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Abstract: This paper is concerned with the following fractional (N/s)-Laplacian Choquard equation:

SN(—A)Isv/su + VOOus 2u = s“( * F(u))f(u), x e RY,

|x|N-u

where (—A)ISV/S denotes the (N/s)-Laplacian operator, 0 < ¢ < N, and V and f are continuous real functions satis-
fying some mild assumptions. Applying the weak growth conditions on the exponential critical nonlinearity f
and without using the strictly monotone condition, we use some refined analysis and develop the arguments
in the existing results to establish the existence of the ground state solution of the fractional (N/s)-Laplacian
Choquard equation. Moreover, we also study the concentration phenomenon of the ground state solutions. As
far as we know, our results seem to be new concerning the fractional (N/s)-Laplacian equation with the Choquard
reaction.
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1 Introduction and main results

In this paper, we are concerned with the following nonlinear fractional (N/s)-Laplacian equation with the non-
local Choquard reaction:

eV (=B)3y s + VOOlul*u = ek ( « FW))fw) inRY, (LD

|x|N-#

where ¢ is a small positive parameter, 0 < s <1, 0 < u < N = ps with p > 2, = represents the convolution
between two functions. Here (—A);,/s denotes the fractional p-Laplacian operator, which, up to normalization
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factors, can be defined by

|mm—mwwwﬁmm—uw»®

(—A)f\,/su(x) = C(N, s) 151{% J T

RN\B,(x)

for x € RN, where B.(x) := {y € RV : |x — y| < €}. Throughout this paper, we omit the normalizing constant to
simplify the expressions. Further, V is the absorption potential, and the nonlinear function F is the primitive
function of f. In what follows, we introduce some relevant results about the fractional Sobolev space. For each
s €(0,1) and p > 2, we consider the Sobolev space

WSP(RY) = {u e LP(RY) : [ulsp < +00}.

Here, [u]ws» vy is the Gagliardo seminorm

(U] wsp (wrry :z( I I M dxdy)%.
RN RN

b=y

It is well known that the space (WSP(RN), || - |l ws»(wv)), where

1

14

I Wyepery = [-16p + 111 and ||u||p=(j|u|”dx),
]RN

is a uniformly convex Banach space, particularly reflexive, and separable. We also recall that C5°(RY) is dense
in WP (RY); see [3, Theorem 7.38].

There are many applications for fractional p-Laplacian and nonlocal operators of elliptic type, including
optimization, finance, phase transitions, stratified materials, anomalous diffusion, crystal dislocation, soft thin
films, semipermeable membranes, flame propagation, conservation laws, and water waves; for more infor-
mation, see [21, 23, 28] and the references therein. Several academics, like Pucci, Xiang and Zhang [43], Xiang,
Zhang and Radulescu [49, 50], among others, concentrated on the investigation of such fractional p-Laplacian
problems. For a detailed analysis of nonlocal fractional problems, we also refer to the work of Molica Bisci,
Radulescu and Servadei [34].

The Choquard reaction

(s FO0 ),

which appears in many intriguing physical conditions in quantum theory and is important in explicating the
finite-range many-body interactions, is another intriguing phenomenon in our work. Pekar [42] described the
quantum mechanics of a polaron at rest by proposing the nonlocal Choquard problem for the first time. In
an attempt to approximate the Hartree—Fock theory of one-component plasma, Lieb [27] noted that Choquard
sketched out the phenomena of an electron trapped in its hole using such an equation. Studying elliptic problems
with the nonlocal Choquard reaction is becoming more and more popular due to the nonlocal characteristic.
It is important to note that the majority of study on the Choquard equation is based on the crucial inequality
listed below, which will also be crucial throughout this paper.

Lemma 1.1 (Hardy-Littlewood-Sobolev inequality). Let1 < r,t < coand0 < u < N with

1 1 N-u
it

Iff € L"(RN) and h € L'(RY), then there exists a sharp constant € = C(r, t, u) > 0, independent of f and h, such
that

=2.

h
j_[ﬂm(w(ﬂ®ﬁﬂwmwmwmwy

— y|N-
RNRle yIrH
Under the help of the above Hardy-Littlewood-Sobolev inequality and the Sobolev embedding
N Np

N *
s,p (N tmN B
W>P(R") — L*(R"™) forall—s st$<—s) _—N—ps’
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we know that the power range of k is

(N+wp _

g P
2N

= 2(N-ps)’

when dealing with the equation (1.1) with pure power nonlinearity f(u) = |u|¥ variationally in the case that
sp < N. Numerous studies have been conducted in this field using variation methods; for example, [1, 29, 30,
35-37, 47], among others, for the case where s = 1 and sp < N, and [16, 33], among others, for the case where
0<s<landsp < N.

The existence and asymptotic behavior of the solutions to problem (1.1) as € — 0, also referred to as the
semiclassical problem, are of significant importance in studies of standing waves to the nonlinear Choquard
equation. It provides important physical insights and is used to explain how quantum physics and classical
mechanics interact. The existence and concentration of ground state solutions under the scenario sp < N
are extensively discussed in the literature with regard to the relative progress of the fractional semiclassical
Choquard problem. For further information, see [8, 22, 45, 52] and any related references. For the cases of s = 1
and sp < N, we additionally cite [7, 14] and the references therein.

We study the existence and concentration of the ground state solutions to problem (1.1) for the situation
sp = N, in contrast to the studies listed. The Sobolev embedding, as was previously mentioned, is continuous
but lacks a sense of critical growth. Now, we remind the readers of the critical growth in the space WP (RY),
where sp = N is specified by the Trudinger-Moser inequality. In the Sobolev—-Slobodeckij spaces, there are a
number of results on the Trudinger-Moser inequality [2, 10, 31, 39-41]. Based on the finding [41] and using
a slightly altered version of the Trudinger—Moser sequence, Parini and Ruf [40] established the local fractional
Trudinger-Moser inequality for the N-dimensional fractional p-Laplacian equation. Following that, Zhang [53]
generalized the local fractional Trudinger—Moser inequality [40] to the entire space.

Lemma1.2. Lets € (0,1) and sp = N. Then for every 0 < a < a., the inequality

sup @N,s(alulﬁ) dx < +oo0 1.2)
ue WsP(RN), |lul Ws,p(]RN)Sl RY
holds, where
jp—Z t]
Dys(t)=e' - ) i and j,:=min{j e N:j>p}.
i=0 J*
Moreover, for a > a; ,
sup J @N,s(a|u|%) dx = +oc0.
uEWs? (RY), [ullyspuvy <L iy

As explored by Zhang [53, Remark 1.2], ag y is just an upper bound of a.; they did not give the precise value
of a.. Motivated by the inequality explored in Lemma 1.2, it is natural to say that
(F1) acontinuous nonlinearity f has critical exponential growth if there exists ap > 0 such that

tlim 1o exp(—at%) =0 foralla > ag
—+00

and
lim f(t) exp(—at%) =+oo foralla < ag.
t—+00

Several authors addressed the existence, multiplicity, and concentration of semiclassical states for the local
Schrodinger equations with critical exponential growth based on the Trudinger—Moser inequalities. We refer
to [6, 17-19, 54] and their references for the most significant developments in this field. Only a few works in
this field deal with semiclassical states in the context of the semiclassical problem with nonlocal reactions. The
presence and concentration of semiclassical ground state solutions of the equation

—&2Au+ V(x)u = 8“‘2[% * F(u)]f(u) in R?, 1.3)
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were established by Alves, Cassani, Tarsi, and Yang [4] by studying the existence of a nontrivial solution for the
critical nonlocal equation with periodic potential. On V, they made the following assumptions:

(V1) V(x) > Vy in R? for some Vg > 0.

(V2) 0 <infyegrz V(X) = Vj < Voo = liminf|y—e0 V(X) < 00.

Condition (V2) is introduced by Rabinowitz [44]. They also assumed that the nonlinearity satisfies the following
assertions:

(f) f(s)=0foralls <0andO0 < f(s) < Ce'™", s > 0.

(f2) There exist sg > 0, My > 0 and q € (0, 1] such that 0 < s1F(s) < Mf(s) for all |s| > so.

(f3) There exist p > %% and Cp > 0 such that f(s) ~ CpsP, as s — 0.

(f4) There exists K > 1 such that f(s)s > KF(s) for all s > 0, where F(t) = jot f(s)ds.

(f5) It holds

o SASES)

li > B

$5+00 e87T82
with »
) )2
sinf &t Vop” (-7
p>0 1672 p% 4 (2 — w)(3 - 1)
(f6) s — f(s) is strictly increasing on (0, +00).

Applying the mountain pass lemma and checking that the mountain pass level shall be less than the critical
level provided that the potential V is periodic, they could obtain the existence of a nontrivial solution for the
periodic Choquard problem. To be specific, they need to give the upper bound of the mountain pass level, that
is, to show that for some n € IN,

g(t) = %tz(l +6p) - % J[I,, * F(twy)]F(twy) dx < 2 ; H’ t>0, (1.4)

By

where B, denotes the open ball centered at the origin with radius p > 0 in R?, wy, is the Moser-type function,
and

1 1 1

Sn = sup V(x - -—]>0.
" mg;, ( )( 4logn 4n2logn 2n? )

Such an estimation contributes to excluding the vanishing case of the Cerami sequence {u,}. Another heuristic

proof in their work is that they considered a sequence of measures that has uniformly bounded total variation

and by using the Radon-Nikodym theorem to show that if u, — u in H'(R?), then

“le%*“ * F(”n>]f(un)¢ dx — “le%*“ * F(u)]f(u)(p dx forall ¢ € C(RY).

R? R?

Here, we refer to [15] as an example of a work that used the proof of this property of the Choquard reaction
to study the nonlocal Choquard problem in the exponential critical condition. Yang [51] carried out additional
research on the nonlocal Choquard-type equation

—e2Au + V(x)u = g+ ﬁ * (P(x)F(u))]P(x)f(u) in R%. (1.5)

Also, they found the existence and concentration of solutions to equation (1.5), and it is clear that equation (1.5)
is more challenging to solve than equation (1.3). We refer the readers to [51] for further information.

Let us also have a quick look at the relative progress of semiclassical problems with the fractional
p-Laplacian. For the case s = % and N = 1, Alves, do O and Miyagaki [5] studied the concentration phenomenon
of solutions to the problem

e(-M)"?u+ V(x)u = flu) inR.

They gave a hypothesis on the growth of f at the infinity as follows:
(f7)  There exist a constant p > 2 and a suitable constant Cp > 0 such that

f(t) > CptP™ forallt > 0.
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They made use of this supposition to derive directly that the critical level is below the mountain pass
level of the associated energy functional. In the general case, we notice that there is only a paper dealing with
the semiclassical problem with fractional (N/s)-Laplacian. Thin [46] is concerned with the following fractional
(N/s)-Laplacian equation:

N (=)} st + VOOIuls 2u = fw) inRY. (16)

By Nehari manifold, variational method, concentration compactness principle and Ljusternik—Schnirelman

theory, they obtained the existence, multiplicity and concentration of solutions to equation (1.6) under the

following assumptions:

(F1) The nonlinearity f € €'(RR) satisfies f(t) = 0 for all ¢ € (=00, 0], f(t) > 0 for all ¢ > 0, and there exist con-
stants ap € (0, a*), by, by > 0 such that for any ¢ € R,

— - N
IF'(O1 < batlP~ + ba|tlP > Dy s (o]t 7),

where
Jp=2 yj
Dy () =€ - ) i jp =min{j e N :j > p}
i=0 J°

and a. is given in Lemma 1.2.
(F2) There exists u > N/s such that f(t)t — uF(t) > 0 for all t € R, where F(t) = jOT flo)dr.
(F3) Itholds
. flt
tim 5% =0
(F4) There exists y; > 0large enough such that F(t) > y;|t[* for all t > 0.
(Fs) f(t)/tP~is a strictly increasing function of ¢ > 0.

It is worth mentioning that they also used the kind of condition (F,). Both conditions like (f5), (f7) and condi-
tion like (F,) define the behaviors of the nonlinearity at infinity, but the later two cases also establish the growth
condition at the origin as a global assumption. It is important to note that these kinds of conditions make estima-
tion easier because C, and y1 can have as large values as possible. This uncertainty cannot actually be verified,
which has some influence on potential follow-up uses. Hypothesis (f5) has the advantage of allowing the use
of classical Moser-type functions as test functions to control the energy level. As a result, it is natural to expect
that (f5) could be weakened appropriately for the search for ground state solutions to (1.1).

Inspired by the preceding works, we will establish the existence and concentration of the ground state
solutions to equation (1.1), while also confirming the preceding expectation. Before we present this result, we
make the following assumption about V:

(V) Ve @Y, R)and it satisfies
1 < inf V(x) = Vg < Vi = liminf V(x) < oo.
xeRN [x]—c0

The lower bound is intended to make it easier for readers to see the estimation process between different
equations by removing some of the influence caused by the switch of the potential term and linear potential
with fixed constants. In addition to (V) and (F1), we present the following hypotheses:

(F2) Itholds

(k-1
filty=o0(t= ") ast— 0,

f(t)=0forall t € (—00,0],and f(t) > 0 forall t > 0.
(F3) There exists & > (N - s)/s such that f(¢)t > gF(t) > 0 for all t > 0.
(F4) There exist My and ¢y > 0 such that, for any ¢ > tp, we have F(t) < My|f(¢)].
(F5) t+— f(¢) is nondecreasing on (0, +00).
(F6) Itholds

. O
h{gg}f exp(agtN/(N-5)) B

)
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and k satisfies

N-8)In[Ci1A(x - &) 2(1 + &)(1 + mpNAS,)](1 + mpNAS
{1+AmpN6n+( )In[C1A( ) (s(N+)L)1nnp I( pAé6n)
~ Cs(1+e)agy(N-5)r  2ayN ]N—}
2aoNsInn (N + pwag v
B (aN,s)¥
ag

where ¢ > 0 is small enough and the definitions of A, A, p, 6n, an,s will be introduced in the subsequent
Section 3.
Our result reads as follows.

Theorem 1.3. Assume that V and f satisfy (V) and (F1)-(F6). Then, for any € > 0 small, problem (1.1) has at least
one positive ground state solution. Moreover, if we replace (F2) with

(F2) fit)=o(t"sYyast — 0,

and let u, denote one of these positive solutions with n, € R being its global maximum, then we have

lim V(ne) = V.
e—0

Let us now sketch the strategies and highlights that will be used to prove Theorem 1.3. Our arguments are based
on variational methods and some refined analysis, and we will make use of the Nehari method to deal with the
problem. In particular, by establishing the ground state solutions of the autonomous problem (3.1) introduced
in Section 3, and by analyzing the energy level of the energy functionals of the autonomous problem (3.1) and
the original problem (1.1), we can further establish the existence result of Theorem 1.3. We notice that the strict
monotonicity conditions (f6) and (Fs) play an important role in confirming the uniqueness of the projection
from the space H(RY) or WP (R") to the corresponding Nehari manifold, respectively. They both require the
uniqueness of the projection when analyzing the asymptotic behavior of the ground state energy level of the
singular perturbation equation (1.1) and excluding the vanishing case of a Palais—Smale sequence. It is reason-
able to expect that the strict monotonicity condition could be relaxed in order to search for the ground state
solutions of the singular perturbation equation (1.1), and we will answer affirmatively under this condition (F5).

It is well known that we meet several difficulties due to the exponential critical growth of nonlinearity.
First, as previously stated, it is difficult to demonstrate that the Fréchet derivative of the Choquard term is
weakly sequentially continuous. Unlike the heuristic proof discussed in [4, 15], we will develop some arguments
to directly verify this property. Another challenge is the lack of compactness, and we must ensure that the
energy functional meets certain compactness requirements at some minimax level. This type of estimate is more
delicate in the fractional p-Laplacian equation (1.1) with the Choquard term, because we proposed a weaker
hypothesis (F6) and the appearance of the fractional p-Laplacian. Based on the arguments presented in [11-13],
we will further develop it into our current workspace, which is not trivial. As far as we know, our results in the
fields of the fractional p-Laplacian equation are new.

The structure of this paper is the following. In Section 2, we introduce the variational setting of problem (1.1)
and present some preliminary results. Section 3 is devoted to demonstrating the existence of a positive ground
state solution of the autonomous equation while also providing proofs of refined delicate energy estimation and
the convergence of the Fréchet derivative of the Choquard term. Sections 4 and 5 will discuss the existence of
ground state solutions to the singular perturbation equation (1.1), as well as the concentration phenomenon of
the ground state solutions.

2 Some preliminaries and mountain pass geometry

First, we introduce some notations that will clarify what follows.
e C,c,Cici(i=1,2,...)denote positive constants which may vary from line to line.
- For any exponent p > 1, p’ denotes the conjugate of p and is given as p’ = p/(p - 1).
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«  B.(x) denotes the ball of radius r centered at x € R".
o The arrows — and — denote the weak convergence and strong convergence, respectively.
« LS(RM) (1 < s < +0c0) denotes the Lebesgue space with the norm

puts = (| |u|3dx)%.

RN

o To make the notation concise, we set, fora > 0and t € R,

N poy ak N
H(a, 1) = exp(alt|v=) = S, a(a, t) = Y —|t|7=K,
k!
k=k,—-1
where
ko2 ak N
_ Lk
Sk,-2(a, 1) = kzo lt

and k, = min{k € N : k > p}.
Observe that, making the change of variable x — ex, problem (1.1) is equivalent to the following problem:

1
|x|N-#

(~B)3ysu + ViEX)ul* 2u = « Fw))fw) inRY. @1

Evidently, if u is a solution of equation (2.1), then v(x) := u(x/€) is a solution of equation (1.1). To study the
original equation (1.1), we only need to look at the equivalent equation (2.1).
For any fixed € > 0, we define the working space

E; = {u e WSP(RYN) : J V(ex)|ulP dx < oo} 2.2)
]RN

endowed with the norm

ST

_ p p
lulle = ([fp + Iuly, )7,

where

ST

Iulv.p = ( | Veniup ax)".
RN
From condition (V), we can see that | - || and the norm of WP (RY) are equivalent.
To deal with the nonlocal-type problem (2.1), besides the classical Hardy-Littlewood—Sobolev inequality
(see Lemma 1.1) which will be frequently used throughout this paper, we also use the following inequality.

Lemma 2.1 (Cauchy-Schwarz-type inequality [32, Section 5]). For f, h € L}OC(IRN), there holds

J(lxl% « 1) )Ihldx < [ J<|xl+-ﬂ « 1)1Al dx J(lxl% . |h|)|h|dx]%. ©.3)

IRN ]RN IRN
We define the energy functional associated with problem (2.1):

nis 1 Fu(y))F(u(x))
| |5

S
Jew) = Zhule”* - 5 oy . (2.4)

2
RN RN
Using Lemma 1.1 and some standard arguments, we can easily check that J. is well defined on E; and belongs
to ! with its derivative given by

_ N/s-2 _ _
(IL(u),v) = J J 400 — uGIT(ul) — u@)VE) - vy) dxdy + J V(ex)|u™s2uv dx

X — y|2N
s [x =yl o -

_J JF(u(y))f(u(x))v(x)

|x — y|N-#

dxdy forallu,v e E..
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Hence, it is obvious that the solutions of equation (2.1) correspond to critical points of J,. To obtain the positive
ground state solutions of equation (2.1), we need to define the Nehari manifold and the ground state energy
related to J,:

Ne:={ueE \{0}: (Jh(u),u) =0} and c;:= ijr\rlfﬂg. 2.6)

Obviously, N, contains all nontrivial critical points of J, and if ¢, is achieved by u, € N, then u, is called
a ground state solution of equation (2.1).

Next, we verify some properties for the Nehari manifold N,. Before that, we give several preliminary results
which will be used in this part.

Lemma 2.2. Ifu € WSP(RY), then for any a > 0 it holds
I H(a, u)dx < +co.
]RN

For the detailed proof of Lemma 2.2, we refer to [53, Corollary 2.4] and [40, Proposition 3.2]. Following that, we
give a property of H(a, t), which can be seen as the corollary of [24, Lemma A.2].

Lemma 2.3. It holds
H(a, )’ < H(ba, t)
foralla >0,t>0andb > 1, where
N kp=2 ak N
H(a, t) = exp(alt| =) - Sg,-2(a, 1), Sk, 2(a, t)= Y —|t|¥=X,  kp = min{k € N: k > p}.

]
= K

Lemma 2.4. Assume that (F1)—(F3) hold. Then there exists A > 0, independent of €, such that

lulle >A forallu e N,.

Proof. For any u € N, we have

s = J J Fu)wooue 4 4,

|x — y|N=#

Recall that, by (F1) and (F2), for each a > ag and close to ap and q > N/s, there exist constants § > 0 and Cg,5 > 0
such that
N+
fOt <8It + Cqoltl?3(a, t)

for all ¢t > 0. This together with (F3) implies that, for all ¢ > 0, one has

1 §, vu  Cgs
F(t) < =fltit < =|t| = + —|t|9%(a, t).
Hf u u

Then by Lemmas 2.2 and 2.3, it is easy to verify

J J Fu)fu(x))u(x)

|x — y|N-#

dxdy
RN RV
< CollFWl 2, Iftwyul

N+u

2N C 2N
s@é[(%)m" JIuIN/de+(%6)N“‘ J|u|%ﬂ-€(a,u)% dx] !

RN RN
Cq.51\2 we |\ o 4Na -2 S\2 (v
<ep(=20)( J|u|N+# ax) ™ ( j (g w)ax) 7 eel () g
pIA) a4 u i
N 2
< g (ullyyy™" + Nllg v )
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Considering that (N + u)/s > p and 2q > p, we can see there exists A > 0 such that ||u|; > A. This completes the
proof. O

The following result demonstrates that the energy functional J, satisfies the geometric structure of the mountain
pass theorem.

Lemma 2.5 (Mountain pass geometry). Assume that (F1)—(F3) are satisfied. Then the following conclusions hold:
(i) Thereexist T > 0and p > 0 such that J;(u) > t, provided that |u|¢ = p.
(ii) There exists v € E¢; with ||v|¢ > p such that J¢(v) < 0.

Proof. (i) By a standard argument as in the proof of Lemma 2.4, one can easily obtain the conclusion that there
exist 7 > 0 and p > 0 such that J.(u) > 7, provided that |[u]. = p.
(ii) For all u € Ggo(]RN ) with |lu|ls = 1, from (F6) and all t > 0, we obtain

stVis s 1 F(tu(y))F(tu(x))
Je(tu) = ——|u ——jj—dxd
e(tu) N llulle ZRNRN X — y[N& ly
N/s 2 atN/(NfS)u(y)N/(NfS) atN/(NfS)u(X)N/(NfS)
I ¢ dxdy.
N 2 X — y|N-#
RN RN

Since |ulls = 1, we can find a bounded Q with a positive measure in RY such that |u(x)| > { > 0 when x € Q.
Without loss of generality, we assume that 0 € Q. So, as Q is bounded, there exists r € R such that B,(0) € Q. By
the fact that

1
———— dxdy > Gy, VN,
J J |X—y|N7u y N,#
B(0) B-(0)

where Cy,, is a positive constant, we have

N/s

N+H eatN/(Nfs) (N/(Nfs) eatN/(Nfs) (N/(Nfs) )

St
Je(tu) < — K Cyyr

Since the tN/s has growth smaller than ™™ as t - +00, we have Jg(tu) — —oo. Taking v = pju, where
p1 > p > 0large enough, we can see that conclusion (ii) holds. O

According to Lemma 2.5, we can use a version of the mountain pass theorem without the Palais—Smale condi-
tion [48] to deduce the existence of a Palais—Smale sequence {u,} at level ¢, namely

Je(up) — ¢ and j"g(un) -0,
where C, is the mountain pass level J, defined by

¢. = inf max J.(I(t)),
leT t€(0,1)

and
I'={leC([0,1], E¢) : 1(0) = 0, J(I(1)) < 0}.

Lemma 2.6. Suppose that (F1)-(F3) and (F5) are satisfied. Then, for all u € N, one has

Je(u) > max J.(tu).
t=0

Proof. For any fixed u € E. and any ¢ > 0, we define J(t) as follows:
201 [ [ FUODFUOD gy 1 [ [ EHUOEOG) g,

—y|N- - yIN-
2]RN]RN =y 21RN1RN -y
s — sth/s FuQo)fuy))uly)
TN J xyea Y

RN RN
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From (F3) and (F5), one has

v [ FuCo)tu)uey) FuOonfup) e ugy)
] (t) - J |X_y|N—[1 dXdy_ J’ J’ |X _le_ﬂ dXdy
]RN ]RN
=95 [ (x) N9y () F(tu(x)) Fu(x)
- J X — y|N-# [t(N—s)/s [u(0)] V-9 i/t (y))_[()wf( (y))]dXdy

]RZN
>0, t=1,
<0, 0<t<1,

which implies that J(t) > J(1) = 0 immediately. With the help of this, we can easily deduce that

- stN/s F(u(x))F(u(y)) F(tu())F(tu(y))
T(w) - 9e(tu) = -5 | [ SR axdy + zHWd dy
RN RN RN RV
s—stN/s ) 1 FuO))FuQ) . F(tu(x)F(tu(y))
- Ve u >"H Xy H T heyien Y
RN
N/s
- st J JF(u(y))f(u(X))u(X) dxdy
|x = y|N-#
N RN
s — stN/s
2 — (Tp(w), uy + 3(0)
_ otN/s
>SS0 9wy, uy forallu e Ee, t2 0.
Together with the definition of the Nehari manifold N, this completes the proof. O

Lemma 2.7. Let u € E; \ {0}. Then there exists t, > 0 such that t,u € Ng.

Proof. Letu € E; \ {0}. We define the function (t) = J¢(tu) for ¢ > 0. From Lemma 2.5, we know that §(0) = 0,
Y(t) > 0 for ¢ sufficiently small, and 1(t) < 0 for ¢ sufficiently large. Therefore, there exists ¢ = ¢, such that
maxXso ¥(t) is achieved at t,, so ¥'(t,) = 0 and t,u € N,. O

Applying Lemmas 2.6 and 2.7, we can see that the ground state energy value ¢, has a minimax characterization
given by

Ce =Ce = Inf maxJ.(tu). 2.7
7T R0} 620 () @7

Moreover, there is a constant ¢ > 0 independent of ¢ such that ¢, > ¢ > 0.

Lemma 2.8. Suppose that (F1)-(F3) are satisfied. Let {u,} be a Palais—Smale sequence at level ¢ > 0 for J.. Then
{un} is bounded in E; and |uy|e = o(1).

Proof. Let {u,} be a Palais—Smale sequence at level ¢ > 0 for J.. We have

c+ 1+ luplle = Je(un) - Z(N )<j e(Un), Up)
_ S(N-2s) HunlY5 + J J F(un () [flun () un () - [(N - s)/s]F(un(x))]
T2NWN-s)" " Z(N X — y[N-n

Thus, by (F3), we can conclude that {u,} is bounded. Since {u,} is bounded, we have
(Te(un), uy) = 0n(1).
Recalling that f(t) = 0 for ¢ < 0, and by the inequality

la-b*2*(@-b)a -b")=la -b"|° foralls>1, 2.8
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we get

_ N/s-2 _ - oy
G < J J [un(X) — un(Y) (Un(X) = un(Y)) (U (0 - uz(y)) dxdy + J V(e tnlV 2 dx

Ix - y|N=#
RN RN RN
F(up n n
SR p—
IRN IRN

which implies that [Ju, |l — 0 in E,. Consequently, we may assume that u, > 0 for any n € N. The proof is now
complete. O

3 The autonomous problem

For our scope, we shall also investigate the limit problem associated with problem (2.1). To this end, we first
discuss in this section the existence of the positive ground state solutions to the autonomous problem.
Let m > inf,cry V(X) = V. We consider the following autonomous problem:

(~0)}y st + mluls 2 = ( « F)fw) inRY. 3.1)

|x|N=#
The corresponding energy functional of problem (3.1) is defined by
_” s _J JF(H(X))F(U()’))

Im(u) = Ix yIN m

dx dy, (3.2)
RN RN
where
Bl = (1Y + miulr) ¥

By a standard argument explored in Section 2, we can easily see that J,, € CH(WSN/$(RN), R) and

_ N/s-2 _ _
<3§n(u),V>=JJ|u(X) uy)l (u(x) = u@y))(wx) - v(y))

dxdy + J miu|s ~2uv dx

Ix —y|2N
RN RN RN
Fu(x)fu(y)v(y)
_ I I Xy dxdy
RN RN

for any u, v e WSN/S(RN), Accordingly, we use N,, and c;, to denote the corresponding Nehari manifold and
the ground state energy of J,,, where

N = {u e WP(RN)\ {0} : (37,(w),uy =0} and cp = inf g

Inspired by the arguments explored in Section 2, we can easily establish the mountain pass geometry of the
energy functional J,,. Then we know that there exists the (PS),, sequence {un} c WSP(RN), i.e.

3;n(un) -0, Jm(up) — cp:= inf max Im(ym(1)), (3.3
Ym€lm te[0,1]

where
T = {ym € CH([0, 1], WP (RY)) : yu(0) = 0, Im(ym (1)) < O}.
For each u € WSP(RY) \ {0}, there exists t = t(u) such that

Im(t(w)u) = maoxgm(su) and t(uw)u € Ny,.
S>|
Following the standard arguments in Section 3, we also have

cm = inf Jm(u) = inf max Jn,(tu).
N UeWs?(RN\{0} =0

We now state the main result for the autonomous equation (3.1).
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Lemma 3.1. Assume that (F5) holds. Then equation (3.1) has at least one positive ground state solution u such
that Jm(u) = cm.

Proof. Let {u,} be the (PS) sequence obtained in (3.3), that is,

S Ns 1 1
N"un"m —z J(lxlT—,U *F(un))F(un)—)Cm as n — oo.
]RN
For any v € WSN/5(RN), we have
(@7 (Un), V)| < 0p(DIVIIm.

From Lemma 2.8, we can deduce that ||u,|ln» < €, where C is a positive constant. Therefore, from (F3) we have

QIJV('X'%‘” o F(un) ) Flan) dx S]RL('X'% o F(un) Ctn )t dx = gl < €. )

N/s

1o (RY), and u, — ua.e.on RV,

Passing to a subsequence if necessary, we have that u, — uin Ep, up — uinL
If
8 := lim sup sup J [ |M5dx = 0,
n—oo yeIRNBl(y)
together with Lions’s concentration compactness principle [48, Lemma 1.21], we know that u, — 0in L4 (RM),
q € (N/s, +00). For small enough ¢ > 0, we choose M, > (MyC)/€ > tp in assumption (F4). Then it follows from

(F3), (F4) and (3.4) that

J [|X|+‘” * F(lln)]F(un)dX <M I [L * F(un)]|f(un)| dx

|X|N=#
|up|>M, |up|>M;
M, 1
< . J [W * F(un)]f(u,,)un dx
RN
< E.

Using (F2), (F3), Lemma 1.1, (2.3), (3.4), and the Sobolev embedding, we can choose N, € (0, 1) such that

J [le% # F(ttn) | F(un) dx

|un|<Ne
1 1
< ,ltl j [|X|T_” * F(un)]f(un)un dx
|un|<N;
£ 1
bl - (N+u)/2s
<3 j [|X|N_# * F(in) Iz dx
|un|<N;
€ 1 i 1 3
= - (N+u)/2s (N+)/2s
< ﬂ( | e « Fun) P ax) (| [ » 1l dx)
RN [un|<Ne
1/2
3 gcy/*elrz iy V0725
= [,3/2 nliNys
N+w)/2
< Cillunlliy ™7

< C1CWN*/2s

Similarly, we have
1
J [W *F(un)]F(un)SE.
Ne<|up|<M;
Due to the arbitrariness of € > 0, we obtain

1
J [|X|T—u « F(ty) |[Fun) dx — 0 asn — oo,
RN
Hence, according to the fact that {u,} is a (PS) sequence, we have the following proposition.
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Proposition 3.2. It holds

N/s _ Ncpy an,s(N + 1) s

e Mo [},
S ZNCIO

Proof. In the previous work [25], Kozono, Sato and Wadade proved that there exist positive constants ay s

and Cy s, depending on N and s, such that

lim [lup||
n—-oo

o T NI (=)
J(e“'t' - Z ]—'> dx < Cys foralla e (0,ay;s), (3.5)

RN ]:0
for all
ue WSNSRNY - with [[uflsvsgyy < 1,

and where j, = min{j € N : j > p}. Inequality (3.5) is better for us to consider the behavior of a sequence com-
pared to Lemma 1.2, and it is obvious that ay,s < a. < ag y. To prove Proposition 3.2, it is enough to prove that

there exists i1 € IN such that N+ 1) .
S +U)ans 15
max twp) < = | ——= , 3.6
na Im(twy) N 2Ndg (3.6)

where the w; (x) are the Moser-type functions supported in B, (0) as follows:

N- .
Inn'® x| < %,

N-s
T ] In&Z
x| e P
if = < x| <p,
<lxl<p

wa(x) = (-

s n [In n|s/¥

0 if [x| > p,

which belong to Wg’p (RY). For s € (0, 1), as explored in [40], we cannot expect that [Wn]ws»wny 1S constant.
Following the estimation in [40] and after some basic calculations, we know that

N/s 1
[Wn]Ws,N/s(]RN) < 1 + O(@)

and

jmlwn(x)lpdstmWNpN( {Y )¥O( ! )
]RN

This implies

<1 [emunp"( ) 7 +1]0(or) = 1+ () 7 6, 6
s,N s,N

N/s
Wallm

where

((1* )(N—s)/s 1
6= 1+ cmw;I;V)NNW—s)/s >O(logn)'

Further, we know

1 PN+
j mdxdyZC(H,N)(ﬁ) B
Bp/n(o) Bp/n(o)

where C(u, N) is a positive constant.
Let us argue by contradiction and suppose that (3.6) does not hold. So, for all n, let ¢, > 0 be such that

sT(N+uwa N=s
IntaWn) = MaX (W) > = # , 39)

where t, satisfies q
gom(twn)| _ =0.
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Together with estimate (3.7), we have

t],\{/s(l + meNpN(i)%én) > [—aN,S(N+y) %.

as,N 2Nay

By (F6), we know that there exists t, > 0 such that, for any t > t,, we have

fit) > (k- e)e®™™™ and  F(t) > Nag

(N-$)(Kk-¢) tN;jseaotN/w—s).

DE GRUYTER

(3.9

From now on, all inequalities hold for large n € N, and it is obvious that t,wy, > t, under this condition.

From (F6) and (3.8), we have

tﬁ(l + CmWNpN( a];N )¥ 6n)

P N
> tyllwallm

Z]RJN (Rj T dy Y (0Dt (00 dx

F(tawn(y))
= j ( I mdy)f(tnwn(x))tnwn(x) dx
By/m(0)  Bp/n(0)

N/(N-s

> (k - €)?

*

NZs/Nao(a;N)(N—Zs)/s as,N

This implies that there exists a constant C; > 0 such that

2 tN/(N—S)N
[ otn ~W+p|mn<cy,

Y
that is,
N+ pag 2= C
nys [N +iag v % 2
' < [ 2Nay ] (1+ logn>'
Combining (3.9) and (3.10), we obtain that, for any small € > 0,

(N + way,s

e ]¥(1—8)st’] <[

N+ p)a; %
( l’l) S,N] N (1
2Nay

Taking this range into consideration, we have
S N/s NJ/s _1 J J F(tawn(y))F(tawn(x))

I(tawp) = Ntn lwnlim 2 |x — y|N-u
RN RN

dx dy

_ _ s C N — 5)pN+u )
(N-29/(N=) () 52 10BN ( )P [2a0tn Nlnn

+ ).

N )%5 ) 3 1 F(thawn(y))F(tawn(x))

*

S N/s N
sﬁtn (1+meNp ( o

nNo

Bp/n(o) Bp/n(o)

< ]%t],\[/s(l + CmWNpN< a];N)NSScS,,)

N/(N-s) PR
OV 0L o (k- el i) o
2N2a} n 25/ (NS) (N Y2/ (1 y2s/N
s,N

< (1 CmWNpN(agN)*an)

|x — y|N-#

dx

—(N+y)lnn].

(N - 5)>C(u, N) (p )N+# (k — g)2e2atn " N(@ ) Inn

21-25INN2GZ 2N (N 4 p)25IN(1 4 ) \

D o(tn),

(In n)2s/N

dy

(3.10)
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Now consider the following notations:

N %
A= CWN(T)
as §
and
_ (N-s)*pN*C(u,N)
- 21-25/NN2g2 2N (N 4 r)2siN
Thus,

N/(N-s) * -1
(k - 8)2€2a°t" N(agy)"'Inn

(1+¢&)(nn)2s/NpN+u°

N/s

o(tn) = —tn (1+Amp"s,) - B

and there exists , such that ¢'(t,) = 0. Thus we have

ANJN=5) s - ~s/(N—
(k _ E)ZQZaot,l N(a; ) ' Inn 2(10N2 In nt;/(N s)

(1 + &)(In n)2s/NpN+u ag (N —s)

TN 4 AmpN§,) =

This implies that

i(N—s)/s—s/(N—s
eZaoiilW(N_s)N(a;N)’llnn _n

"1+ &)1+ Amp"8,)(In n)s/MNnN*igy (N - s)
B(k - €)22agN2Inn
Ci(1+ &)1+ AmpN&,)nV*Hay \ (N - s)
= B(k - €)22agN?
CiA(1 + &) (1 + AmpN §,)nN+
(k- ¢)? ’

where .
[ag (N = s)]
ZBCloNZ

Thus, one has

s [(N +ag - ] —( (N = s)In[C1A(k — €)72(1 + &)(1 + mpN AS,)] )
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2a0N S(N +u)Inn
where
(tn) = —tN/s(l +AmpVs,) - tn PO )1+ AmpNSa)al y(N - 5)
¢{tn n P on 2apN2Inn
Csa; y(N —s)
< Nt’,Y/Sa +AmpY8,) - (1+e)1 +AmpN6n)2asO’]A\I[W
s N\ [Vs (1+e)Csag (N -s)
- N(1 +Amp 6")[ 2a0Nsln n ]
i N [ (N+ u)asN —_
< 1+ Amp"s)) [—Za 5 B
«(14 (N = s)In[C1A(k - &)2(1 + &)(1 + mpN A8y)] )- (1 +&)Csa;y(N -3)
S(N+u)lnn 2agNsInn
B _[(N + y)a;N]% [1 ampVs s V- $)In[C1A(k — &) 2(1 + &)(1 + mpNAS,) (1 + mpNAS,)
T NL  2qyN ps S(N+u)lnn
B C3(1+e)a;N(N—s)[ 2a0N ]”—] ( )
2agNslnn (N +wa; y log?n’
Recall that
(ag )90 1

6n = (1 + —CmWNpNN(N_S)/S ] m)
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From (F6) and by taking a suitable p, we know that there exists ¢ small enough such that

. (N = s)In[C1A(k — €)72(1 + &)(1 + mpNAS,)](1 + mpNAS,)
s(N+u)lnn
G+ eag (V- S)[ 2a0N ]N—]
2apNsInn (N + wag v

[1 +Amp" s,

Then we have

s (N +wayss5

Im(tawy) < (ty) < N 2aoN
which is a contradiction to (3.8). This concludes the proof. O

Thus, there exist § > 0 small and ng € IN large such that

N-s

N/s [M]T(l - 68) foralln > ng. (3.11)

lunlm ™ < 2Naq
In light of the Hardy-Littlewood-Sobolev inequality, we have
1
| [ * FCta) )t < CollFun) ey Watn o
RN

For any € > 0 and q > N/s, there is 3 > 0 close to 0 such that

IFun)llonyvewy < 1fun)unllonsvew
N+u

N+u)/2N N 2Ng ™
< ellunllis®"™ + Ceg| | 6 + O)a0 lun 5 s 7 ]
IRN
N+u
(N+u)/2N q 2Nr(1 + ag o
< elunlfye ™ + Coqltnllygr oo | F( g lual ) dx) ™

RN

wherer, r’ > 1satisfythat1/r + 1/r’ = 1. By choosing r > 1 sufficient close to1suchthat1 < r(1+ &) < (1 - 81,
we have
2Nrao(1 + O)lunlln "

N+u

<ays foralln > no.

Thus for any n > ny, we have

N/(N-s)
J’ 9{( 2Nr(1+ 19)(10’ |Un|) dx = J fo(ZNr(l + Naollunlm [un|

N+u N+u " Nunlm
RN RN

)dX < CN,s-

Therefore, we can conclude that

1
J ( N ¥ F(un))f(un)un dx -0 asn — oo.
ERNK
Then we have that
N/s N/s

S
O<cm= A_r"un"m +0o(1) and o(1) = luply

which is not possible. Hence, there exist § > 0 and a sequence {y,} ¢ Z such that

lim j | * dx = 6.
n—.o0o
Bl()/n)
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Letting i1, (X) = up(x + yn), we have
lim J || dx > 6.
n—-oo
B1(0)
Since || itnlm = llunllm, forany ¢ € CSO(IRN)we have (7}, (itn), ) = 0,(1). Consequently, it, — & # 0in X, it, — @

in quoc(IRN), N/s < q < oo,and i, — U a.e.on RY. In virtue of the houndedness of the sequence {ii,}, we have

J [m% # F(lty) | ftn) i dx < C.
RN

Now, we need to show the following proposition.
Proposition 3.3. For any ¢ € C5°(RY), we have
nli_{go(ﬂin(ﬂn), @) = (I (@), @) = 0.

Proof. By Fatou’s Lemma, we know

j [ |X|11H « F() i dx < Ko. (312)
RY

Take Q = supp ¢. For any given ¢ > 0, let M, := Ko ¢|lo&™!. Then, for n large enough, we have

[ |X|]{I_[1 * F(un)] If(un)(p| dX < IZT{; J |:|X|+—.U * F(un)]f(un)un dx < 28 (313)
{lun|=Me}u{la|=M.} e
and : ~ ~ 8 1 ~ -
IMIJME [ x|V * F(u)]|f(u)¢| dx < EMJME [—|X| ot F(u))] fin)itdx < €. (3.14)
Since

flun) X <me = @Y m<p, a.e.in Q\ De,
where D, = {x € Q : |ii(x)| = M}, and

fun) X ju<m, < |n|1a1|31(|f(t)| <oo forallxe Q,
t|<M,
the Lebesgue dominated convergence theorem leads to

lim J ()| 7 dx = j (@) 77 dx. (315)

n—.oo

{Q\De}uflun|<Me} (Q\D¢)uf|a|<Me}

Here, we choose K, > ty such that
3 s W
) [zeoﬁf(u)w dx] <e (316)
Q

MoKy
K.

Illo

and 1
| [ F@xaes) ol ax < .
[i|l<M,
From (F4), Lemma 1.1, (2.3), (3.15), and (3.16), we have

1
[ * @ik | fn) o] dx
[un|=Men{lu|#Me}
1

< 19hen| [ [ * i) [Pt o, )
RN

1

1 ;
x [ J [IXIT‘” * |f(un)|X{9\Dg}n{|un|sMg}]|f(un)|X{sz\Ds}n{|un|sMs} dx
RN
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<tote] [ [ » Fw Fam ]

[un|2Ke

1
X [ I [IXIT‘” * |f(un)|X{Q\DE}n{|un|sM£}]|f(un)|X{Q\Dg}n{|un|§Mg} dX]

RN

<lols| | |X|11V_#*F(un)]F(un)dx]%X[eo

[up 2K,

JUNES j [lxlfv_#*F(un)]ﬂun)undx]%x[zeojv(an%dmo(l)]w

|un|2K,

M N
< 19loo( T22) jf(u)wwdx +o(1)

Q
<e+o(l).

For any x € R, define {,,(x) and ¢ as follows:

60 = (v * 0P tuen)) = |
]RN

and

700 = Aiu(

1
|| N=#

Then we have

Ve F(up) |y u, 1<k, — [F@x1a1<
1Cn () = C(X)| < J' NE(un) Y, <k, — [ F(@) Y1012k, |

|x — y|N-# b

RN

<[ | nFeber, - F@ et ay] T < (|

[x-yl<R

% (|F(11)|X|aIsKe)> - I
]RN

1

N+u

)5 x|

(Q\De)N{|up|<Me}

N+

|1:'(un)|)(|l,t,l|sl(‘g d
|x — y|N-#

[F(@) X<k,

2N-2u

1 d N
X — y|CN-072 y)

[x-yI<R

_ Nty N% 1 Z%ﬁ
o I R L e ) Y G I e )

[x=yI>R
2Nw e
< (B g
u

[x=yI<R

+(NWN o

2) (] P s, - P s ¥ dy)”

Ix-yI>R

- (ZNWN ‘R%)ngiz,f‘[
B u
[x=y|<R

Nwy \ ¥4
# Cel =)™ [lutnlyrags + 12

URH N+ /aus T

(05 g (i),

) i<k — IF@iager, ] 7 dy]

|x — y|N+u
R Y

u
- _ 2N-—p 2N
R [ IF@) e - @]+ ay] ™

o
i

M
2N-u

which implies that, for any x € RY, we have {;,(x) — {(x). Similarly, we know, for any x € RY, that | ¢, (x)| < M.

It follows that

[n O)f(un CO)X i <m, )P € MI@lloo max If(D)]

forall x € Q.

DE GRUYTER
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Therefore, together with {,(x) — {(x) and the Lebesgue dominated convergence theorem, we have

. 1 1 _ _
Aim J [IXIT—“ * F(un)Xlunngg]V(un)(P' dx — I [IXIT-# * F(U)X|a|sK€]|f(ll)(P| dx.
{lun|<Metn{|ul#M} [t|<Me
This concludes the proof. O

Proposition 3.3 implies that & is a nontrivial solution of (3.1), and it is easy to see that g, (it) > cp. By Fatou’s
lemma, we know

e = lim [dm(itn) = < (@), )]

= Jim [ (i« F))( s - 5 F)) dx
]RN
> J(ﬁ . F(a))(%f(a)a - %F(a)) dx
]RN

- S
= Jm(t) - N(Hm(u)) i)
= Im (D).

Therefore g, (it) = cp. Combining with g}, (it) = 0, we complete the proof. O

4 Existence of positive solutions

In this section, we are going to prove the existence of positive ground state solutions to equation (1.1). Consider
the following equation:

1
|x|N-u

(=B)3ysu + Volul > 2u = « Fw))fw) inRY, @)
where Vj is given in (V). In view of Lemma 3.1, we know that (4.1) possesses a positive ground state solution ug
satisfying

dv,(uo) = ¢y, = inf Jy,,
NVO

where

Ix - y|2N x — y[N-#

_ N/s
Jva(w) = J J lu(x) - u(y)| dxdy + J V0|u|N/de—J JF(u(y))F(u(x)) dx dy
R N

RN

and
Ny, = {u € Ey, \ {0} : (3}, (w), u) = O}.

The definitions of Ev, and (J ’Vo(u), u) are similar to (2.2) and (2.5).
Consider another equation:

(=B)3y5U + Voolul*2u = « F) )f(w) inRY, 4.2)

|X|N=#
where V, is given in (V). In view of Lemma 3.1, we know that (4.2) possesses a positive ground state solution uy
satisfying
Jv.,(up) = cy,, = inf Jy_,
Ny,

()

where the definitions of Jy,, and Ny, are similar to gy, and Ny,.
We begin this section by analyzing the comparison relationship of the ground state energy level between
problem (2.1) and problem (4.1), which is very important in our arguments.
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Lemma 4.1. Assume that (V) and (F1)-(F6) hold. Let c. be the minimax value defined by (2.6). Then the following
assertions hold:

(D) limge_gce = Cy,.

(i) limg_oce < Cy,,.

Proof. (i) Given § > 0, fix ws € C°(RY) satisfying
ws € Ny,, ws - winEy,, Jy,(ws) < cy, +6.

Now,letn € CSO(IRN, [0,1]) besuchthatn = 1onB1(0),and n = 0on RN \ By(0), and define v, (x) = n(e,x)ws(x),
where ¢, — 0as n — +oo. Clearly,
Vp = Ws InEy,, asn — +oo.

By Lemma 2.7, there exists ¢, > 0 such that t,v, € Ng,. We claim that ¢, is bounded; otherwise, |t;| — +co.
Consequently,

N/s
St
Ce, < Jg, (thvp) = ]r\[[

Ix - y|2N

RN

_ N/s N
J J Vn() = va )] dxdy + J V(enX)|Vals dx
RN RN
1
2

J [|x|+‘#  F(tavn) | F(tavn) dx.
RN

Together with (J; (tnvn), tavn) = 0, we obtain

Va(X) = va ()N N 1
tlr\l]/s j j —[ n |3(_y’;g)] dxdy + tlr\{/s J- V(Enx)|Vn|1: dx = J- [|)(|T—!1 * F(tnvn)]f(tnvn)tnvfl dx
RN RN RN RN
_ 1 ~ -
> Ctﬁ‘u J [|x|N—l1 * |Vn|u]|Vn|‘u dx,
IRN

which means that {¢,} is bounded and, up to a subsequence, we have t, — Ty > 0. Notice that there exists a
constant ¢ > 0, independent of ¢, such that c¢, > ¢ > 0, which implies that Ty > 0. Then, by the characteristic of

e, and ws, we have
N/s

tn S
Cen < Tey (V) = By, (tave) + j [V(enx) - Volv/* dx
]RN
= Jv,(Tows) + 0,(1)
< Jv,(ws) + 0,(1)

< Cy, +6.

Since 6, &, are arbitrary, it follows that lim sup,_,, ¢¢ < cy,. On the other hand, we already know that, for any
€ > 0, we have ¢, > cy,, which implies that lim,_,o ¢; = cy,.

(i) Since Vy < Vi, by a standard argument, we know that cy, < cy,,, which together with (i) implies that
lim,_,g ¢¢ < cy,,. The proof is now complete. O

Hence, by Lemma 4.1, there exists a €9 > 0 such that

N-s

SN +pansy

Ce < N Tao for all € € [0, &).

Now we prove the existence result of the positive ground state solution of problem (2.1).

Lemma 4.2. Assume that (V) and (F1)—(F6) hold. There exists &y > 0 such that equation (2.1) has a positive ground
state solution u, for all € < €.

Proof. Since J, satisfies the mountain pass geometry, there exists a Palais—Smale sequence {u,} at level c,,
namely

sT(N+ways 1%
je(un)HC£<N # , Jé(un)—>0, n — oo.
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Inspired by Lemma 2.8, we obtain that ||u,||¢ is bounded in E,, and {u,} is a nonnegative Palais—Smale sequence,
without loss of generality. Thus, we have u, — u in E;.

Next, we claim that J}(u,) = 0. In fact, if u, = 0, then the claim is completed. If u, # 0, by J%(un) — 0, there
exists a constant C such that

1 s
J [ = P | dx = unl® < . @3
RN

This together with Proposition 3.3 implies that, for any ¢ € C°(R"), we have

lim J [m%  F(un) |fun) dx = j [ * Fuo) | fluop dx.

|x[N=#
RN RY
Inspired by the arguments in [53], for any ¢ € C{°(R"), we have

lim

n—oo

j j |un () = un NS (n () = un ()(@(X) - () dx dy

X — y|2N
s Ix =yl

— u(y)|N/s-2 _ _

_ J J [uC0 = uWIT (w0 ~ uYNEX) = 90D 4, g,

Ix = y|?N
RN RN

and

tim [ Vel ung dx = [ Vo> Pug dx,

RN RN

which implies that

(Ih(ue), @) = nlLIgo(Jg(un), @) forall g e CP(RY).
By the characterization of u, and Fatou’s lemma, we have

Ce < Je(ug) = Je(ue) - %(jé(ué‘): Ue)
S _(1
S I I F(ue W) [()fue 00 ue(x) = (3)F(ue(x))] dxdy

[x — y|N-#
RN RN
s _(L
Sh’mg}fj' j FlunOM)lx (unliXi);tlr;éﬁ (7)F(un(x))] dxdy

IRN IRN
L. S
< hrgg.}f[f]g(un) - N(jé(un): un)]

< Ce.

Together with J/,(u) = 0, we have J;(u¢) = c. Then, by (F3), we have

1
Ce =Je(uUue) - ﬁ(jg(ub‘): Ue)

< (3 = g e+ 5 [ [y = Fouo)|(uoe = (e axay
RN
<timinf( (7 = g Nelt”* + o2 [ [ g« P | myn — Fun) axay)

IRN
. 1
< hr{rlg.}f(ﬂg(un) - ﬁ(j;(un): un))
< Ce.

This implies that

Lim [luplle = luelle.
n—.oo
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So, up, — ug > 01in E¢, showing that J, verifies the (PS)., condition. There it is only needed to show that u, # 0
for small € > 0. Next, arguing by contradiction, assume that u, = 0. By the arguments explored in the proof of
Lemma 3.1, we can deduce that there exists § > 0 and a sequence {y,} ¢ Z such that

Tim J lunl¥ dx > 6. 4.4)
Bi(yn)
Defining it,(x) = un(x + yn), we have
J ltnl? dx > 6.
B1(0)
It is easy to see that {1, — @it # 0in E,, ii, — @ in Lfoc(lRN), q € [N/s, +00), it, — it a.e. on RY. By using the fact
that it, > 0 for all n € N, there exist { > 0 and a subset @ ¢ RY with a positive measure such that @t(x) > ¢ for
all x € Q.
Let {ty} be the sequence such that {t,u,} ¢ Ny, . Hence,

v, (tnltn) = v, and  (Jy,_(talin), tally) = 0. 4.5)

If t;, — +oo asn — +oo, by (4.5) and for n large enough, we have
0= 6,"(@}_(tnttn), taltn)
= 6"y (tniln), taitn)

Un(x) -0 Nis N - F(thu - -

< J J |Ttn (x) nz(]%;” dxdy + J’ Voo|un|N/s dx_tnN/sjj (tn ngi)f(tnun(x))tnun(x) dx dy.
e XY s 25 =yl

By (F5), we know that

timint 6 [ [ 2O 1, 0) a2 0) dxdy = 0.
—¥0o 5 a =yt

Together with the boundedness of ||it,||¢, We get a contradiction, which implies that {t,} is bounded. Without
loss of generality, we may assume that 0 < ¢, < Ty. Given ¢ > 0, by condition (V), there exists R = R(¢) > 0 such
that

V(ex) = Voo — ¢ forany x € RV \ Bz(0). (4.6)

Then, by the arbitrariness of ¢, we have
Ce + 0n(1) = Je(up)
s — sth/s
= Je(thun) + T(j:;(un), Un)

= Je(thun) + on(1)

N/s
t
= 3y, (tattn) + 21 j[st) Vot lVS dx + 0n(1)
R
N/s stN/s
>cy, + j [V(eX) = Vool |tn ™S dx + # j [V(eX) = Voo l|tn™S dx + 0,(1)
Br(0) RN\Bg(0)
N/S N/s
S(Veo = Vo)T sT
e, -~ j lun |V dx = L sup [Veo — V(eX)]lunlly); + 0n(1)
B4 (0) RN\Bg(0)
N/s sTN/s N/
S
>Ce+ ]‘;’;’ I [Veo — V(eX)] oo N® dx — # sup [Veo — V(eX)Illunlly)s + 0n(1)
.~ R¥\Bg (0)
N/s
>+ 2‘;‘[ J[V00 — V(EX)]|ueo NS dx + 0,(1)
R
> CS)

which is a contradiction due to u, = 0. Thus, we have completed the proof. O
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5 Concentration of positive solutions

In this section, we are going to show the concentration behavior of positive ground state solutions.

Lemma 5.1. Let €, — 0 and let {u,} be the sequence of solutions obtained in Lemma 4.2. Then there exists
a sequence {y,} c R such that v, = up(x + yn) has a convergent subsequence in E. Moreover, up to a subsequence,
Yn >y €eM.

Proof. Let {un} be the sequence of solutions obtained in Lemma 4.2. It is easy to see that c;, = J¢, (un) — cvy,,
{un} is bounded in Evy,, and

N-s

0 < cy, = limsupc, <i.[m 5_
"o N 2Nap

Following the arguments explored in the proof of Theorem 3.1, there exist r, § > 0 and y,, € R such that

lim inf j lun]* dx = 6.
n—.oo
Br(j')")

Setting v, (X) = un(x + yn), up to a subsequence if necessary, we may assume v, — v # 0in Ey,. Let ¢, > 0 such
that v, = tyvn € Ny,. Then

cv, < dvy(Vn) = dv, (taun) < Jg, (tnun) < Je, (Un) — Cyy,

which implies that Jy,(V,) — cy, as n — oo. Then the sequence {V,} is a minimizing sequence, and, by the
Ekeland variational principle [20], we may also assume that it is a bounded (PS) sequence at cy,. Thus, for some
subsequence, v, — ¥ weakly in Ey, with ¥ # 0 and 3;,0(17) = 0. Applying the same arguments as the ones used
in the proof of Lemma 3.1, we have that v, — ¥ in Ey,. Since {t,} is bounded, we can assume that, for some
subsequence, t; — T > 0, and so v, — vin Ey,, where v = v/T.

Next, we will show that {y,} = {e,V,} has a subsequence satisfying y, — y € M. We point out that {y,}
is bounded in RY. Indeed, if not, there would exist a subsequence, which we still denote by {y,}, such that
[yn|l — oo. Since ¥, — Vin Ey, and Vy < Vo, we have

S . N 1
v, =201 - 5 | (

- : « F(\"}))F(f}) dx
IRN

1
|x|N-#

s ..N/s 1 1 - -
< N"v""m -3 J(|X|N—u * F(v))F(v) dx
]RN

sliminf[%( j I On0) = 0OV I Vienx +yn)os dx) ! J( ! « F(7) )F(7) dx|

neo - y[2v 2 ) Vx|
RN RV RN RY

N/s N/s
T Sty (Uun(x) — un(y)) N/s
_11rmggf[T( J J =y dxdy + J VienX)uy dx)

RN RN RN
1 1
- J(W  Fltnt) ) F(tattn) dx |

]RN

= lirm)g;f Je, (tnltn)

< liminf J¢, (un)
n—.oo
= Cyy,

and hence the absurd shows that {y,} stays bounded and, up to a subsequence, y, — y € RY. Then necessarily
y € M; otherwise, we would again get a contradiction as above. O

Let & — 0asn — oo, and let u, be the ground state solution of

(=B)ysu + ViEn0)ul*2u = | « Fw]ftw) inRY,

|x|N-u
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From Lemma 4.1 we know that
lim Jg, (un) — cy,.
n—.oo

Then there exists a subsequence y, € R such that v, = u,(x + y,) > 0is a solution of

s N_ 1 .
(~0)3y5u + Va0l s 2 = P « F)|fw) inRY, 5.1

where Vy(x) = V(enX + €,Yn). Moreover, {v,} has a convergent subsequence in Ey, and y, — y € M, up to a
subsequence, where y, = £,y,. Hence, there exists h ¢ WP (RM) such that

[va(X)| < h(x) a.e.inRY foralln € N.

Lemma 5.2. Assume that (V), (F1), (F3)—(F6) and
f(t)

S 5.2
50 |t|N/s-1 (5.2
hold. Then there exists C > 0 such that ||[vy L~ ®v) < C for all n € N. Furthermore,

hm vp(x) =0 uniformlyinn € N.

XHOO

Proof. Using similar arguments to the ones explored by [4], we can obtain that

||x|T-# *F(h)| <C.

Since F is a nondecreasing function, we know that

<[+ O] = kg 0.
x| x|

ForanyR > 0,0 < r < R/2,letn € C®(RN),0 < n < 1, with n(x) = 1when |x| > R, n(x) = 0when x| <R -,
and |Vn| < 2/r. Following the technique explored in [38], for L > 0, we set vy , = min{vy, L} and

yn) = ypn) = PV E Dy,

with B > 1 to be determined later. Set
It]P S
A(t) = 7 and T(¢t) = J(y (7))» d7.
0

Thus we have the conclusion as in [9]:
A(a- b)(y(a) — y(b)) = |T(a) - T(b)|P foranya,b € R,
from which we have

IF(vn(X))—F(vn(y))|p<Ivn(X) VaW)IP2 (v (x) - Vn()’))((anLﬁl)Vn)(X) (n”vLﬁl)vn)(y)). (5.3)

p(p-1

Using y(va) = nPvy v,, as a test function in (5.1), in view of (5.3) and the Cauchy inequality, we have

T, + j VoGNP P V28D dx

RN
— -2 —
< | [ OO O e - e v o)] dxy
RN RV

J Vn(X)rlvanl”vL D ax

F n n p p(ﬁ l) n
j j W NfWr())NPv; dxdy

|x — y|N-#
RN

<C Jf(vn(x))n”vp Dy dx.
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Since T'(v,) > %nvnvf’_nl and the embedding

WSNS@RN) - LORN), 6>

>

|z

is continuous, there exists a suitable constant S, > 0 such that

N, N, N,
Ty 5y 2 S Tl 2 ps Invavh 15",

B

where the norm || - ||y, /2 is defined by

1
. .
lubvere = (1 +1utf, )P and Tubvegzp = ([ (Volu?y/zax)”.

RN

25

Recall that for each & > 0, by the hypothesis (5.2), there exist € and C; > 0 such that, for any u € WS/$(RY),

fwu < elu™s + CqelulNSH(Bao, w)
holds. Then we obtain

1 1
5o S Invnvl 15+ v [ Vabon? P ax
]RN
<e J |I1vnvL 0 LINTs qx 4 Cqe J r)plvn|N/va . D3t(Bag, va) dx.

RN RN

Choose 0 < € < Vj/2. Then we have

-1

pP

RN\Bp_(0) RN
p-1

1
S ||l7vnv’g 1||2]/s < Cq,g( J |vnvlz,_nl|% dx) t < J fH(tﬁag,vn)dx> )

Take WL n = NvpVvp . By using the Trudinger-Moser inequality in WSN/s(RN) with t > 1 and ¢ near 1 and

1 > < such that 2 i1 < 0, there exists a constant D > 0 such that

p B-1,p
Iwe.nll < DBPIVAVE o lipeye-1yxizr-r) -

Note that

N
50
|VL’"|S§(|XIZR) = ( J- |VL,n|9B)
RV\Bg(0)

N
< ( I InvnvL 0 L6 dx)

RN

= wrallg
B-1,p
< DBPIVRYL lpese-1y)ixizr-n)
pp
< DBPIVallppesce-yipuizr-n-
By applying Fatou’s lemma, we deduce
sty S DIVl gty

Now, we set = > 1. Then we have

o(-1)
pt
Y
IVnllggzaxi=ry < DPF* BP Vnllpp2ese-1)(xi=r-r)
11
= Dv#* B# [vnllop(ix=r-r)

lLdlypzy 1,2
<D PR B vl pe/e-1))(x|=R-2r) -
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Following the arguments explored by [26], we set r = 2-™*DR, Iterating the above process, we can infer that

S oS . L
IVllapmxi=r) < D77 v¥ B 9 [vnllppesce-1))(xi=R/2)» ~ Where m is a positive integer. (5.4)

Taking the limit in (5.4) as m — oo, we get that, for all n,

IVnllcoqxizr) < Clvallppe/-1))x12R/2)5 (5.5)
where .
o 1 yoeo |
C= Dz":1 Pp /32’:1 P < +00.
Set y(vp) = vnvff*l). Repeating the above process and after a minor modification, we have
Vallo < C,
where _
P
C=D7" v B ¥ vl ppe/(e-1)) < +00.

Then, using the fact that v, — vin Ey, on the right-hand side of (5.5), for any n € IN and for each 6 > 0 fixed,
there exists R > 0 such that vy lleo(xi=r) < 8. Thus,

lim vp(x) =0 uniformlyinn e N,
[x]—00

and the proofis complete. O

5.1 Proof of Theorem 1.3 completed

Let b, denote a maximum point of v, and recall that

§< J [t NS dx = J a5 dx < wyrNva XS < C.
Br(5n) B (0)

Then the sequence {v,} is a bounded sequence in R". Thus, there exists R > 0 such that {b,} ¢ Br(0), and the
global maximum of u,, is attained at z, = b, +y, and

EnZn = Enby + EnYn = €nbn + yn.

From the boundedness of {b,} we have
Hm, 20 =,
which together with (V) yields
nli_)ng() V(ezy) = Vy.

If u, is a positive solution of (2.1), the function w,(x) = ug(g) is a positive solution of (1.1). Thus, the maxima
points . and z, of w, and u,, respectively, satisfy the equality . = €z, and in turn

lim V(ne) = Vp.
-0

The proofis now complete.
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