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Let p € CIOO’;’(RN) with p > 0 and let f € C*((0,00),(0,00)) be such that lim,~, f(u)/u = 400, f is bounded
at infinity and the mapping u — f(u)/(u + B) is decreasing on (0, 00), for some 3 > 0. We prove that the
problem —Au = p(z) f(u) in RY, N > 2, has a unique positive Cfo’ca(RN ) solution which vanishes at infinity
provided fooo r®(r)dr < oo, where ®(r) = max {p(z); |z| = r}. Furthermore, it is showed that this condition is
nearly optimal. Qur results extend previous works by Lair-Shaker and Zhang, while the proofs are based on two

theorems on bounded domains, due to Brezis-Oswald and Crandall-Rabinowitz-Tartar.

1 Introduction

Consider the problem
—Au =p(z)f(u) in RN

u>0 in RY (1)
u(z) > 0 as |z |- o0,

where N > 2 and the function p satisfies the following hypotheses:
(pl) p € CY%(RY) for some a € (0,1);
(p2) p > 0 in RY.
This problem has been intensively studied in the case where f(u) = v, with v > 0. For
instance, in the case of a bounded domain Q C R”", Lazer and McKenna proved in [7] that the

problem
—Au = p(x)u™7, in Q

has a unique classical solution if p is a sufficiently smooth function which is positive on Q. The
existence of entire positive solutions on R" for v € (0,1) and under certain additional hypotheses
has been established in Edelson [4] and in Kusano-Swanson [5]. For instance, Edelson proved



the existence of a solution provided that
/ NN =2DP(r)dr < oo,
1

for some A € (0,1), where ®(r) = max p(x). This result is generalized for any v > 0 via the sub

and super solutions method in Shaker [8] or by other methods in Dalmasso [3]. Lair and Shaker
continued in [6] the study of (1) for f(u) = u~7, v > 0. They proved the existence of a solution
under the hypothesis
(p3) /7" - ®(r)dr < oo, where &(r) = I‘n‘zixp(x).
2 =r

Zhang studied in [9] the case of a nonlinearity f € C'((0,00), (0,00)) which decreases on
(0, 00) and satisfying lim,~ o f(u) = +o00.

Our aim is to extend the results of Lair, Shaker and Zhang for the case of a nonlinearity
which is not necessarily decreasing on (0,00). More exactly, let f : (0,00) — (0,00) be a C!
function which satisfies the following assumptions:

(f1) there exists 8 > 0 such that the mapping u — 'f—(f)ﬁ is decreasing on (0, 00);
(f2) li{‘r(l) J(u) = 400 and f is bounded in a neighbourhood of +oc.
u u

Our main result is the following:

Theorem 1 Under hypotheses (f1), (2), (p1)-(p3), the problem (1) has a unique positive
global solution u € CE*(RM).

Theorem 1 shows that (p3) is sufficient for the existence of the unique solution to the problem
(1). The following result shows that condition (p3) is nearly necessary.

Theorem 2 Suppose p is a positive radial function which is continuous on R" and satisfies
o0
/ rp(r)dr = oo.
0

Then the problem (1) has no positive radial solution.

2 Uniqueness

Suppose u and v are arbitrary solutions of the problem (1). Let us show that v < v or,
equivalently, In (u(z) + 8) < In (v(z) + B), for any € R". Assume the contrary. Since we have

lim (In (u(z) + 8) —1In (v(z) + 8)) = 0,

|z|—o00

we deduce that maxg~ (In(u(z) + B8) — In(v(z) + B)) exists and is positive. At that point, say
To, we have

V (In(u(zo) + B) — In(v(zg) + B)) = 0,

2
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By (f1) we obtain

So, by (2) and (3),

0> A (In(u(zo) + B) — In(v(xo) + §)) = m Aulw) = gy S
1 24— |[Vo(xo)]* =

W.Wu(mo)l j(v(l‘oHB)Q Vo (z0)|

Wf(“(‘%)))— W)Av(m -

—p(o) (u(xo) =3 o) +ﬂ> >0,

which is a contradiction. Hence u < v. A similar argument can be made to produce v < u,
forcing u = v.

3 Existence

We first show that our hypothesis (f1) implies that li{r(l) f(u) exists, finite or +o00. Indeed, since
u

%“g is decreasing, there exists L := il{r(l) %‘ﬂ) € (0,400]. It follows that %lbl\lj(l) f(u) = Lp.

In order to prove the existence of a solution to (1), we need to employ a corresponding result
by Brezis and Oswald (see [1]) for bounded domains. They considered the problem
—Au = g(z,u) inQ
u>0, u#0 inQ (4)
u=0 on 09,

where Q@ C R" is a bounded domain with smooth boundary and g(z,u) :  x [0,00) — R.
Assume that

for a.e. x € Q the function u — g(z,u) is continuous on [0, o)

and the function v — g(x,u)/u is decreasing on (0, 00) ;

for each u > 0 the function x — g(z,u) belongs to L>(Q); (6)



3C > 0 such that g(z,u) < C(u+1) ae.2€Q, Vu>0. (7)

Set
ao(x) = limg(z,u)/u  and Uoo(z) = lim g(z,u)/u,

u\0 U—00

so that —oo < ap(z) < 400 and —00 < ax(z) < +00.
Under these hypotheses on g, Brezis and Oswald proved in [1] that there is at most one
solution of (4). Moreover, a solution of (4) exists if and only if

Al(—A — ao(l')) <0 (8)
and
M (—A —ax(z)) >0, (9)

where A;(—A — a(z)) denotes the first eigenvalue of the operator —A — a(z) with zero Dirichlet
condition. The precise meaning of \;(—A — a(z)) is

A(=A —a(z) = 111||f0||2 X (/IW)2 / )

[p#0]

Note that / ayp® makes sense if a(z) is any measurable function such that either a(z) < C or

[p#0]
a(x) > —C a.e. on €.

Let us consider the problem

—Au, =p(z)f(ug), if |z |<k
u(z) =0, if |z |=k

The following two distinct situations may occur:

Case 1: f is bounded on (0, c0).
In this case, as we have initially observed, there exists and it is finite li{% f(u), so f can be
u

extended by continuity at the origin.

In order to obtain a solution to the problem (10), it is enough to verify that the hypotheses
of the Brezis-Oswald theorem are fulfilled. Obviously, (5) and (6) hold. Now, using (pl),
(p2) and the fact that f is bounded, we easily deduce that (7) is satisfied. We observe that

ap(z) = I%M = 400 and ax(z) = ugglmw = 0. Then (8) and (9) are also
fulfilled. Thus by Theorem 1 in [1] the problem (10) has a unique solution u; which, by the

maximum principle, is positive in |z| < k.

Case 2: 11}{‘% f(u) = +oo.



We will apply the method of sub and supersolutions in order to find a solution to the problem
(10). We first observe that 0 is a subsolution for this problem.

We construct in what follows a positive supersolution. By the boundedness of f in a
neighbourhood of +oo, there exists A > 0 such that f(u) < A, for any u € (1,+00). Let
fo :(0,1] = (0,400) be a continuous nonincreasing function such that fo > f on (0,1]. We can
assume without loss of generality that fo(1) = A. Set

folu), if 0<u<1
g(u) =
A, ifu>1.

Then ¢ is a continuous nonincreasing function on (0,+0c). Let h : (0,00) — (0,00) be a C!
nonincreasing function such that A > g. Thus, by Theorem 1.1 in [2] the problem

—AU =p(x)h(U) if |z |<k
U=0, if |[z|=k

has a positive solution. Now, since h > f on (0, +00), it follows that U is supersolution for the
problem (10).

In both cases studied above we define u;, = 0 for |z| > k. Using a maximum principle
argument as already done above for proving the uniqueness, we can show that u; < ugz4; on R,

We now prove the existence of a positive function v € C?(R") for which u; < v on RY. Asin
[6] we construct first a positive radially symmetric function w such that —Aw = &(r) (r =| z |)
on R" and lim,_,, w(r) = 0. We obtain

where :
K= [ [o"'®(0)dodC, (11)
[

provided the integral is finite. Integration by parts gives

T

C T C
d
[e [0y dodc = ~(n -2 0/ d_céz‘"()/ 0" (or) do dC =

0 0

(n—2)"" (—TQ_”/TO”_ICI)(O) do + /Tgcb(g) dg) :

0



Now, using L’Hopital’s rule, we evaluate the limit of the right side of (12) as r — oc. We have

lim (—7"2" / o1 (0) do + / Co(¢) dg) —
0

0

— [ 0" B(0) do + 12 [ CB(C) dC

. 0 0
= lim =
r—00 7“”_2

T—00

= lim ]C@(C) d¢ = 70@(0 d¢ < oo.

Then we obtain K = —— - / CO(C) dC < oo
n—
0
Clearly, we have
1 o
w(r) < — /gcp(g)dg Vr >0
0
1"
Let v be a positive function such that w(r) = — - / mdt where ¢ > 0 will be chosen such
c

that Kc < / —dt

We prove that we can find ¢ > 0 with this property.
x

4
By our hypothesis (f2) we obtain that Jim / mdt = +00. Now using L’Hopital’s rule we
0

have .
_t_
) Of f(@® dt . T
lim = lim — =4+
Z—00 T T—00 f(.T)

From this we deduce that there exists x; > 0 such that / —dt > Kz for all x > z,. It follows

that for any ¢ > z; we have K¢ < /—dt

But w is a decreasing function, and this implies that v is a decreasing function too. Then
v(r) v(0)

O/ﬁdtgo/ﬁdt: )=c- K</—dt
t

It follows that v(r) < ¢ for all r > 0.
From w(r) — 0 as r — oo we deduce that v(r) — 0 as r — oo.



By the choice of v we have

1 v 1 v 1 v\’
Vw=--——-Vv and Aw:——Av—i——(—) Vo2 13
¢ T0) o e \Fwy) VY 1)
The hypothesis u +—— ff) is a decreasing function on (0,00) implies that u —— fiu) is a
U
decreasing function on (0, c0). From (13) we deduce that
Av < C@Aw =—c @@(r) < —f(v)®(r). (14)

By (10) and (14) and using in an essential manner the hypothesis (f1), as already done for
proving the uniqueness, we obtain that u < v for |z| < k and, hence, for all R".
Now we have a bounded increasing sequence

Uy g < -os S U S Uy S0 S0

’

with v vanishing at infinity. Thus there exists a function, say u < v such that uy — u pointwise
in RV.

Now, using the same argument as in [6], it is easy to prove that u € Ci:*(R") and thus u is
a classical solution of the problem (1).

4 Proof of Theorem 2

Suppose (1) has such a solution, u(r). Then

-1
/U/II(,’,,) + n

u'(r) = —f(u(r))p(r).

We put In(u(r) + 1) = a(r) > 0 for all » > 0.

r

u(r) = ! u(r) — ! ul?
ACRTO R R T
Then u(r) satisfies
~1 n—1 ~/ 1 2 _ f(u(T)) r
L P CS S N EAN A B e 4 O (15)

Multiplying equation (15) by 7*~! and integrating on (0, () yield

o

ﬂ'(C)C"_l-I-/Cinl \Vu|*do = _/Cif(u(a)) (0)o™ 'do (16)
/(o) +1)? / u(o) + 17 '



Now we multiply (16) by ¢!~ and integrate over (0,7). Hence

+/C1 ”/ Z —E _|Vul’do d¢ =

/Cln/f +1 7)o" 1do d¢.

We observe that @(r) < @(0) Vr > 0 implies u(r) < u(0) Vr > 0.

f(u)

If 8> 1 then the function u —
u+1

is decreasing on (0, 0cc). This implies

flu(o)) _ f(u(0))
u(o) +1 ” u(0)+1° (17)

Since u is positive, we have
/Cln/f o)o™ tdod¢ < @(0) forallr > 0.

Substituting (17) into this expression we obtain

T ¢
/len/p(a)onflda d¢ < 1}(0) i 111(0) < 00.
0 0

We can use integration by parts and L’Hopital’s rule (as we did in proving that the integral in
(11) is finite) to rewrite this as

contradicting the hypothesis.

If B < 1 then the function u —— i i B
u

>/Cl”/f 0)o™ 'do d¢ =

is increasing on (0, 0c). In this case we have

T ¢
= [ [ LD “(“)i/f plo)o™do d¢ >



T ¢

f(u(0)) . n
> m,@O/CI O/P(U)O tdo d¢
which implies
T ¢
n n @(0)(u(0) + B)
0/<1 O/p(a)g Ydo d¢ < 3 F(u(0) < oo forallr>0.

We obtain again that

1 u(0) + 8
hm/tptdtgiuo < 00
w28 PO S ) )
contradicting the hypothesis.
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