l/ h(z, up)un, dS) - (1 - 1) / 9(x)|up|? dz).
o H Joq q 1% Q
By (A3) we deduce that

1
H(z,u,)dS < — h(z, up)uy, dS. (3.4)
a0 K Joq
Therefore ) L1
Fun——F'un,un2<———>C up||P. 3.5
()M<()>pu0||||b (3.5)

Relations (3.3) and (3.5) yield

1 1
C -+ lunlly > (=) Collunlf:
p u

This shows that {uy} is bounded in E.
To prove that {u,} contains a Cauchy sequence we use the following inequalities for ¢,¢ € RN (see
Diaz [8], Lemma 4.10):

€ —CIP < CEP2 — [CPT20) (€ ), forp>2 (3.6)
€ = ¢P < CUEP2 — [CP20) (€ = Ol + > P, forl<p<2 (3.7)
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Then we obtain in the case p > 2:

i — |} = /Qa(:v)|Vun VP da + /aQ b()lun — wyl? dS
< C((I'(un), un — uk) — (I'(uk), un — us))
= C((F"(un), un — k) — (F"(ur), tn — up) + MEg (n), un — ug) — MK (ur), un — up)
H(E gy (un), tn — i) — (K (ug), tn — k) + (K (n), un — up) — (KG (up), un — up))
< C(|IF (un)ll B + 1P (we) |5+ + A |1 K (un) — Ko (ug)l| 2+

I (un) — Ko (un) |+ + 1Ky (wn) — Ky (up)llp)llun — ullo.

Since F'(u,) — 0 and Ky, K}, K!; are compact, we can assume, passing eventually to a subse-
quence, that {u,} converges in E.
If 1 < p < 2, then we use the estimate

lun, — uglly < O'(T (un), un — we) = (I (un ), — w)| (lunlly ™ + gl 7). (3.8)

Since ||up||p is bounded, the same arguments lead to a convergent subsequence. In order to prove the
estimate (3.8) we recall the following result: for all s € (0, 00) there is a constant Cs > 0 such that

(x+1y)° < Cs(z® +7°) for any z,y € (0,00). (3.9)

Then we obtain

2
[t — |2 = (/ o(2)| Vit — Vug|? do +/ b(a)un — we]? dS) v
Q oN

2 2 (3.10)
<Gy (/ a(z)|Vuy, — VuglP dx) gt (/ b(x)|up — ugl? dS) p] .
Q a9
Using (3.7), (3.9) and the Holder inequality we find
/ a(z)|Vuy, — VuglP de = / a(z)(|Vuyn — Vug|?)? do
Q Q
_9 _9 g p(2—p)
< c/ a(z) ((IVun P2V, — Vg P2 Vug) (Vin = Vug))* (|Vun| + [Vur) "7 do
b
= C’/ 2)(|Vtn P2V, — |Vug P72V ) (Vu, — Vuk)) (a(z)(|Vup| + |Vug|)? ) * dz
( ) (|Vun|P "2V, — | Vur P72 Vug) (Vuy, — Vug) dx) (/ a(z)(|Vug| + |Vug|)? da:)
Q

2-p

(/ z)|Vuy|P dx —i—/ z)|Vug|P dx) ’ (/ a(z)(|Vun P2V, — [Vug|P~2Vug) (Vu, — Vug) dw)
Q

(/Q a(z)|Vuy|P d:v) = + (/Q a(z)|Vug|? d:v) Z)_Tp‘|
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S

2

x ( / () ([Vin P Vi — Vg P2 Vaug) (Ve — Vag) d:c)
Q
b

_ b @2- (2-p)p
<C, [/Qa(x)(wunv’—?vun—|vukv’—2vuk)(vun—vuk)dx] (||un||,, el )

Using the last inequality and (3.9) we have the estimate

(/Q a(z)|Vuy, — VuglP dav)%

(3.11)
<G (/Q a(z)(|Vun P2 Vup — |VugP~Vug) (Vun, — Vug) d33> (Ilmllf‘p + ||Ulc||§_p)-

In a similar way we can obtain the estimate

2
([ bltun —uras)” < G, ([ bla)lunl 2 = funl? 2w o~ w) do ) (7 + ;7).
(3.12)
It is now easy to observe that inequalities (3.10), (3.11) and (3.12) imply the estimate (3.8). The proof
of Lemma, 3 is complete. m

Proof of Theorem 1. We have to verify the geometric assumptions of the Mountain-Pass The-
orem. We first show that there exist positive constants R and ¢y such that

F(u) > ¢, for any u € E with ||lu|| = R. (3.13)
By Theorem A we obtain some A > 0 such that
lulldwy < Allullj forall u € E.
This fact implies that

1 1 Co A
Fe) = (lll = Nol,) ~ [ s@luitds~ [ B uyas = 22l - 2l - [ Hawas

By (A1) and (A2) we deduce that for every £ > 0 there exists C; > 0 such that

1
glg(w)IIUI" < eb(a)luf’ + Cows(z)[ul™.

Consequently
C A C A
F(u) > ;OHUHi’—gHUHZ—/aQ (eb(z)|ul’ + Cows(x)[u[™) dS > ;OHUHiJ—gHUHZ—601||U||§—0502||U||Z"-

For € > 0 and R > 0 small enough, we deduce that for every v € E with |ullpy = R, F(u) > ¢y > 0,
which yields (3.13).
We verify in what follows the second geometric assumption of the Mountain-Pass Theorem, namely

Jv € E with ||v]| > R such that F(v) < cp. (3.14)
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Choose 9 € C5°(R), ¢ > 0, such that § # suppy N 9N C U. From %g(w)|u\q > c3s"* — ¢4 on
U x (0,00) and (A1) we claim that

tP 1
Fey) = (11 - A lEw) - [ at@)itvltde [ H(.ty)as

< (1l = Nbl0,) — st [ s+ et == [ gyt
P ’ o U q Jo

Since ¢ > pu > p, we obtain F(t1)) — —oo as t — oo. It follows that if ¢ > 0 is large enough, F(t1)) < 0
so v = 11 satisfies (3.14).
By the Ambrosetti-Rabinowitz Theorem, problem (A) has a nontrivial weak solution. L]

Next we prove the second existence result about problem (A).

Proof of Theorem 2. In order to show the claim we want to apply a classical tool in critical
point theory, precisely we will use the Ljusternik-Schnirelmann theory (see [23]). Consider the even
functional

J(v):%/ﬂ ()| Vol do + » / |v\”dS——/f ol da,

on the closed symmetric manifold
M={vecE: / 2)l? = 1.

Note that M is only a Cl-manifold, since we have assumed 1 < p < ¢. By our hypotheses on f, g, b
and h (note that (A1)-(A4) are easily satisfied), Lemma 3 and Theorem 5.3 in [25], we have that J|as
possesses at least y(M) pairs of critical points (where (M) stands for the genus of M).

Now we have to estimate v(M). Since g # 0 there exists an open set w C € such that g(z) > § > 0 on
w. By the properties of the genus it follows that y(w) > v(B), where B is the unit ball of Wol’p(w) CFE,
but it is well known that the genus of the unit ball of a infinite dimensional Banach space is infinity, so
v(M) = co. Hence there exists a sequence {v,} C E, such that any v, (and also —vy,) is a constrained
critical point of J on M.

By the Lagrange multipliers rule we obtain that there exists a sequence {A,} C R such that

/ a(z )|Vun|pd$—|—/ z)|vn|P dS — )\/ f(@)|op|P dz = Ay / z)|vn|? dz.
Q
Since v, € M, using our assumption A < X we find

An = llonl? — A/Qf(x)|vn|” dz > 0,

so we can apply the usual scaling. Setting u, = /\k/ (a=p )vn, we have that w, satisfies for any n the
equation
[ a@IVuadz+ [ b@)unds =2 [ f(@)funl do + [ g@lualtdo,
Q ) Q Q
so the claim is proved. [
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4 Problem (B)

We start with the following auxiliary result.

Lemma 4 Under assumption (A1), if ¢ < m, there ezxists a number p > 0 such that for each p > p the
function
oo Elolle = Lol - = [ 9@t do— [ H(v)ds, ver
m D w1 qJo 80 ) ) )
is bounded from below on FE.

Proof. The growth condition for A implies

[ Ha) dS‘ < /BQ (ho(a;)m + %h1(m)|fu|m) ds

m—1

_m_ _1 o
< ([ 70 aS) T Wl oniun + Chllolnanuy < Co+ ClolR, o€ P,

with constants Cy,C > 0. One obtains also that

1 - —
2| [ st@lul? da| < Calpl < To+ T, ve .

with constants Cy,C > 0. Clearly, we can choose now the positive number p as desired. [

In view of Lemma 4 one can find numbers by > 0 and a > 0 such that

—2
5 2 1 1
E ol + b0 = Sl - a/ﬂg(a;)|v|q dr — /{m H(z,v)dS>a>0, veE (41

With by > 0 and p > 0 as above we consider numbers 7 > p > p and a function 8 € C'(R) such
that

B(0) = B(r) =0, B(p) = bo, (4.2)
B'(t) <0 &< t<Oorp<t<r, (4.3)
|t‘£11100ﬁ(t) = +00. (4.4)

Lemma 5 Assume that conditions (Al) and (A3) are fulfilled. Then, for any d > 0 satisfying (3), the
functional J : E x R — R defined by

50,0 = Dol + 260 2 [ 1@l = [ g@lolt do - [ H0) ot Lok 45)

is of class C! and satisfies the Palais-Smale condition.
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Proof. The property of J to be continuously differentiable has been already justified in the proof
of Theorem 1.
In order to check the Palais-Smale condition let the sequences {v,} C E and {t,} C R satisfy

|J(Unytn)| < M, Vn > 1 (4.6)

J{;(Umtn) = t721 ||Un||;n7pI,('Un) - Kéb(vn) - K}I(Un) - K<I/(Un) + dI,(Un) -0, (4.7)
2

Jé(vmtn) = m (tn”UnHZn + ﬁ,(tn)) —0 (4.8)

where I, K3, Kf, Ky have been introduced in the proof of Lemma 3.
From (4.1), (4.2), (4.5) and (4.6) we infer that

2 2 1 1 d
M>2 v+ =pB(ty) — - 4 ——/ 14 —/H ,n) dx + = |lvp |}
2 2 \oally” + 2 Bltn) = Slvnllpn = o | 9@l do = | H(z,0n) o+ —loalf

2 — p? 2 d
> S ol o (B(tn) = Bp) + 5 ol

Condition (4.4) in conjunction with the inequality above yields the boundedness of {¢,}.

Let us check the boundedness of {v,, } along a subsequence. Without loss of generality we may admit
that {v,} is bounded away from 0. From (22) we deduce that the sequence {t,|v,||;"} is bounded.
Therefore it is sufficient to argue in the case where t, — 0. From (4.6) it turns out that

1 1 d
—|lvn P +/Hm,v d:E—I——/ z) vy |2z — = ||v,||P
onl + [ oo+ [ galontds — ol

is bounded. By (4.7) we deduce that

m(—(ffé(vn),vn) — (K (vn), vn) — (Kl (0n), v0) + dlva]|E) — 0.

Then, for n sufficiently large, assumption (A3) allows us to write

11 1 1
P q
M+1+ ||Un||b > d (5 — ;) ||'U'n.||b + (; - a) ||'Un||Lq(Q,w2)

1 1 1
+f (;h(z,’un)vn _ H(x,'un)) ds + (; _ 5) om0,

1 1 1 1 1
N p_ p - _ = N p
> (=) (Aol = o) 2 (5 = ) (4= 5) Ioalk:

By (3), this establishes the boundedness of {v,} in E.
In view of the compactness of the mappings K}, K/, K], (see the proof of Lemma 3), by (4.7) we
get that

(d+22 llolly" ?) I'(wn)

converges in E as n — oo. The boundedness of {t,} and {v,} ensures that {I'(v,)} is convergent in E*
along a subsequence. Assume that p > 2. Inequality (3.6) shows that

un —uglly < C [/Qa(a:)ﬂVun\pQVun — |Vug [P2Vuy) - (Vun — Vuyg) do+
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+ [ b0a) (un P2, = [P ~2u0) (= wr) T =

C(I'(un) = I'(ug), un — u) < Ol (un) = I'(wk)l[5llun — uglls  ifp > 2.

Consequently, if p > 2, {v,} possesses a convergent subsequence. Proceeding in the same way with
inequality (3.7) in place of (3.6) we obtain the result for 1 < p < 2. ]

In the proof of Theorem 3 we shall make use of the following variant of the Mountain Pass Theorem
(see Motreanu [19])

Lemma 6 Let E be a Banach space and let J : EXR — R be a C! functional verifying the hypotheses
(a) there exist constants p > 0 and o > 0 such that J(v,p) > «, for every v € E;
(b) there is some r > p with J(0,0) = J(0,7) = 0.
Then the number
c:= inf max J(h(T))
geP 0<7<1

is a critical value of J, where
P :={g € C([0,1]; E x R); ¢(0) = (0,0), g(1) = (0,7)}.

Proof of Theorem 3. We apply Lemma 6 to the function J defined in (4.5). It is clear that
assertion (a) is verified with p > 0 and @ > 0 described in Lemma 4 and (4.1). Due to relation (4.2),
condition (b) in Lemma 6 holds. Lemma 5 ensures that the functional J satisfies the Palais-Smale
condition. Therefore Lemma 6 yields a nonzero element (u,t) € E x R such that

Ty, t) = (d+[lully™) T'(u) - Ky(u) - Ki(u) — Ky(u) =0, (4.9)

Ji(u,t) = — (tllully* + B'(t)) = 0. (4.10)

2
m
From (4.10) it follows that

t6'(t) < 0. (4.11)

Combining (4.11) and (4.3) we derive that if ¢ # 0, then u # 0 and
p<t<r. (4.12)

Therefore for each d in (3) such that 1/d is not an eigenvalue in (B) and each r > p > p we deduce that
there exists a critical point (u,t) = (ug,tq) € E X Ry of J, where t = t; verifies (4.12). Consequently,
relation (4.9) establishes that ug € E is an eigenfunction in problem (B) where the corresponding
eigenvalue is

A 1
d= T o1 m—p>
d+ t7 ||lually”*
with ¢t = t4 satisfying (4.12). This completes the proof. [
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