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Abstract

We give some versions of theorems of Hartman-Stampacchia’s type for the case of
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with these abstract results.
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1 Introduction and the main results

The well-known theorem of Hartman-Stampacchia (see [3], Lemma 3.1, or [5], Theorem 1.3.1)
asserts that if V' is a finite dimensional Banach space, K C V is compact and convex, A : K — V*

is continuous, then there exists u € K such that, for every v € K,

(Au,v—u) > 0.

If we weak the hypotheses and consider the case where K is a closed and convex subset of the
finite dimensional space V, Hartman and Stampacchia proved (see [5], Theorem 1.4.2) that a
necessary and sufficient condition which ensures the existence of a solution to Problem (1) is

that there is some R > 0 such that a solution u of (1) with ||u|| < R satisfies ||u|| < R.
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The purpose of this paper is to extend these classical results in the framework of Hemivari-
ational Inequalities. These inequalities appear as a generalization of Variational Inequalities,
but they are much more general than these ones, in the sense that they are not equivalent to
minimum problems but give rise to substationarity problems. The mathematical theory of Hemi-
variational Inequalities has been developed by P.D. Panagiotopoulos, as well as their applications
in Mechanics, Engineering or Economics (see the monographs [6], [8], [9] and the references cited
therein for a treatment of this theory and further comments).

Let V be a real Banach space and let 7' : V' — LP(£, RF ) be a linear and continuous operator,
where 1 < p < 0o, k > 1, and § is a bounded open set in R". Throughout this paper, K is a
subset of V, A : K — V* an operator and j = j(z,y) : © x R* =R is a Carathéodory function
which is locally Lipschitz with respect to the second variable y € R* and satisfies the following
assumption

(j) there exists hy € Lz%(ﬂ, R) and hy € L*(2, R) such that

2| < hi(z) + ho(z)|yP~t,

for a.e. © € Q, every y € R* and z € §j(x,y). Denoting by Tu = @, v € V, our aim is to study
the problem

(P) Find u € K such that, for every v € K,
(Au, v — u) + / P°(z, i(x); 5(z) — a(z))dz > 0.
Q

We have denoted by j%(z,y; h) the (partial) Clarke derivative of the locally Lipschitz mapping
j(x,-) at the point y € R* with respect to the direction A € R¥, where z € Q, and by 9j(z, )
the Clarke generalized gradient of this mapping at y € R¥, that is
j(z,y' +th) — j(z,y")

I

jo(ac, y; h) = lim sup
y' =y t
£10

0j(z,y)={z € R¥: (z,h) < j°z,y; ), forall h e R*}

The euclidean norm in R¥, k > 1, resp. the duality pairing between a Banach space and its dual
will be denoted by |- |, resp. (-, - ). We also denote by || - ||, the norm in the space L”(Q, R¥)
defined by

lal, = ([ a@) P dz)”, 1<p< oo,

In order to state our existence results for the problem (P), we need the following definitions.

Definition 1. The operator A : K — V* is w*-demicontinuous if for any sequence {u,} C K
converging to u, the sequence {Au,} converges to Au for the w*-topology in V*.

Definition 2. The operator A : K — V™ is continuous on finite dimensional subspaces of

K if for any finite dimensional space F' C V, which intersects K, the operator A|xnr is demi-
continuous, that is { Au, } converges weakly to Au in V* for each sequence {u,} C K N F which
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converges® to u.

Remark 1. In reflexive Banach spaces the following hold:
a) the w*-demicontinuity and demicontinuity are the same.
b) a demicontinuous operator A : K — V* is continuous on finite dimensional subspaces of K.

The following result is a generalized form of the Hartman-Stampacchia Theorem for the case
of Hemivariational Inequalities in infinite dimensional real Banach spaces; namely it generalizes
Theorem 6 in [13] and Theorem 2.1 in [14] for the framework of such inequalities.

Theorem 1. Let K be a compact and convex subset of the infinite dimensional Banach
space V and let j satisfy the condition (j). If the operator A : K — V* is w*-demicontinuous,
then the problem (P) admits a solution.

In finite dimensional Banach spaces the above theorem has the following equivalent form.

Corollary 1. Let V be a finite dimensional Banach space and let K be a compact and
convex subset of V. If the assumption (j) is fulfilled and if A : K — V* is a continuous operator,
then the problem (P) has at least a solution.

In Section 2 the proof of Theorem 1 will be based on Corollary 1; for this reason Corollary
1 will be proved before this theorem.

Remark 2. The condition of w*-demicontinuity on the operator A : K — V* in Theorem 1
may be replaced equivalently by the assumption:

(A7) the mapping K 3> u —{Au,v) is weakly upper semi-continuous, for each v € V.

Indeed, since on the compact set K the weak-topology is in fact the normed topology, we can
replace equivalently the weak upper semi-continuity by upper semi-continuity. So we have to
prove that the w*-demicontinuity of A follows from the assumption (A;); but for any sequence
{u,} C K converging to u one finds (by (A;)):

lim sup(Au,, v) < (Au,v)

n— 00
and
lim sup(Au,, —v) < (Au, —v) <= liminf{Au,,v) > (Au,v),

n— oo n— 00

for each fixed point v € V. Thus, there exists lim,, _, oo (Auy,,v), and
nli_)ng()(Aun, v) = (Au,v),

for every v € V. Consequently, the sequence {Au,} converges to Au for the w*-topology in V*.

!By “ converges” we always mean “strongly (or norm) converges”
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Remark 3. If A is w*-demicontinuous, {u,} C K and u, — u, then
im (Aun, un) = (Au, u).

This follows from the w*-boundedness of {Au,} in V* (as a w*-convergent sequence) and from
the fact that in real dual Banach spaces each w*-bounded set is a (strongly) bounded set? (see
[12], Prop. IV.5.2). Thus, in this case, one can write

(2) nli_)r%o(Aun, v — Up) = (Au,v — u),

for each v € V.

This last fact will be helpful in the proof of the theorems in Section 2.

Weaking more the hypotheses on K by assuming that K is a closed, bounded and convex
subset of the Banach space V', we need some more about the operators A and T' (see Theorem
2). We first recall that an operator A : K — V* is said to be monotone if, for every u,v € K,

(Au — Av,u —v) > 0.
Thus we can formulate the following result, which is the corresponding variant for Hemivaria-
tional Inequalities of Theorem 1.1 in [3].

Theorem 2. Let V be a reflexive infinite dimensional Banach space and let T : V —
LrP(Q, Rk) be a linear and compact operator. Assume K is a closed, bounded and convex subset
of V and A : K —V* is monotone and continuous on finite dimensional subspaces of K. If j
satisfies the condition (j) then the problem (P) has at least one solution.

We also give a generalization of Theorem III.1.7. in [5] by

Theorem 3. Assume that the same hypotheses as in Theorem 2 hold without the assump-
tion of boundedness of K. Then a necessary and sufficient condition for the hemivariational
inequality (P) to have a solution is that there exists R > 0 with the property that at least one
solution of the problem

up € KN{ueV;|u|| < R}
(3) (Aup,v — ug) + /Q iz, ap(); 9(z) — ap(x))ds > 0,
for every v € K with ||v|| < R,

satisfies the inequality |lug| < R.

A basic tool in our proofs will be the following auxiliary result.

2This generally holds true in the topological dual of a real Hausdorff barreled locally convex space.
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Lemma 1. (a) If it is satisfied the assumption (j) and Vi, V, are nonempty subsets of V,
then the mapping V; X Vo — R defined by:

(4) (w,0) > [ (o, (@), 5(x))da

is upper semi-continuous.
(b) Moreover, if T : V' — LP(2, R¥) is a linear compact operator, then the above mapping is
weakly upper semi-continuous.

Proof. a) Let {(tm,vm)}men C Vi X Vo be a sequence converging to (u,v) € Vi x V3, as
m — co. Since T : V — LP(Q, RF) is continuous, it follows that

i — U, Opm—0 in LP(Q,RF), as m— oo
There exists a subsequence {(t,,?,)} of the sequence {(y,, 0,)} such that

timsup | 1°(@, i (2); b(2))dw = Jim [ §°(z, a(2): 0 (x) o

m—o0 JQ n— 00

By Proposition 4.11 in [4], one may suppose the existence of two functions g, iy € LP(2, R"),
and of two subsequences of {4,} and {0,} denoted again by the same symbols and such that:

jin(z)| < do(x), |0 (z)] < Bo(2),

Un(z) =2 0(z), On(z) —>0(x), as n—oo

for a.e. € Q. On the other hand, for each z where holds true the condition (j) and for each
y, h € R”, there exists z € 9 j(z,y) such that

§°(x,y;h) = (2, h) = max{(w,h) : w € dj(z,y)},
(see [1], Prop 2.1.2). Now, by (j),
17°(z,y;h)| < 2] [B] < (ho(2) + ho(z)|y[P~) - |A] .
Consequently, denoting F(z) = (hy(z) + ha(2)|io(2)[?~1)|60(x)|, we find that
17°(2, tin(); D (2))| < F(2),

for all n € N and for a.e. z € (.

From Holder’s Inequality and from the condition (j) for the functions h; and hy it follows
that F' € L'(Q,R). Fatou’s Lemma yields

lim /]O(xaﬁn(x)aﬁn(x))dxs hmsupjo(.’r,@n(l'),ﬁn(l‘))dib

n—00 JO Q n—oo

Next, by the upper-semicontinuity of the mapping j°(x, .;.) (see [1], Prop. 2.1.1) we get that

lim sup 5°(z, 4 (2); 00 (2)) < 5%z, 0(2); 9(x)),

T — 00
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for a.e. x € (), because

A~

Un(z) = a(z) and  o,(x) —>0(x), asn—o0
for a.e. x € (2. Hence

lim sup Qjo(as,&m(:v);ﬁm(:c))dxg/ﬂjo(:v,ﬁ(a:);ﬁ(x))dx,

m— o0

which proves the upper-semicontinuity of the mapping defined by (4).

b) Let {(tm,Vm)}men C Vi X Va be now a sequence weakly-converging to {u,v} € Vi x V5,
as m—o0o. Thus u, — u, v, — v weakly as m—oco. Since T : V — L?(Q2,R¥) is a linear
compact operator, it follows that

Uy — U,  Om— 0 in LP(Q, RF).

From now on the proof follows the same proof as in the case a). [ ]

2 Proof of the theorems

2.1 Proof of Corollary 1

Arguing by contradiction, for every u € K, there is some v = v, € K such that
(Au,v — u) + /Qjo(x, u(z); 0(x) — a(z))dx < 0.
For every v € K, set
N) ={u € K;{(Au,v —u) + /Qjo(ac,ﬁ(x);f)(x) —u(x))dz < 0}.
For any fixed v € K the mapping K — R defined by
u+— (Au,v —u) + /Qjo(x, u(x); 0(x) — a(z))dx

is upper semi-continuous, by Lemma 1 and the continuity of A. Thus, by the definition of the
upper semi-continuity, N(v) is an open set. Our initial assumption implies that {N(v);v € K}
is a covering of K. Hence, by the compactness of K, there exist vy, ---,v, € K such that

K C Lnj N(v;).

j=1

Let p;j(u) be the distance from u to K\ N(v;). Then p; is a Lipschitz map which vanishes outside
N(v;) and the functionals

() = P
vilu) Yim pilu)
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define a partition of the unity subordinated to the covering {pi,-- -, p,}. Moreover, the mapping

n
p(u) = 9;(u)v; is continuous and maps K into itself, because of the convexity of K. Thus,
7j=1

by Brouwer’s fixed point Theorem, there exists ug in the convex closed hull of {vq,---,v,} such
that p(ug) = ug. Define

a(u) = (Au,p(u) = w) + | (@ a(@):p(u)(2) - i(z))da.

The convexity of the map j°(%;-) (see [1], Lemma 1) and the fact that >5-1%(u) =1 imply

000 < D500 (A~ + 3w [ (e () () = o))

For arbitrary u € K, there are only two possibilities: if u ¢ N(v;), then ¢;(u) = 0. On the
other hand, for all 1 < j < n (there exists at least such an indice) such that u € N(v;), we have
¥;(u) > 0. Thus, by the definition of N(v;),

q(u) <0, foreveryue K.

But ¢(ug) = 0, which gives a contradiction. u

2.2 Proof of Theorem 1

For this proof we need Lemma 2 below. Let F' be an arbitrary finite dimensional subspace of V'
which intersects K. Let ixnr be the canonical injection of K N F' into K and i} be the adjoint
of the canonical injection i of F' into V. Then:

Lemma 2. The operator
B:KNF—F*, B=i,Aignr
is continuous.

Proof. We have to prove that the sequence {Bu,} converges to Bu in F* for any sequence
{un} C KNF converging to v in KNF (orin V). In order to do this, we prove that the sequence
{Buy,} is weakly (= w*) convergent to Bu, because F* is a finite dimensional Banach space.
Let V' be an arbitrary point of F'; then by the w*-demicontinuity of the operator A : K — V* it
follows that

(Bup,v) = (ipAignpin, v) = (ipAu,, v) =
= (Auy, - ip,v) = (Aup, v) — (Au,v) = (Bu,v)

— 00

Therefore { Bu,,} converges weakly to Bu. n

Remark 4. The above lemma also holds true if the operator A is continuous on finite
dimensional subspaces of K.
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Proof of Theorem 1. For any v € K, set

S(w)={u € K;(Au,v —u) + /Qjo(x,ﬁ(x);@(:c) —a(z))dx > 0}.

Step 1. S(v) is closed set.

We first observe that S(v) # (), since v € S(v). Let {u,} C S(v) be an arbitrary sequence
which converges to u as n — oo. We have to prove that v € S(v). But, by (2), u, € S(v) and
by the part (a) of Lemma 1, we have

0 < limsupl(Aun, v — un) + [ (@, 8 (2); 8(2) — i (z) o =

n—00

= lim (Au,, v — u,) + lim sup/ 3z, G (7);0(2) — Gp(2))dz <
n—00 n—oo JQ

< (Au,v — u) + /Qjo(x, a(z); o(z) — a(z))dz.

This is equivalent to u € S(v).

Step 2. The family {S(v);v € K} has the finite intersection property.

Let {vy,---,v,} be an arbitrary finite subset of K and let I be the linear space spanned by
this family. Applying Corollary 1 to the operator B defined in Lemma 2, we find u € K N F
such that u € N7_,S(v;), which means that the family of closed sets {S(v); v € K} has the finite
intersection property. But the set K is compact. Hence

N S() # 0,

veEK

which means that the problem (P) has at least one solution. |

2.3 Proof of Theorem 2

Let F' be an arbitrary finite dimensional subspace of V', which intersects K. Consider the
canonical injections ixnr : K N F— K and ip : FF—V and let i, : V*— F* be the adjoint of
ir. Applying Corollary 1 to the continuous operator B = i}, Aignr (see Remark 4) we find some
up in the compact set K N F' such that, for every v € K N F,

(4) (% Aignrtp, v — up) + /Q 7z, (2); 5(z) — ap(x))dz > 0.
But
(6) 0 < (Av — Aup,v —up) = (Av,v — up) — (Aup,v — up).

Hence, by (5), (6) and the observation that (i%Aignpur, v — up) =
(Aup,v — up), we have

") (Av,o = ur) + [ (@, e(@);5(a) = e(2))dz > 0,
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for any v € KN F. The set K is weakly closed as a closed convex set; thus it is weakly compact
because it is bounded and V is a reflexive Banach-space.
Now, for every v € K define

M) ={u e K;(Av,v —u) + / 3%z, (z); d(x) — a(z))dr > 0}.
Q
The set M (v) is weakly closed by the part (b) of Lemma 1 and by the fact that this set is

weakly sequentially dense (see, e.g., [2], pp. 145-149 or [10], p.3). We now show that the set
M = Nyex M(v) C K is non-empty. To prove this, it suffices to prove that

(8) N M(vj) # 90,
7j=1
for any vy,---,v, € K. Let F be the finite dimensional linear space spanned by {vy,---,v,}.

Hence, by (7), there exists ur € F such that, for every v € K N F,
(Av,v — up) + / P(z, ip(2); 8(z) — ap(z))ds > 0.
Q

This means that up € M(v;), for every 1 < j < n, which implies (8). Consequently, it follows
that M # (). Therefore there is some u € K such that, for every v € K,

9) (Av,v — u) + /Qjo(x,a(x); o(z) — a(z))dz > 0.

We shall prove that from (9) we can conclude that u is a solution of Problem (P). Fix w € K
and A € (0,1). Puttingv = (1 — AN)u+ Aw € K in (9) we find

(10) (A((1 = Nu+ Aw), AMw — u)) + / 0(z, i(2); A(w — 8)(2))dz > 0.
Q
But j°(x, 4; A) = A j%(=x, 4;9), for any X > 0. Therefore (10) may be written, equivalently,
(11) (A((1 — N+ Mo, w — u) + / 7(z, i(z); (@ — @) (z))dz > 0.
Q

Let F' be the vector space spanned by u and w. Taking into account the demi-continuity of the
operator Ajxnr and passing to the limit in (11) as A —0, we obtain that u is a solution of
Problem (P). u

Remark 5. As theset K N{z € V; ||u|| < R} is a closed bounded and convex set in V, it

follows from Theorem 2 that the problem (3) in the formulation of our Theorem 3 has at least
one solution for any fixed R > 0.
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2.4 Proof of Theorem 3

The necessity is evident.

Let us now suppose that there exists a solution ug of (3) with ||ug|| < R. We prove that ug
is solution of (P). For any fixed v € K, we choose € > 0 small enough so that w = ug+e(v—ug)
satisfies ||w|| < R. Hence, by (3),

(Aug, e(v — ug)) + /Q 0z, ap(x); (6 — ag)(x))dz > 0

and, using again the positive homogeneity of the map v — 5°(u;v), the conclusion follows. =

3 Applications

3.1 Noncoercive Hemivariational Inequalities

We consider noncoercive forms of the coercive and semicoercive hemivariational problems treated
in [6], pp. 65-77. The results are more general from the point of view of the absence of the
coercivity or the semicoercivity assumption, but less general from the point of view of the
boundedness of the set K. For this purpose, let us assume that V is a real Hilbert space and
that the continuous injections

V C[L2(Q,RHN c v+

hold, where V* denotes the dual space of V. Moreover let T : V — L*(Q,RF), T(u) = 4,
4(z) € RF be a linear and continuous mapping. Consider the operator A appearing in our
abstract framework as Au = A,u + f, where f € V* is a prescribed element, while A; satisfies,
respectively, the assumptions of Theorems 1, 2 or 3. Then the theorem 1 holds for the problem

(P;) Find u € K such that, for every v € K,
(Au, v —u) + / 7(z, a(z); 5(z) — a(z))dz > 0.
Q
Moreover, if T' is a linear compact operator, then Theorems 2 and 3 also hold for the above
problem.

Suppose further that I' is the Lipschitz boundary of €2 and that the linear mapping 7 : V' —
L*(T',R*) is continuous. Then the theorem 1 holds for the problem

(Py) Find u € K such that, for every v € K,
(Au, v —u) + / Pz, a(z); 9(x) — a(z))dz > 0.
r

Furthermore, if T is compact, then Theorems 2 and 3 remain valid for (Ps).
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3.2 Nonmonotone Laws in Networks with Convex Constraints

We shall give now an application in Economics concerning a network flow problem. We follow
the basic ideas of W. Prager [7], [11] and for the consideration of the nonlinearities we combine
them with the notion of nonconvex superpotential. We refer to [6], p. 191 for the derivation of
the formulas.

The generally nonmonotone nonlinearity is caused by the law relating the two branch vari-
ables of the network, the “flow intensity” and the “price differential” which here can also be
vectors. The problem is formulated as a hemivariational inequality and the existence of its solu-
tion is discussed further. We consider networks with directed branches. The nodes are denoted
by Latin and the branches by Greek letters. We suppose that we have m nodes and v branches.
We take as branch variables the “flow intensity” s, and the “price differential” e,. As node
variables the “amount of flow” p; and the “shadow price” uy are considered. The terminology
has been taken from [11]. Moreover each branch may have an “initial price differential” vector
62. The above given quantities are assembled in vectors e, €°, u, s, p. The node-branch inci-
dence matrix G is denoted by G, where the lines of G' are linearly independent. Upper index T’
denotes the transpose of a matrix or a vector. The network law is a relation between the “flow
intensity” s, and the “price differential” e,. We accept that s, is a nonmonotone function of
the e, expressed by the relation

, 1
(12) ey — €5 € Djy(sy) + 58530757 :

where k., is a positive definite symmetric matrix and 0 is the generalized gradient. The graph
of the s, — e, law is called y-characteristic.

The problem to be solved consists in the determination for the whole network of the vectors
s, e, u, for given vectors p and ey.

Further let C' = diag [C}, - - -, C,, - - -] and let the summation 3., be extended over all branches.
Now we consider the graph which corresponds to the network and a corresponding tree. The
tree results from the initial graph by cuting all the branches creating the closed loops. Let us
denote by sr (resp. sps) the part of the vector s corresponding to the tree branches (resp. to
the cut branches giving rise to closed loops). Then we may write instead of Gs = p the relation

Grsr +Gusuy =D.-

Here G'1 is nonsingular and thus we may write that

-1 -1
(13) s=| 5| 2| O Jpa| TOT O = s+ Bsur,
SyMm 0 I

where I denotes the unit matrix. Using (12) and (13) we obtain (cf. [6]) a hemivariational
inequality with respect to sy, which reads: find s;; € R™ (ny is the dimension of s,,) such that

>~ 35((so+ Bsu)y, (Bsiy — Bsu)y) + sy B'CB(s3, — sm)+
v

(14)
st CB(si; — sy) + €T B(sh; —sp) >0 Vsi, € R™.
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Let us now assume that the flow intensities sj; are constrained to belong to a bounded and
closed convex subset K C R™ (box constraints are very common). Thus the problem takes the
form: find s), € K which satisfies (14), for every s}, € K.

Since the rank of B is equal to the number of its columns and C' is symmetric and positive
definite the same happens for BTCB. In the finite dimensional case treated here, one can easily
verify that Corollary 1 holds, if j,(-,-) satisfies the condition (j). Thus (14) has at least one
solution.

3.3 On the Nonconvex Semipermeability Problem

Let us put ourselves within the framework of [6], p. 185, where we have studied nonconvex
semipermeability problems. We consider an open, bounded, connected subset Q of R? referred
to a fixed Cartesian coordinate system Ox;zsx3 and we formulate the equation

(15) —Au=f in

for stationary problems.

Here u represents the temperature in the case of heat conduction problems, whereas in
problems of hydraulics and electrostatics the pressure and the electric potential are represented,
respectively. We denote further by I' the boundary of €2 and we assume that I' is sufficiently
smooth (CY!-boundary is sufficient). If n = {n;} denotes the outward unit normal to I' then
O0u/0n is the flux of heat, fluid or electricity through I' for the aforementioned classes of problems.

We may consider the interior and the boundary semipermeability problems.

In the first class of problems the classical boundary conditions

(16) u=0 on I'

are assumed to hold, whereas in the second class the boundary conditions are defined as a
relation between du/0On and u. In the first class the semipermeability conditions are obtained
by assuming that f = f + f where f is given and f is a known function of u. Here, we consider
(16) for the sake of simplicity. All these problems may be put in the following general framework.
For the first class we seek a function u such as to satisfy (15), (16) with

(17) f=Ff+f  —Fe€dj(z,u)inQ.

For the second class we seek a function u such that (15) is satisfied together with the boundary
condition

(18) —g—zeajg(x,u) onI'yCT and u=0onT\T;.

Both ji(z,-) and jo(z,-) are locally Lipschitz functions and 0 denotes the generalized gradient.
Note, that if ¢ = {¢;} denotes the heat flux vector and £ > 0 is the coefficient of thermal
conductivity of the material we may write by Fourier’s law that ¢;n; = —kou/0n.

Let us introduce the notations

a(u,v) = /QVu-Vvdx
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and

(f,u) =/qudac.

We may ask in addition that u is constrained to belong to a convex bounded closed set K C V
due to some technical reasons, e.g. constraints for the temperature or the pressure of the fluid
etc.

The hemivariational inequalities correspond to the two classes of problems. Let for the first
class V = H}(Q) and f € L?(f); for the second class V = {v: v € H'(Q),v=00nT'\TI;} and
f € L*(Q). Then from the Green-Gauss theorem applied to (15), with the definition of (17) and
(18) we are led to the following two hemivariational inequalities for the first and for the second
class of semipermeability problems respectively

(i) Find u € K such that

(19) a(u,v —u) + /Qj?(x, w(z);v(z) —u(z))dz > (f,v —u) Vo e K.

(ii) Find u € K such that

(20) a(u,v—u) + s Jo(z, u(x);v(z) — u(@))dl > (f,v — u) Vv e K.

Since a(-, -) is (strongly) monotone on V both in (i) and (ii) and the embeddings V' C L*(Q) and
V C L3(T';) are compact we can prove the existence of solutions of (i) and of (ii) by applying
Theorem 2 if j; and jo satisfy the condition (j).

3.4 Adhesively Supported Elastic Plate between two Rigid Supports

Let us consider a Kirchoff plate. The elastic plate is referred to a right-handed orthogonal
Cartesian coordinate system Oxxox3. The plate has constant thickness h;, and the middle
surface of the plate coincides with the Oxizo-plane. Let €2 be an open, bounded and connected
subset of R? and suppose that the boundary T is Lipschitzian (C%-boundary). The domain
is occupied by the plate in its undeformed state. On €' C Q (€' is such that Q' N T = @) the
plate is bonded to a support through an adhesive material. We denote by ((z) the deflection
of the point z = (z1,x9,23) and by f = (0,0, f3), f3 = fs(z) (hereafter called f for simplicity)
the distributed load of the considered plate per unit area of the middle surface. Concerning the
laws for adhesive forces and the formulation of the problems we refer to [9]. Here we make the
additional assumption that the displacements of the plate are prevented by some rigid supports.
Thus we may put as an additional assumption the following one:

(21) z €K,

where K is a convex closed bounded subset of the displacement space. One could have e.g. that
Qg S z S bo etc.

We assume that any type of boundary conditions may hold on I'. Here we assume that the
plate boundary is free. Indeed there is no need to guarantee that the strain energy of the plate
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is coercive. Thus the whole space H?(f2) is the kinematically admissible set of the plate. If one
takes now into account the relation (21), then z € K C H?({2), where K is a closed convex
bounded subset of H?(2) and the problem has the following form:

Find ¢ € K such as to satisfy
(22) a(C,z—()—i—/Q'jO(C,z—Q)dQZ(f,z—() Vz € K.
Here a(-,-) is the elastic energy of the Kirchoff plate, i.e.
(23) a(C,2) =k /{2[(1 — V) CapZap +VACAZIQ 0, f=1,2,

where k = Eh?/12(1 — v/?) is the bending rigidity of the plate with F and v the modulus of
elasticity and the Poisson ratio respectively, and h is its thickness. Moreover j is the binding
energy of the adhesive which is a locally Lipschitz function on H?(2) and f € L?(Q2) denotes the
external forces. Furthermore, if j fulfills the growth condition (j) then, taking into consideration
that a(-,-) appearing in (23) is continuous monotone, we can deduce, by applying Theorem 2,
the existence of a solution of the problem (22).
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