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Abstract: This paper is concerned with the following fractional (N/s)-Laplacian Choquard equation:

εN(−Δ)sN/su + V(x)|u|
N
s −2u = εμ( 1

|x|N−μ
∗ F(u))f(u), x ∈ ℝN ,

where (−Δ)sN/s denotes the (N/s)-Laplacian operator, 0 < μ < N , and V and f are continuous real functions satis-
fying some mild assumptions. Applying the weak growth conditions on the exponential critical nonlinearity f
and without using the strictly monotone condition, we use some refined analysis and develop the arguments
in the existing results to establish the existence of the ground state solution of the fractional (N/s)-Laplacian
Choquard equation. Moreover, we also study the concentration phenomenon of the ground state solutions. As
far asweknow, our results seem tobenewconcerning the fractional (N/s)-Laplacian equationwith the Choquard
reaction.
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1 Introduction and main results

In this paper, we are concerned with the following nonlinear fractional (N/s)-Laplacian equation with the non-
local Choquard reaction:

εN(−Δ)sN/su + V(x)|u|
N
s −2u = εμ( 1

|x|N−μ
∗ F(u))f(u) in ℝN , (1.1)

where ε is a small positive parameter, 0 < s < 1, 0 < μ < N = ps with p ≥ 2, ∗ represents the convolution
between two functions. Here (−Δ)sN/s denotes the fractional p-Laplacian operator, which, up to normalization
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factors, can be defined by

(−Δ)sN/su(x) = C(N, s) limε↘0 ∫
ℝN\Bε(x)

|u(x) − u(y)|N/s−2(u(x) − u(y))
|x − y|2N

dy

for x ∈ ℝN , where Bε(x) := {y ∈ ℝN : |x − y| < ε}. Throughout this paper, we omit the normalizing constant to
simplify the expressions. Further, V is the absorption potential, and the nonlinear function F is the primitive
function of f . In what follows, we introduce some relevant results about the fractional Sobolev space. For each
s ∈ (0, 1) and p > 2, we consider the Sobolev space

W s,p(ℝN) = {u ∈ Lp(ℝN) : [u]s,p < +∞}.

Here, [u]W s,p(ℝN ) is the Gagliardo seminorm

[u]W s,p(ℝN ) := ( ∫
ℝN

∫
ℝN

|u(x) − u(y)|p

|x − y|N+sp
dx dy)

1
p
.

It is well known that the space (W s,p(ℝN), ‖ ⋅ ‖W s,p(ℝN )), where

‖ ⋅ ‖pW s,p(ℝN ) = [ ⋅ ]
p
s,p + ‖ ⋅ ‖

p
p and ‖u‖p = ( ∫

ℝN

|u|p dx)
1
p
,

is a uniformly convex Banach space, particularly reflexive, and separable. We also recall that C∞0 (ℝN) is dense
inW s,p(ℝN ); see [3, Theorem 7.38].

There are many applications for fractional p-Laplacian and nonlocal operators of elliptic type, including
optimization, finance, phase transitions, stratified materials, anomalous diffusion, crystal dislocation, soft thin
films, semipermeable membranes, flame propagation, conservation laws, and water waves; for more infor-
mation, see [21, 23, 28] and the references therein. Several academics, like Pucci, Xiang and Zhang [43], Xiang,
Zhang and Rădulescu [49, 50], among others, concentrated on the investigation of such fractional p-Laplacian
problems. For a detailed analysis of nonlocal fractional problems, we also refer to the work of Molica Bisci,
Rădulescu and Servadei [34].

The Choquard reaction
(

1
|x|N−μ
∗ F(u))f(u),

which appears in many intriguing physical conditions in quantum theory and is important in explicating the
finite-range many-body interactions, is another intriguing phenomenon in our work. Pekar [42] described the
quantum mechanics of a polaron at rest by proposing the nonlocal Choquard problem for the first time. In
an attempt to approximate the Hartree–Fock theory of one-component plasma, Lieb [27] noted that Choquard
sketched out the phenomena of an electron trapped in its hole using such an equation. Studying elliptic problems
with the nonlocal Choquard reaction is becoming more and more popular due to the nonlocal characteristic.
It is important to note that the majority of study on the Choquard equation is based on the crucial inequality
listed below, which will also be crucial throughout this paper.

Lemma 1.1 (Hardy–Littlewood–Sobolev inequality). Let 1 < r, t < ∞ and 0 < μ < N with

1
r +

1
t +

N − μ
N = 2.

If f ∈ Lr(ℝN) and h ∈ Lt(ℝN), then there exists a sharp constant C = C(r, t, μ) > 0, independent of f and h, such
that

∫
ℝN

∫
ℝN

f(x)h(y)
|x − y|N−μ

dx dy ≤ C‖f‖Lr(ℝN )‖h‖Lt(ℝN ) .

Under the help of the above Hardy–Littlewood–Sobolev inequality and the Sobolev embedding

W s,p(ℝN) 󳨅→ Lt(ℝN) for all Ns ≤ t ≤ (
N
s )
∗
=

Np
N − ps ,
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we know that the power range of k is

(N + μ)p
2N ≤ k ≤ p(N + μ)

2(N − ps) ,

when dealing with the equation (1.1) with pure power nonlinearity f(u) = |u|k variationally in the case that
sp < N . Numerous studies have been conducted in this field using variation methods; for example, [1, 29, 30,
35–37, 47], among others, for the case where s = 1 and sp < N , and [16, 33], among others, for the case where
0 < s < 1 and sp < N .

The existence and asymptotic behavior of the solutions to problem (1.1) as ε → 0, also referred to as the
semiclassical problem, are of significant importance in studies of standing waves to the nonlinear Choquard
equation. It provides important physical insights and is used to explain how quantum physics and classical
mechanics interact. The existence and concentration of ground state solutions under the scenario sp < N
are extensively discussed in the literature with regard to the relative progress of the fractional semiclassical
Choquard problem. For further information, see [8, 22, 45, 52] and any related references. For the cases of s = 1
and sp < N , we additionally cite [7, 14] and the references therein.

We study the existence and concentration of the ground state solutions to problem (1.1) for the situation
sp = N , in contrast to the studies listed. The Sobolev embedding, as was previously mentioned, is continuous
but lacks a sense of critical growth. Now, we remind the readers of the critical growth in the space W s,p(ℝN),
where sp = N is specified by the Trudinger–Moser inequality. In the Sobolev–Slobodeckij spaces, there are a
number of results on the Trudinger–Moser inequality [2, 10, 31, 39–41]. Based on the finding [41] and using
a slightly altered version of the Trudinger–Moser sequence, Parini and Ruf [40] established the local fractional
Trudinger–Moser inequality for the N-dimensional fractional p-Laplacian equation. Following that, Zhang [53]
generalized the local fractional Trudinger–Moser inequality [40] to the entire space.

Lemma 1.2. Let s ∈ (0, 1) and sp = N. Then for every 0 ≤ α < α∗, the inequality

sup
u∈W s,p(ℝN ), ‖u‖Ws,p (ℝN )≤1 ∫ℝN ΦN,s(α|u|

N
N−s ) dx < +∞ (1.2)

holds, where

ΦN,s(t) = et −
jp−2
∑
i=0

tj

j! and jp := min{j ∈ ℕ : j ≥ p}.

Moreover, for α ≥ α∗s,N ,
sup

u∈W s,p(ℝN ), ‖u‖Ws,p (ℝN )≤1 ∫ℝN ΦN,s(α|u|
N
N−s ) dx = +∞.

As explored by Zhang [53, Remark 1.2], α∗s,N is just an upper bound of α∗; they did not give the precise value
of α∗. Motivated by the inequality explored in Lemma 1.2, it is natural to say that
(F1) a continuous nonlinearity f has critical exponential growth if there exists α0 > 0 such that

lim
t→+∞

f(t) exp(−αt
N
N−s ) = 0 for all α > α0

and
lim
t→+∞

f(t) exp(−αt
N
N−s ) = +∞ for all α < α0 .

Several authors addressed the existence, multiplicity, and concentration of semiclassical states for the local
Schrödinger equations with critical exponential growth based on the Trudinger–Moser inequalities. We refer
to [6, 17–19, 54] and their references for the most significant developments in this field. Only a few works in
this field deal with semiclassical states in the context of the semiclassical problem with nonlocal reactions. The
presence and concentration of semiclassical ground state solutions of the equation

−ε2Δu + V(x)u = εα−2[ 1
|x|α ∗ F(u)]f(u) in ℝ2 , (1.3)
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were established by Alves, Cassani, Tarsi, and Yang [4] by studying the existence of a nontrivial solution for the
critical nonlocal equation with periodic potential. On V , they made the following assumptions:
(V1) V(x) ≥ V0 in ℝ2 for some V0 > 0.
(V2) 0 < infx∈ℝ2 V(x) = V0 < V∞ = lim inf |x|→∞ V(x) < ∞.
Condition (V2) is introduced by Rabinowitz [44]. They also assumed that the nonlinearity satisfies the following
assertions:
(f1) f(s) = 0 for all s ≤ 0 and 0 ≤ f(s) ≤ Ce4πs2 , s ≥ 0.
(f2) There exist s0 > 0, M0 > 0 and q ∈ (0, 1] such that 0 < sqF(s) ≤ M0f(s) for all |s| ≥ s0.
(f3) There exist p > 2−α

2 and Cp > 0 such that f(s) ∼ Cpsp , as s → 0.
(f4) There exists K > 1 such that f(s)s > KF(s) for all s > 0, where F(t) = ∫t0 f(s) ds.
(f5) It holds

lim
s→+∞

sf(s)F(s)
e8πs2

≥ β

with

β > inf
ρ>0

e
4−μ
4 V0ρ2

16π2ρ4−μ
(4 − μ)2
(2 − μ)(3 − μ) .

(f6) s → f(s) is strictly increasing on (0, +∞).
Applying the mountain pass lemma and checking that the mountain pass level shall be less than the critical

level provided that the potential V is periodic, they could obtain the existence of a nontrivial solution for the
periodic Choquard problem. To be specific, they need to give the upper bound of the mountain pass level, that
is, to show that for some n ∈ ℕ,

g(t) := 12 t
2(1 + δn) −

1
2 ∫
Bρ

[Iμ ∗ F(twn)]F(twn) dx <
2 + μ
8 , t ≥ 0, (1.4)

where Bρ denotes the open ball centered at the origin with radius ρ > 0 in ℝ2, wn is the Moser-type function,
and

δn = sup
|x|≤ρ

V(x)( 1
4 log n −

1
4n2 log n

−
1
2n2
) > 0.

Such an estimation contributes to excluding the vanishing case of the Cerami sequence {un}. Another heuristic
proof in their work is that they considered a sequence of measures that has uniformly bounded total variation
and by using the Radon–Nikodym theorem to show that if un ⇀ u in H1(ℝ2), then

∫
ℝ2

[
1
|x|2−μ
∗ F(un)]f(un)φ dx → ∫

ℝ2

[
1
|x|2−μ
∗ F(u)]f(u)φ dx for all φ ∈ C∞0 (ℝ

2).

Here, we refer to [15] as an example of a work that used the proof of this property of the Choquard reaction
to study the nonlocal Choquard problem in the exponential critical condition. Yang [51] carried out additional
research on the nonlocal Choquard-type equation

−ε2Δu + V(x)u = εα−2[ 1
|x|α ∗ (P(x)F(u))]P(x)f(u) in ℝ2 . (1.5)

Also, they found the existence and concentration of solutions to equation (1.5), and it is clear that equation (1.5)
is more challenging to solve than equation (1.3). We refer the readers to [51] for further information.

Let us also have a quick look at the relative progress of semiclassical problems with the fractional
p-Laplacian. For the case s = 1

2 and N = 1, Alves, do Ó and Miyagaki [5] studied the concentration phenomenon
of solutions to the problem

ε(−Δ)1/2u + V(x)u = f(u) in ℝ.

They gave a hypothesis on the growth of f at the infinity as follows:
(f7) There exist a constant p > 2 and a suitable constant Cp > 0 such that

f(t) ≥ Cp tp−1 for all t > 0.
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They made use of this supposition to derive directly that the critical level is below the mountain pass
level of the associated energy functional. In the general case, we notice that there is only a paper dealing with
the semiclassical problem with fractional (N/s)-Laplacian. Thin [46] is concerned with the following fractional
(N/s)-Laplacian equation:

εN(−Δ)sN/su + V(x)|u|
N
s −2u = f(u) in ℝN . (1.6)

By Nehari manifold, variational method, concentration compactness principle and Ljusternik–Schnirelman
theory, they obtained the existence, multiplicity and concentration of solutions to equation (1.6) under the
following assumptions:
(F1) The nonlinearity f ∈ C1(ℝ) satisfies f(t) = 0 for all t ∈ (−∞, 0], f(t) > 0 for all t > 0, and there exist con-

stants α0 ∈ (0, α∗), b1 , b2 > 0 such that for any t ∈ ℝ,

|f 󸀠(t)| ≤ b1|t|p−2 + b2|t|p−2ΦN,s(α0|t|
N
N−s ),

where

ΦN,s(y) = ey −
jp−2
∑
i=0

yj

j! , jp = min{j ∈ N : j ≥ p}

and α∗ is given in Lemma 1.2.
(F2) There exists μ > N/s such that f(t)t − μF(t) ≥ 0 for all t ∈ ℝ, where F(t) = ∫τ0 f(τ) dτ.
(F3) It holds

lim
t→0+ f 󸀠(t)

tN/s−2
= 0.

(F4) There exists γ1 > 0 large enough such that F(t) ≥ γ1|t|μ for all t ≥ 0.
(F5) f(t)/tp−1 is a strictly increasing function of t ≥ 0.

It is worthmentioning that they also used the kind of condition (F4). Both conditions like (f5), (f7) and condi-
tion like (F4) define the behaviors of the nonlinearity at infinity, but the later two cases also establish the growth
condition at the origin as a global assumption. It is important to note that these kinds of conditionsmake estima-
tion easier because Cp and γ1 can have as large values as possible. This uncertainty cannot actually be verified,
which has some influence on potential follow-up uses. Hypothesis (f5) has the advantage of allowing the use
of classical Moser-type functions as test functions to control the energy level. As a result, it is natural to expect
that (f5) could be weakened appropriately for the search for ground state solutions to (1.1).

Inspired by the preceding works, we will establish the existence and concentration of the ground state
solutions to equation (1.1), while also confirming the preceding expectation. Before we present this result, we
make the following assumption about V :
(V) V ∈ C(ℝN ,ℝ) and it satisfies

1 < inf
x∈ℝN

V(x) = V0 < V∞ = lim inf
|x|→∞

V(x) < ∞.

The lower bound is intended to make it easier for readers to see the estimation process between different
equations by removing some of the influence caused by the switch of the potential term and linear potential
with fixed constants. In addition to (V) and (F1), we present the following hypotheses:
(F2) It holds

f(t) = o(t
N+μ
2s −1) as t → 0,

f(t) = 0 for all t ∈ (−∞, 0], and f(t) > 0 for all t > 0.
(F3) There exists μ̄ > (N − s)/s such that f(t)t ≥ μ̄F(t) ≥ 0 for all t > 0.
(F4) There exist M0 and t0 > 0 such that, for any t ≥ t0, we have F(t) ≤ M0|f(t)|.
(F5) t 󳨃→ f(t) is nondecreasing on (0, +∞).
(F6) It holds

lim inf
t→∞

f(t)
exp(α0tN/(N−s))

= κ,
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and κ satisfies

{1 + AmρNδn +
(N − s) ln[C1Λ(κ − ε)−2(1 + ε)(1 + mρNAδn)](1 + mρNAδn)

s(N + μ) ln n

−
C3(1 + ε)α∗s,N(N − s)

2α0Ns ln n
[

2α0N
(N + μ)α∗s,N

]
N−s
s }

< (
αN,s
α∗s,N
)
N−s
s ,

where ε > 0 is small enough and the definitions of A, Λ, ρ, δn , αN,s will be introduced in the subsequent
Section 3.

Our result reads as follows.

Theorem 1.3. Assume that V and f satisfy (V) and (F1)–(F6). Then, for any ε > 0 small, problem (1.1) has at least
one positive ground state solution. Moreover, if we replace (F2) with
(F2’) f(t) = o(tN/s−1) as t → 0,
and let uε denote one of these positive solutions with ηε ∈ ℝ being its global maximum, then we have

lim
ε→0

V(ηε) = V0 .

Let us now sketch the strategies and highlights that will be used to prove Theorem 1.3. Our arguments are based
on variational methods and some refined analysis, and we will make use of the Nehari method to deal with the
problem. In particular, by establishing the ground state solutions of the autonomous problem (3.1) introduced
in Section 3, and by analyzing the energy level of the energy functionals of the autonomous problem (3.1) and
the original problem (1.1), we can further establish the existence result of Theorem 1.3. We notice that the strict
monotonicity conditions (f6) and (F5) play an important role in confirming the uniqueness of the projection
from the space H1(ℝN) orW s,p(ℝN) to the corresponding Nehari manifold, respectively. They both require the
uniqueness of the projection when analyzing the asymptotic behavior of the ground state energy level of the
singular perturbation equation (1.1) and excluding the vanishing case of a Palais–Smale sequence. It is reason-
able to expect that the strict monotonicity condition could be relaxed in order to search for the ground state
solutions of the singular perturbation equation (1.1), and wewill answer affirmatively under this condition (F5).

It is well known that we meet several difficulties due to the exponential critical growth of nonlinearity.
First, as previously stated, it is difficult to demonstrate that the Fréchet derivative of the Choquard term is
weakly sequentially continuous. Unlike the heuristic proof discussed in [4, 15], we will develop some arguments
to directly verify this property. Another challenge is the lack of compactness, and we must ensure that the
energy functionalmeets certain compactness requirements at someminimax level. This type of estimate ismore
delicate in the fractional p-Laplacian equation (1.1) with the Choquard term, because we proposed a weaker
hypothesis (F6) and the appearance of the fractional p-Laplacian. Based on the arguments presented in [11–13],
we will further develop it into our current workspace, which is not trivial. As far as we know, our results in the
fields of the fractional p-Laplacian equation are new.

The structure of this paper is the following. In Section 2, we introduce the variational setting of problem (1.1)
and present some preliminary results. Section 3 is devoted to demonstrating the existence of a positive ground
state solution of the autonomous equationwhile also providing proofs of refined delicate energy estimation and
the convergence of the Fréchet derivative of the Choquard term. Sections 4 and 5 will discuss the existence of
ground state solutions to the singular perturbation equation (1.1), as well as the concentration phenomenon of
the ground state solutions.

2 Some preliminaries and mountain pass geometry

First, we introduce some notations that will clarify what follows.
∙ C, c, Ci , ci (i = 1, 2, . . . ) denote positive constants which may vary from line to line.
∙ For any exponent p > 1, p󸀠 denotes the conjugate of p and is given as p󸀠 = p/(p − 1).
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∙ Br(x) denotes the ball of radius r centered at x ∈ ℝN .
∙ The arrows⇀ and→ denote the weak convergence and strong convergence, respectively.
∙ Ls(ℝN) (1 ≤ s < +∞) denotes the Lebesgue space with the norm

‖u‖s = ( ∫
ℝN

|u|s dx)
1
s
.

∙ To make the notation concise, we set, for α > 0 and t ∈ ℝ,

H(α, t) = exp(α|t|
N
N−s ) − Skp−2(α, t) = +∞∑

k=kp−1

αk

k! |t|
N
N−s k ,

where

Skp−2(α, t) =
kp−2
∑
k=0

αk

k! |t|
N
N−s k

and kp = min{k ∈ ℕ : k ≥ p}.
Observe that, making the change of variable x → εx, problem (1.1) is equivalent to the following problem:

(−Δ)sN/su + V(εx)|u|
N
s −2u = ( 1

|x|N−μ
∗ F(u))f(u) in ℝN . (2.1)

Evidently, if u is a solution of equation (2.1), then v(x) := u(x/ε) is a solution of equation (1.1). To study the
original equation (1.1), we only need to look at the equivalent equation (2.1).

For any fixed ε > 0, we define the working space

Eε = {u ∈ W s,p(ℝN) : ∫
ℝN

V(εx)|u|p dx < ∞} (2.2)

endowed with the norm
‖u‖ε = ([u]

p
s,p + ‖u‖

p
Vε ,p)

1
p ,

where

‖u‖Vε ,p = ( ∫
ℝN

V(εx)|u|p dx)
1
p
.

From condition (V), we can see that ‖ ⋅ ‖ε and the norm ofW s,p(ℝN) are equivalent.
To deal with the nonlocal-type problem (2.1), besides the classical Hardy–Littlewood–Sobolev inequality

(see Lemma 1.1) which will be frequently used throughout this paper, we also use the following inequality.

Lemma 2.1 (Cauchy–Schwarz-type inequality [32, Section 5]). For f , h ∈ L1loc(ℝ
N), there holds

∫
ℝN

(
1
|x|N−μ
∗ |f|)|h| dx ≤ [ ∫

ℝN

(
1
|x|N−μ
∗ |f|)|f| dx ∫

ℝN

(
1
|x|N−μ
∗ |h|)|h| dx]

1
2
. (2.3)

We define the energy functional associated with problem (2.1):

Iε(u) =
s
N ‖u‖

N/s
ε −

1
2 ∫
ℝN

∫
ℝN

F(u(y))F(u(x))
|x − y|N−μ

dx dy. (2.4)

Using Lemma 1.1 and some standard arguments,we can easily check that Iε iswell definedon Eε andbelongs
to C1 with its derivative given by

⟨I󸀠ε(u), v⟩ = ∫
ℝN

∫
ℝN

|u(x) − u(y)|N/s−2(u(x) − u(y))(v(x) − v(y))
|x − y|2N

dx dy + ∫
ℝN

V(εx)|u|N/s−2uv dx

− ∫
ℝN

∫
ℝN

F(u(y))f(u(x))v(x)
|x − y|N−μ

dx dy for all u, v ∈ Eε .
(2.5)
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Hence, it is obvious that the solutions of equation (2.1) correspond to critical points of Iε . To obtain the positive
ground state solutions of equation (2.1), we need to define the Nehari manifold and the ground state energy
related to Iε:

Nε := {u ∈ Eε \ {0} : ⟨I󸀠ε(u), u⟩ = 0} and cε := inf
Nε

Iε . (2.6)

Obviously, Nε contains all nontrivial critical points of Iε , and if cε is achieved by uε ∈ Nε , then uε is called
a ground state solution of equation (2.1).

Next, we verify some properties for theNeharimanifoldNε . Before that, we give several preliminary results
which will be used in this part.

Lemma 2.2. If u ∈ W s,p(ℝN), then for any α > 0 it holds

∫
ℝN

H(α, u) dx < +∞.

For the detailed proof of Lemma 2.2, we refer to [53, Corollary 2.4] and [40, Proposition 3.2]. Following that, we
give a property ofH(α, t), which can be seen as the corollary of [24, Lemma A.2].

Lemma 2.3. It holds
H(α, t)b ≤ H(bα, t)

for all α > 0, t > 0 and b ≥ 1, where

H(α, t) = exp(α|t|
N
N−s ) − Skp−2(α, t), Skp−2(α, t) =

kp−2
∑
k=0

αk

k! |t|
N
N−s k , kp = min{k ∈ ℕ : k ≥ p}.

Lemma 2.4. Assume that (F1)–(F3) hold. Then there exists λ > 0, independent of ε, such that

‖u‖ε ≥ λ for all u ∈ Nε .

Proof. For any u ∈ Nε , we have

‖u‖N/sε = ∫
ℝN

∫
ℝN

F(u(y))f(u(x))u(x)
|x − y|N−μ

dx dy.

Recall that, by (F1) and (F2), for each α > α0 and close to α0 and q > N/s, there exist constants δ > 0 and Cq,δ > 0
such that

f(t)t ≤ δ|t|
N+μ
2s + Cq,δ|t|qH(α, t)

for all t > 0. This together with (F3) implies that, for all t > 0, one has

F(t) ≤ 1μ̄ f(t)t ≤
δ
μ̄ |t|

N+μ
2s +

Cq,δ
μ̄ |t|

qH(α, t).

Then by Lemmas 2.2 and 2.3, it is easy to verify

∫
ℝN

∫
ℝN

F(u(y))f(u(x))u(x)
|x − y|N−μ

dx dy

≤ C0‖F(u)‖ 2NN+μ ‖f(u)u‖ 2NN+μ
≤ C󸀠0[(

δ
μ̄ )

2N
N+μ ∫
ℝN

|u|N/s dx + (
Cq,δ
μ̄ )

2N
N+μ ∫
ℝN

|u|
2Nq
N+μH(α, u) 2NN+μ dx] N+μN

≤ C󸀠󸀠0 (
Cq,δ
μ̄ )

2
( ∫
ℝN

|u|
4Nq
N+μ dx) N+μ2N

( ∫
ℝN

H(
4Nα
N + μ , u) dx)

N+μ
2N
+ C󸀠󸀠0 (

δ
μ̄ )

2
‖u‖(N+μ)/sN/s

≤ C󸀠󸀠󸀠0 (‖u‖
(N+μ)/s
N/s + ‖u‖

2q
4Nq/(N+μ)).
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Considering that (N + μ)/s > p and 2q > p, we can see there exists λ > 0 such that ‖u‖ε ≥ λ. This completes the
proof.

The following result demonstrates that the energy functional Iε satisfies the geometric structure of themountain
pass theorem.

Lemma 2.5 (Mountain pass geometry). Assume that (F1)–(F3) are satisfied. Then the following conclusions hold:
(i) There exist τ > 0 and ρ > 0 such that Iε(u) ≥ τ, provided that ‖u‖ε = ρ.
(ii) There exists v ∈ Eε with ‖v‖ε > ρ such that Iε(v) < 0.

Proof. (i) By a standard argument as in the proof of Lemma 2.4, one can easily obtain the conclusion that there
exist τ > 0 and ρ > 0 such that Iε(u) ≥ τ, provided that ‖u‖ε = ρ.

(ii) For all u ∈ C∞0 (ℝN) with ‖u‖ε = 1, from (F6) and all t > 0, we obtain

Iε(tu) =
stN/s

N
‖u‖N/sε −

1
2 ∫
ℝN

∫
ℝN

F(tu(y))F(tu(x))
|x − y|N−μ

dx dy

≤
stN/s

N
‖u‖N/sε −

κ2

2 ∫
ℝN

∫
ℝN

eαtN/(N−s)u(y)N/(N−s) eαtN/(N−s)u(x)N/(N−s)
|x − y|N−μ

dx dy.

Since ‖u‖ε = 1, we can find a bounded Ω with a positive measure in ℝN such that |u(x)| ≥ ζ > 0 when x ∈ Ω.
Without loss of generality, we assume that 0 ∈ Ω. So, as Ω is bounded, there exists r ∈ ℝ such that Br(0) ∈ Ω. By
the fact that

∫
Br(0)

∫
Br(0)

1
|x − y|N−μ

dx dy ≥ CN,μrN+μ ,

where CN,μ is a positive constant, we have

Iε(tu) ≤
stN/s

N − κ
2CN,μrN+μeαt

N/(N−s)ζN/(N−s) eαtN/(N−s)ζN/(N−s) .
Since the tN/s has growth smaller than etN/(N−s) as t → +∞, we have Iε(tu) → −∞. Taking v = ρ1u, where
ρ1 > ρ > 0 large enough, we can see that conclusion (ii) holds.

According to Lemma 2.5, we can use a version of the mountain pass theorem without the Palais–Smale condi-
tion [48] to deduce the existence of a Palais–Smale sequence {un} at level ̃cε , namely

Iε(un) → ̃cε and I󸀠ε(un) → 0,

where ̃cε is the mountain pass level Iε defined by

̃cε = inf
l∈Γ

max
t∈(0,1)

Iε(l(t)),

and
Γ = {l ∈ C([0, 1], Eε) : l(0) = 0, Iε(l(1)) < 0}.

Lemma 2.6. Suppose that (F1)–(F3) and (F5) are satisfied. Then, for all u ∈ Nε , one has

Iε(u) ≥ max
t≥0

Iε(tu).

Proof. For any fixed u ∈ Eε and any t ≥ 0, we define ℑ(t) as follows:

ℑ(t) := −12 ∫
ℝN

∫
ℝN

F(u(x))F(u(y))
|x − y|N−μ

dx dy + 12 ∫
ℝN

∫
ℝN

F(tu(x))F(tu(y))
|x − y|N−μ

dx dy

+
s − stN/s

N ∫
ℝN

∫
ℝN

F(u(x))f(u(y))u(y)
|x − y|N−μ

dx dy.
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From (F3) and (F5), one has

ℑ󸀠(t) = ∫
ℝ2N

F(tu(x))f(tu(y))u(y)
|x − y|N−μ

dx dy − ∫
ℝN

∫
ℝN

F(u(x)))f(u(y))t(N−s)/su(y)
|x − y|N−μ

dx dy

= ∫
ℝ2N

t(N−s)/s[u(x)](N−s)/su(y)
|x − y|N−μ

[
F(tu(x))

t(N−s)/s[u(x)](N−s)/s
f(tu(y)) − F(u(x))

[u(x)](N−s)/s
f(u(y))] dx dy

{
≥ 0, t ≥ 1,
≤ 0, 0 < t < 1,

which implies that ℑ(t) ≥ ℑ(1) = 0 immediately. With the help of this, we can easily deduce that

Iε(u) − Iε(tu) =
s − stN/s

N
‖u‖ε −

1
2 ∫
ℝN

∫
ℝN

F(u(x))F(u(y))
|x − y|N−μ

dx dy + 12 ∫
ℝN

∫
ℝN

F(tu(x))F(tu(y))
|x − y|N−μ

dx dy

=
s − stN/s

N
⟨I󸀠ε(u), u⟩ −

1
2 ∫
ℝN

∫
ℝN

F(u(x))F(u(y))
|x − y|N−μ

dx dy + 12 ∫
ℝN

∫
ℝN

F(tu(x))F(tu(y))
|x − y|N−μ

dx dy

+
s − stN/s

N ∫
ℝN

∫
ℝN

F(u(y))f(u(x))u(x)
|x − y|N−μ

dx dy

≥
s − stN/s

N ⟨I󸀠ε(u), u⟩ + ℑ(t)

≥
s − stN/s

N ⟨I󸀠ε(u), u⟩ for all u ∈ Eε , t ≥ 0.

Together with the definition of the Nehari manifoldNε , this completes the proof.

Lemma 2.7. Let u ∈ Eε \ {0}. Then there exists tu > 0 such that tuu ∈ Nε .

Proof. Let u ∈ Eε \ {0}. We define the function ψ(t) = Iε(tu) for t > 0. From Lemma 2.5, we know that ψ(0) = 0,
ψ(t) > 0 for t sufficiently small, and ψ(t) < 0 for t sufficiently large. Therefore, there exists t = tu such that
maxt>0 ψ(t) is achieved at tu , so ψ󸀠(tu) = 0 and tuu ∈ Nε .

Applying Lemmas 2.6 and 2.7, we can see that the ground state energy value cε has a minimax characterization
given by

cε = ̃cε = inf
u∈Eε\{0}

max
t≥0

Iε(tu). (2.7)

Moreover, there is a constant c > 0 independent of ε such that cε > c > 0.

Lemma 2.8. Suppose that (F1)–(F3) are satisfied. Let {un} be a Palais–Smale sequence at level c > 0 for Iε . Then
{un} is bounded in Eε and ‖u−n‖ε = o(1).

Proof. Let {un} be a Palais–Smale sequence at level c > 0 for Iε . We have

c + 1 + ‖un‖ε ≥ Iε(un) −
s

2(N − s) ⟨I
󸀠
ε(un), un⟩

=
s(N − 2s)
2N(N − s) ‖un‖

N/s
ε +

s
2(N − s) ∫

ℝN

∫
ℝN

F(un(y))[f(un(x))un(x) − [(N − s)/s]F(un(x))]
|x − y|N−μ

dx dy.

Thus, by (F3), we can conclude that {un} is bounded. Since {un} is bounded, we have

⟨I󸀠ε(un), u−n⟩ = on(1).

Recalling that f(t) = 0 for t < 0, and by the inequality

|a − b|s−2(a − b)(a− − b−) ≥ |a− − b−|s for all s > 1, (2.8)
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we get

‖u−n‖
N/s
ε ≤ ∫
ℝN

∫
ℝN

|un(x) − un(y)|N/s−2(un(x) − un(y))(u−n(x) − u−n(y))
|x − y|N−μ

dx dy + ∫
ℝN

V(εx)|un|N/s−2unu−n dx

= ∫
ℝN

∫
ℝN

F(un(y))f(un(x))u−n(x)
|x − y|N−μ

dx dy = o(1),

which implies that ‖u−n‖ε → 0 in Eε . Consequently, we may assume that un ≥ 0 for any n ∈ ℕ. The proof is now
complete.

3 The autonomous problem

For our scope, we shall also investigate the limit problem associated with problem (2.1). To this end, we first
discuss in this section the existence of the positive ground state solutions to the autonomous problem.

Let m > infx∈ℝN V(x) = V0. We consider the following autonomous problem:

(−Δ)sN/su + m|u|
N
s −2u = ( 1

|x|N−μ
∗ F(u))f(u) in ℝN . (3.1)

The corresponding energy functional of problem (3.1) is defined by

Jm(u) =
s
N ‖u‖

N/s
m −

1
2 ∫
ℝN

∫
ℝN

F(u(x))F(u(y))
|x − y|N−μ

dx dy, (3.2)

where
‖u‖m = ([u]N/ss,N/s + m‖u‖

N/s
N/s)

s
N .

By a standard argument explored in Section 2, we can easily see that Jm ∈ C1(W s,N/s(ℝN),ℝ) and

⟨J󸀠m(u), v⟩ = ∫
ℝN

∫
ℝN

|u(x) − u(y)|N/s−2(u(x) − u(y))(v(x) − v(y))
|x − y|2N

dx dy + ∫
ℝN

m|u|
N
s −2uv dx

− ∫
ℝN

∫
ℝN

F(u(x))f(u(y))v(y)
|x − y|N−μ

dx dy

for any u, v ∈ W s,N/s(ℝN). Accordingly, we use Nm and cm to denote the corresponding Nehari manifold and
the ground state energy of Jm , where

Nm := {u ∈ W s,p(ℝN) \ {0} : ⟨J󸀠m(u), u⟩ = 0} and cm = inf
Nm

Jm .

Inspired by the arguments explored in Section 2, we can easily establish the mountain pass geometry of the
energy functional Jm . Then we know that there exists the (PS)cm sequence {un} ⊂ W s,p(ℝN), i.e.

J󸀠m(un) → 0, Jm(un) → cm := inf
γm∈Γm

max
t∈[0,1]

Jm(γm(t)), (3.3)

where
Γm := {γm ∈ C1([0, 1],W s,p(ℝN)) : γm(0) = 0, Jm(γm(1)) < 0}.

For each u ∈ W s,p(ℝN) \ {0}, there exists t = t(u) such that

Jm(t(u)u) = max
s≥0

Jm(su) and t(u)u ∈ Nm .

Following the standard arguments in Section 3, we also have

cm = inf
Nm

Jm(u) = inf
u∈W s,p(ℝN )\{0}

max
t≥0

Jm(tu).

We now state the main result for the autonomous equation (3.1).
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Lemma 3.1. Assume that (F5) holds. Then equation (3.1) has at least one positive ground state solution u such
that Jm(u) = cm .

Proof. Let {un} be the (PS) sequence obtained in (3.3), that is,
s
N
‖un‖N/sm −

1
2 ∫
ℝN

(
1
|x|N−μ
∗ F(un))F(un) → cm as n →∞.

For any ν ∈ W s,N/s(ℝN), we have
|⟨J󸀠m(un), ν⟩| ≤ on(1)‖ν‖m .

From Lemma 2.8, we can deduce that ‖un‖m ≤ C, where C is a positive constant. Therefore, from (F3) we have

μ̄ ∫
ℝN

(
1
|x|N−μ
∗ F(un))F(un) dx ≤ ∫

ℝN

(
1
|x|N−μ
∗ F(un))f(un)un dx = ‖un‖m ≤ C. (3.4)

Passing to a subsequence if necessary, we have that un ⇀ u in Em , un → u in LN/sloc (ℝ
N), and un → u a.e. onℝN .

If
δ := lim sup

n→∞
sup
y∈ℝN
∫

B1(y)

|un|N/sdx = 0,

together with Lions’s concentration compactness principle [48, Lemma 1.21], we know that un → 0 in Lq(ℝN),
q ∈ (N/s, +∞). For small enough ε > 0, we choose Mε > (M0C)/ε > t0 in assumption (F4). Then it follows from
(F3), (F4) and (3.4) that

∫
|un |≥Mε

[
1
|x|N−μ
∗ F(un)]F(un) dx ≤ M0 ∫

|un |≥Mε

[
1
|x|N−μ
∗ F(un)]|f(un)| dx

≤
M0
Mε
∫
ℝN

[
1
|x|N−μ
∗ F(un)]f(un)un dx

< ε.

Using (F2), (F3), Lemma 1.1, (2.3), (3.4), and the Sobolev embedding, we can choose Nε ∈ (0, 1) such that

∫
|un |≤Nε

[
1
|x|N−μ
∗ F(un)]F(un) dx

≤
1
μ̄ ∫
|un |≤Nε

[
1
|x|N−μ
∗ F(un)]f(un)un dx

≤
ε
μ̄ ∫
|un |≤Nε

[
1
|x|N−μ
∗ F(un)]|un|(N+μ)/2s dx

≤
ε
μ̄( ∫
ℝN

[
1
|x|N−μ
∗ F(un)]F(un) dx)

1
2
( ∫
|un |≤Nε

[
1
|x|N−μ
∗ |un|(N+μ)/2s]|un|(N+μ)/2s dx)

1
2

≤
εC1/20 C1/2

μ̄3/2
‖un‖
(N+μ)/2s
N/s

≤ C1‖un‖
(N+μ)/2s
m

≤ C1C(N+μ)/2s .

Similarly, we have
∫

Nε≤|un |≤Mε

[
1
|x|N−μ
∗ F(un)]F(un) ≤ ε.

Due to the arbitrariness of ε > 0, we obtain

∫
ℝN

[
1
|x|N−μ
∗ F(un)]F(un) dx → 0 as n →∞.

Hence, according to the fact that {un} is a (PS) sequence, we have the following proposition.
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Proposition 3.2. It holds

lim
n→∞
‖un‖N/sm =

Ncm
s
≤ [

αN,s(N + μ)
2Nα0

]
N−s
s .

Proof. In the previous work [25], Kozono, Sato and Wadade proved that there exist positive constants αN,s
and CN,s , depending on N and s, such that

∫
ℝN

(eα|t|
N
N−s − jp−2∑

j=0

αj|t|jN/(N−s)

j! ) dx ≤ CN,s for all α ∈ (0, αN,s), (3.5)

for all
u ∈ W s,N/s(ℝN) with ‖u‖W s,N/s(ℝN ) ≤ 1,

and where jp = min{j ∈ ℕ : j ≥ p}. Inequality (3.5) is better for us to consider the behavior of a sequence com-
pared to Lemma 1.2, and it is obvious that αN,s ≤ α∗ ≤ α∗s,N . To prove Proposition 3.2, it is enough to prove that
there exists n̄ ∈ ℕ such that

max
t≥0

Jm(twn̄) ≤
s
N [
(N + μ)αN,s

2Nα0
]
N−s
s , (3.6)

where the wn(x) are the Moser-type functions supported in Bρ(0) as follows:

wn(x) = (
N
α∗s,N
)
N−s
N

{{{{{{
{{{{{{
{

|ln n|
N−s
N if |x| ≤ ρn ,

|ln ρ
|x| |

|ln n|s/N
if ρn ≤ |x| ≤ ρ,

0 if |x| ≥ ρ,

which belong to W s,p
0 (ℝ

N). For s ∈ (0, 1), as explored in [40], we cannot expect that [wn]W s,p(ℝN ) is constant.
Following the estimation in [40] and after some basic calculations, we know that

[wn]
N/s
W s,N/s(ℝN ) ≤ 1 + O( 1

log n )

and
∫
ℝN

m|wn(x)|p dx ≤ CmwNρN(
N
α∗s,N
)
N−s
s
O(

1
log n ).

This implies

‖wn‖
N/s
m ≤ 1 + [CmwNρN(

N
α∗s,N
)
N−s
s + 1]O( 1

log n ) =: 1 + CmwNρN(
N
α∗s,N
)
N−s
s δn , (3.7)

where

δn = (1 +
(α∗s,N)(N−s)/s

cmwNρNN(N−s)/s
)O(

1
log n ).

Further, we know

∫
Bρ/n(0) ∫Bρ/n(0)

1
|x − y|N−μ

dx dy ≥ C(μ, N)(ρn )
N+μ

,

where C(μ, N) is a positive constant.
Let us argue by contradiction and suppose that (3.6) does not hold. So, for all n, let tn > 0 be such that

Jm(tnwn) = max
t≥0

Jm(twn) ≥
s
N [
(N + μ)αN,s

2Nα0
]
N−s
s , (3.8)

where tn satisfies d
dt Jm(twn)

󵄨󵄨󵄨󵄨󵄨󵄨t=tn
= 0.
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Together with estimate (3.7), we have

tN/sn (1 + CmwNρN(
N
α∗s,N
)
N−s
s δn) ≥ [

αN,s(N + μ)
2Nα0

]
N−s
s . (3.9)

By (F6), we know that there exists tε > 0 such that, for any t ≥ tε , we have

f(t) ≥ (κ − ε)eα0 tN/(N−s) and F(t) ≥ (N − s)(κ − ε)
Nα0

t
−s
N−s eα0 tN/(N−s) .

From now on, all inequalities hold for large n ∈ ℕ, and it is obvious that tnwn ≥ tε under this condition.
From (F6) and (3.8), we have

tpn(1 + CmwNρN(
N
α∗s,N
)
N−s
s δn)

≥ tpn‖wn‖
N
s
m

≥ ∫
ℝN

( ∫
ℝN

F(tnwn(y))
|x − y|N−μ

dy)f(tnwn(x))tnwn(x) dx

≥ ∫
Bρ/n(0) ( ∫Bρ/n(0)

F(tnwn(y))
|x − y|N−μ

dy)f(tnwn(x))tnwn(x) dx

≥ (κ − ε)2t(N−2s)/(N−s)n (ln n)
N−2s
N

Cμ,β,N(N − s)ρN+μ

N2s/Nα0(α∗s,N)(N−2s)/s
exp[2α0t

N/(N−s)
n N ln n
α∗s,N

− (N + μ) ln n].

This implies that there exists a constant C1 > 0 such that

[
2α0tN/(N−s)n N

α∗s,N
− (N + μ)] ln n ≤ C1 ,

that is,

tN/sn ≤ [
(N + μ)α∗s,N

2Nα0
]
N−s
s (1 + C2

log n ). (3.10)

Combining (3.9) and (3.10), we obtain that, for any small ε > 0,

[
(N + μ)αN,s

2Nα0
]
N−s
s (1 − ε) ≤ tpn ≤ [

(N + μ)α∗s,N
2Nα0

]
N−s
s (1 + ε).

Taking this range into consideration, we have

I(tnwn) =
s
N t

N/s
n ‖wn‖

N/s
m −

1
2 ∫
ℝN

∫
ℝN

F(tnwn(y))F(tnwn(x))
|x − y|N−μ

dx dy

≤
s
N t

N/s
n (1 + CmwNρN(

N
α∗s,N
)
N−s
s δn) −

1
2 ∫
Bρ/n(0) ∫Bρ/n(0)

F(tnwn(y))F(tnwn(x))
|x − y|N−μ

dx dy

≤
s
N t

N/s
n (1 + CmwNρN(

N
α∗s,N
)
N−s
s δn)

−
(N − s)2C(μ, N)

2N2α20
(
ρ
n )

N+μ (k − ε)2e2α0 t
N/(N−s)
n N(α∗s,N )−1 ln n

t2s/(N−s)n ( Nα∗s,N )2s/N(ln n)2s/N
≤
s
N t

N/s
n (1 + CmwNρN(

N
α∗s,N
)
N−s
s δn)

−
(N − s)2C(μ, N)

21−2s/NN2α2−2s/N0 (N + μ)2s/N(1 + ε)
(
ρ
n )

N+μ (k − ε)2e2α0 t
N/(N−s)
n N(α∗s,N )−1 ln n
(ln n)2s/N

=: φ(tn),



S. Yuan et al., Concentrating solutions of perturbed fractional (N/s)-Laplacian equations  15

Now consider the following notations:

A := CwN(
N
α∗s,N
)
N−s
s

and
B := (N − s)2ρN+μC(μ, N)

21−2s/NN2α2−2s/N0 (N + μ)2s/N
.

Thus,

φ(tn) =
s
N
tN/sn (1 + AmρNδn) − B

(k − ε)2e2α0 t
N/(N−s)
n N(α∗s,N )−1 ln n

(1 + ε)(ln n)2s/NnN+μ
,

and there exists ̂tn such that φ󸀠( ̂tn) = 0. Thus we have

̂t(N−s)/sn (1 + AmρNδn) = B
(k − ε)2e2α0 ̂t

N/(N−s)
n N(α∗s,N )−1 ln n

(1 + ε)(ln n)2s/NnN+μ
2α0N2 ln n ̂ts/(N−s)n

α∗s,N(N − s)
.

This implies that

e2α0 ̂t
N/(N−s)
n N(α∗s,N )−1 ln n = ̂t(N−s)/s−s/(N−s)n (1 + ε)(1 + AmρNδn)(ln n)2s/NnN+μα∗s,N(N − s)

B(k − ε)22α0N2 ln n

≤
C1(1 + ε)(1 + AmρNδn)nN+μα∗s,N(N − s)

B(k − ε)22α0N2

=
C1Λ(1 + ε)(1 + AmρNδn)nN+μ

(k − ε)2
,

where
Λ =
[α∗s,N(N − s)]
2Bα0N2 .

Thus, one has

̂tN/sn ≤ [
(N + μ)α∗s,N

2α0N
]
N−s
s (1 + (N − s) ln[C1Λ(κ − ε)

−2(1 + ε)(1 + mρNAδn)]
s(N + μ) ln n ),

where

φ( ̂tn) =
s
N
̂tN/sn (1 + AmρNδn) −

̂t(N−s)/s−s/(N−s)n (1 + ε)(1 + AmρNδn)α∗s,N(N − s)
2α0N2 ln n

≤
s
N
̂tN/sn (1 + AmρNδn) − (1 + ε)(1 + AmρNδn)

C3α∗s,N(N − s)
2α0N2 ln n

=
s
N (1 + Amρ

Nδn)[ ̂tN/sn −
(1 + ε)C3α∗s,N(N − s)

2α0Ns ln n
]

≤
s
N (1 + Amρ

Nδn)[[
(N + μ)α∗s,N

2α0N
]
N−s
s

× (1 + (N − s) ln[C1Λ(κ − ε)
−2(1 + ε)(1 + mρNAδn)]

s(N + μ) ln n ) −
(1 + ε)C3α∗s,N(N − s)

2α0Ns ln n
]

=
s
N [
(N + μ)α∗s,N

2α0N
]
N−s
s [1 + AmρNδn +

(N − s) ln[C1Λ(κ − ε)−2(1 + ε)(1 + mρNAδn)](1 + mρNAδn)
s(N + μ) ln n

−
C3(1 + ε)α∗s,N(N − s)

2α0Ns ln n
[

2α0N
(N + μ)α∗s,N

]
N−s
s ] + O(

1
log2 n
).

Recall that

δn = (1 +
(α∗s,N)(N−s)/s

cmwNρNN(N−s)/s
)O(

1
ln n ).
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From (F6) and by taking a suitable ρ, we know that there exists ε small enough such that

[1 + AmρNδn +
(N − s) ln[C1Λ(κ − ε)−2(1 + ε)(1 + mρNAδn)](1 + mρNAδn)

s(N + μ) ln n

−
C3(1 + ε)α∗s,N(N − s)

2α0Ns ln n
[

2α0N
(N + μ)α∗s,N

]
N−s
s ]

< (
αN,s
α∗s,N
)
N−s
s .

Then we have

Jm(tnwn) ≤ φ(tn) <
s
N [
(N + μ)αN,s

2α0N
]
N−s
s .

which is a contradiction to (3.8). This concludes the proof.

Thus, there exist δ > 0 small and n0 ∈ ℕ large such that

‖un‖N/sm ≤ [
(N + μ)αN,s

2Nα0
]
N−s
s (1 − δ) for all n ≥ n0 . (3.11)

In light of the Hardy–Littlewood–Sobolev inequality, we have

∫
ℝN

[
1
|x|N−μ
∗ F(un)]f(un)un dx ≤ C0‖F(un)‖2N/(N+μ)‖f(un)un‖2N/(N+μ) .

For any ε > 0 and q > N/s, there is ϑ > 0 close to 0 such that

‖F(un)‖2N/(N+μ) ≤ ‖f(un)un‖2N/(N+μ)

≤ ε‖un‖
(N+μ)/2N
N/s + Cε,q[ ∫

ℝN

H((1 + ϑ)α0 , |un|)
2N
N+μ |un| 2NqN+μ dx] N+μ2N

≤ ε‖un‖
(N+μ)/2N
N/s + Cε,q‖un‖

q
2Nqr󸀠/(N+μ)( ∫

ℝN

H(
2Nr(1 + ϑ)α0

N + μ , |un|) dx)
N+μ
2Nr

,

where r, r󸀠 > 1 satisfy that 1/r + 1/r󸀠 = 1. By choosing r > 1 sufficient close to 1 such that 1 < r(1 + ϑ) < (1 − δ)−1,
we have

2Nrα0(1 + ϑ)‖un‖N/(N−s)m
N + μ

< αN,s for all n ≥ n0 .

Thus for any n ≥ n0, we have

∫
ℝN

H(
2Nr(1 + ϑ)α0

N + μ , |un|) dx = ∫
ℝN

H(
2Nr(1 + ϑ)α0‖un‖N/(N−s)m

N + μ , |un|
‖un‖m
) dx ≤ CN,s .

Therefore, we can conclude that

∫
ℝN

(
1
|x|N−μ
∗ F(un))f(un)un dx → 0 as n →∞.

Then we have that
0 < cm =

s
N ‖un‖

N/s
m + o(1) and o(1) = ‖un‖N/sm ,

which is not possible. Hence, there exist δ > 0 and a sequence {yn} ⊂ ℤ such that

lim
n→∞
∫

B1(yn)

|un|
N
s dx ≥ δ.
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Letting ũn(x) = un(x + yn), we have
lim
n→∞
∫

B1(0)

|ũn|
N
s dx ≥ δ.

Since ‖ũn‖m = ‖un‖m , for any φ ∈ C∞0 (ℝN)we have ⟨J󸀠m(ũn), φ⟩ = on(1). Consequently, ũn ⇀ ũ ̸= 0 in X, ũn → ũ
in Lqloc(ℝ

N), N/s ≤ q < ∞, and ũn → ũ a.e. on ℝN . In virtue of the boundedness of the sequence {ũn}, we have

∫
ℝN

[
1
|x|N−μ
∗ F(ũn)]f(ũn)ũn dx ≤ C.

Now, we need to show the following proposition.

Proposition 3.3. For any φ ∈ C∞0 (ℝN), we have

lim
n→∞
⟨J󸀠m(ũn), φ⟩ = ⟨J󸀠m(ũ), φ⟩ = 0.

Proof. By Fatou’s Lemma, we know

∫
ℝN

[
1
|x|N−μ
∗ F(ũ)]f(ũ)ũ dx ≤ K0 . (3.12)

Take Ω = supp φ. For any given ε > 0, let Mε := K0‖φ‖∞ε−1. Then, for n large enough, we have

∫
{|un |≥Mε}∪{|ū|=Mε}

[
1
|x|N−μ
∗ F(un)]|f(un)φ| dx ≤

2ε
K0
∫

|un |≥ Mε2

[
1
|x|N−μ
∗ F(un)]f(un)un dx ≤ 2ε (3.13)

and
∫
|ū|≥Mε

[
1
|x|N−μ
∗ F(ũ)]|f(ũ)φ| dx ≤ ε

K0
∫
|ũ|≥Mε

[
1
|x|N−μ
∗ F(ũ))]f(ũ)ũ dx < ε. (3.14)

Since
|f(un)|χ|un |≤Mε → |f(ũ)|χ|ũ|≤Mε a.e. in Ω \ Dε ,

where Dε = {x ∈ Ω : |ũ(x)| = Mε}, and

|f(un)|χ|un |≤Mε ≤ max|t|≤Mε
|f(t)| < ∞ for all x ∈ Ω,

the Lebesgue dominated convergence theorem leads to

lim
n→∞

∫
{Ω\Dε}∪{|un |≤Mε}

|f(un)|
2

1+μ dx = ∫
(Ω\Dε)∪{|ū|≤Mε}

|f(ū)|
2

1+μ dx. (3.15)

Here, we choose Kε > t0 such that

‖φ‖∞(
M0K0
Kε
)

1
2 [2C0 ∫

Ω

|f(ū)|
2N
N+μ dx] N+μ2N

< ε (3.16)

and
∫
|ū|≤Mε

[
1
|x|N−μ
∗ (F(ū)χ|ū|≥Kε )]|f(ū)φ| dx < ε.

From (F4), Lemma 1.1, (2.3), (3.15), and (3.16), we have

∫
|un |≥Mε∩{|ū| ̸=Mε}

[
1
|x|N−μ
∗ (F(un)χ|un |≥Kε )]|f(un)φ| dx

≤ ‖φ‖∞[ ∫
ℝN

[
1
|x|N−μ
∗ (F(un)χ|un |≥Kε )]F(un)χ|un |≥Kε dx]

1
2

× [ ∫
ℝN

[
1
|x|N−μ
∗ |f(un)|χ{Ω\Dε}∩{|un |≤Mε}]|f(un)|χ{Ω\Dε}∩{|un |≤Mε} dx]

1
2
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≤ ‖φ‖∞[ ∫
|un |≥Kε

[
1
|x|N−μ
∗ F(un)]F(un) dx]

1
2

× [ ∫
ℝN

[
1
|x|N−μ
∗ |f(un)|χ{Ω\Dε}∩{|un |≤Mε}]|f(un)|χ{Ω\Dε}∩{|un |≤Mε} dx]

1
2

≤ ‖φ‖∞[ ∫
|un |≥Kε

[
1
|x|N−μ
∗ F(un)]F(un) dx]

1
2
× [C0 ∫

(Ω\Dε)∩{|un |≤Mε}

|f(un)|
2N
N+μ dx] N+μ2N

≤ ‖φ‖∞[
M0
Kε
∫
|un |≥Kε

[
1
|x|N−μ
∗ F(un)]f(un)un dx]

1
2 × [2C0 ∫

Ω

|f(ū)|
2N
N+μ dx + o(1)] N+μ2N

≤ ‖φ‖∞(
M0K0
Kε
)

1
2 [2C0 ∫

Ω

|f(ū)|
2N
N+μ dx] N+μ2N

+ o(1)

< ε + o(1).

For any x ∈ ℝ, define ζn(x) and ̄ζ as follows:

ζn(x) :=
1
Aμ
(

1
|x|N−μ
∗ (|F(un)|χ|un |≤Kε )) = ∫

ℝN

|F(un)|χ|un |≤Kε
|x − y|N−μ

dy

and

̄ζ (x) := 1
Aμ
(

1
|x|N−μ
∗ (|F(ū)|χ|ū|≤Kε )) = ∫

ℝN

|F(ū)|χ|ū|≤Kε
|x − y|N−μ

dy.

Then we have

|ζn(x) − ̄ζ (x)| ≤ ∫
ℝN

||F(un)|χ|un |≤Kε − |F(ū)|χ|ū|≤Kε |
|x − y|N−μ

dy

≤ [ ∫
|x−y|≤R

||F(un)|χ|un |≤Kε − |F(ū)|χ|ū|≤Kε |
2N−μ
μ dy]

μ
2N−μ
× ( ∫
|x−y|≤R

1
|x − y|(2N−μ)/2

dy)
2N−2μ
2N−μ

+ [ ∫
|x−y|>R

||F(un)|χ|un |≤Kε − |F(ū)|χ|ū|≤Kε |
N+μ
2μ dy]

2μ
N+μ
× ( ∫
|x−y|>R

1
|x − y|N+μ

dy)
N−μ
N+μ

≤ (
2NwN
μ ⋅ R

μ
2 )

2N−2μ
2N−μ [ ∫
|x−y|≤R

||F(un)|χ|un |≤Kε − |F(ū)|χ|ū|≤Kε |
2N−μ
μ dy]

μ
2N−μ

+ (
NwN
μRμ )

N−μ
N+μ ( ∫
|x−y|>R

||F(un)|χ|un |≤Kε − |F(ū)|χ|ū|≤Kε |
N+μ
2μ dy)

2μ
N+μ

≤ (
2NwN
μ ⋅ R

μ
2 )

2N−2μ
2N−μ [ ∫
|x−y|≤R

||F(un)|χ|un |≤Kε − |F(ū)|χ|ū|≤Kε |
2N−μ
μ dy]

μ
2N−μ

+ Cε(
NwN
μRμ )

N−μ
N+μ [‖un‖(N+μ)/s(N+μ)2/4μs + ‖ū‖

(N+μ)/s
(N+μ)2/4μs]

≤ (
2NwN
μ ⋅ R

μ
2 )

2N−2μ
2N−μ on(1) + C̃ε(NwN

μRμ )
N−μ
N+μ ,

which implies that, for any x ∈ ℝN , we have ζn(x) → ̄ζ (x). Similarly, we know, for any x ∈ ℝN , that |ζn(x)| ≤M.
It follows that

|ζn(x)f(un(x))χ|un |≤Mε (x)φ(x)| ≤M‖φ‖∞ max
|t|≤Mε
|f(t)| for all x ∈ Ω.
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Therefore, together with ζn(x) → ̄ζ (x) and the Lebesgue dominated convergence theorem, we have

lim
n→∞

∫
{|un |≤Mε}∩{|ū| ̸=Mε}

[
1
|x|N−μ
∗ F(un)χ|un |≤Kε]|f(un)φ| dx → ∫

|ū|<Mε

[
1
|x|N−μ
∗ F(ū)χ|ū|≤Kε]|f(ū)φ| dx.

This concludes the proof.

Proposition 3.3 implies that ũ is a nontrivial solution of (3.1), and it is easy to see that Jm(ũ) ≥ cm . By Fatou’s
lemma, we know

cm = lim
n→∞
[Jm(ũn) −

s
N
⟨J󸀠m(ũn), ũn⟩]

= lim
n→∞
∫
ℝN

(
1
|x|μ ∗ F(ũn))(

s
N
f(ũn)ũn −

1
2F(ũn)) dx

≥ ∫
ℝN

(
1
|x|μ ∗ F(ũ))(

s
N
f(ũ)ũ − 12F(ũ)) dx

= Jm(ũ) −
s
N
⟨J󸀠m(ũ), ũ⟩

= Jm(ũ).

Therefore Jm(ũ) = cm . Combining with J󸀠m(ũ) = 0, we complete the proof.

4 Existence of positive solutions

In this section, we are going to prove the existence of positive ground state solutions to equation (1.1). Consider
the following equation:

(−Δ)sN/su + V0|u|
N
s −2u = ( 1

|x|N−μ
∗ F(u))f(u) in ℝN , (4.1)

where V0 is given in (V). In view of Lemma 3.1, we know that (4.1) possesses a positive ground state solution u0
satisfying

JV0 (u0) = cV0 = inf
NV0

JV0 ,

where

JV0 (u) = ∫
ℝN

∫
ℝN

|u(x) − u(y)|N/s

|x − y|2N
dx dy + ∫

ℝN

V0|u|N/s dx − ∫
ℝN

∫
ℝN

F(u(y))F(u(x))
|x − y|N−μ

dx dy

and
NV0 = {u ∈ EV0 \ {0} : ⟨J󸀠V0 (u), u⟩ = 0}.

The definitions of EV0 and ⟨J󸀠V0 (u), u⟩ are similar to (2.2) and (2.5).
Consider another equation:

(−Δ)sN/su + V∞|u|
N
s −2u = ( 1

|x|N−μ
∗ F(u))f(u) in ℝN , (4.2)

where V∞ is given in (V). In view of Lemma 3.1, we know that (4.2) possesses a positive ground state solution u0
satisfying

JV∞ (u0) = cV∞ = inf
NV∞ JV∞ ,

where the definitions of JV∞ andNV∞ are similar to JV0 andNV0 .
We begin this section by analyzing the comparison relationship of the ground state energy level between

problem (2.1) and problem (4.1), which is very important in our arguments.
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Lemma 4.1. Assume that (V) and (F1)–(F6) hold. Let cε be the minimax value defined by (2.6). Then the following
assertions hold:
(i) limε→0 cε = cV0 .
(ii) limε→0 cε < cV∞ .
Proof. (i) Given δ > 0, fix wδ ∈ C∞0 (ℝ

N) satisfying

wδ ∈ NV0 , wδ → w in EV0 , JV0 (wδ) < cV0 + δ.

Now, let η ∈ C∞0 (ℝN , [0, 1])be such that η = 1 on B1(0), and η = 0 onℝN \ B2(0), anddefine vn(x) = η(εnx)wδ(x),
where εn → 0 as n → +∞. Clearly,

vn → wδ in EV0 , as n → +∞.

By Lemma 2.7, there exists tn > 0 such that tnvn ∈ Nεn . We claim that tn is bounded; otherwise, |tn| → +∞.
Consequently,

cεn ≤ Iεn (tnvn) =
stN/sn
N ∫
ℝN

∫
ℝN

[vn(x) − vn(y)]N/s

|x − y|2N
dx dy + ∫

ℝN

V(εnx)|vn|
N
s dx

−
1
2 ∫
ℝN

[
1
|x|N−μ
∗ F(tnvn)]F(tnvn) dx.

Together with ⟨I󸀠εn (tnvn), tnvn⟩ = 0, we obtain

tN/sn ∫
ℝN

∫
ℝN

[vn(x) − vn(y)]N/s

|x − y|2N
dx dy + tN/sn ∫

ℝN

V(εnx)|vn|
N
s dx = ∫

ℝN

[
1
|x|N−μ
∗ F(tnvn)]f(tnvn)tnvn dx

≥ Ct2μ̄n ∫
ℝN

[
1
|x|N−μ
∗ |vn|μ̄]|vn|μ̄ dx,

which means that {tn} is bounded and, up to a subsequence, we have tn → T0 ≥ 0. Notice that there exists a
constant ̄c > 0, independent of ε, such that cεn > ̄c > 0, which implies that T0 > 0. Then, by the characteristic of
cεn and wδ , we have

cεn ≤ Iεn (tnvn) = JV0 (tnvn) +
stN/sn
N ∫
ℝN

[V(εnx) − V0]vN/sn dx

= JV0 (T0wδ) + on(1)
≤ JV0 (wδ) + on(1)
≤ cV0 + δ.

Since δ, εn are arbitrary, it follows that lim supε→0 cε ≤ cV0 . On the other hand, we already know that, for any
ε > 0, we have cε ≥ cV0 , which implies that limε→0 cε = cV0 .

(ii) Since V0 < V∞, by a standard argument, we know that cV0 < cV∞ , which together with (i) implies that
limε→0 cε < cV∞ . The proof is now complete.

Hence, by Lemma 4.1, there exists a ε0 > 0 such that

cε <
s
N [
(N + μ)αN,s

2Nα0
]
N−s
s for all ε ∈ [0, ε0).

Now we prove the existence result of the positive ground state solution of problem (2.1).

Lemma 4.2. Assume that (V) and (F1)–(F6) hold. There exists ε0 > 0 such that equation (2.1) has a positive ground
state solution uε for all ε < ε0.

Proof. Since Iε satisfies the mountain pass geometry, there exists a Palais–Smale sequence {un} at level cε ,
namely

Iε(un) → cε <
s
N [
(N + μ)αN,s

2Nα0
]
N−s
s , I󸀠ε(un) → 0, n →∞.
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Inspired by Lemma 2.8, we obtain that ‖un‖ε is bounded in Eε , and {un} is a nonnegative Palais–Smale sequence,
without loss of generality. Thus, we have un ⇀ uε in Eε .

Next, we claim that I󸀠ε(uε) = 0. In fact, if uε = 0, then the claim is completed. If uε ̸= 0, by I󸀠ε(un) → 0, there
exists a constant C such that

∫
ℝN

[
1
|x|N−μ
∗ F(un)]f(un)un dx = ‖un‖N/sε ≤ C. (4.3)

This together with Proposition 3.3 implies that, for any φ ∈ C∞0 (ℝN), we have

lim
n→∞
∫
ℝN

[
1
|x|N−μ
∗ F(un)]f(un)φ dx = ∫

ℝN

[
1
|x|N−μ
∗ F(uε)]f(uε)φ dx.

Inspired by the arguments in [53], for any φ ∈ C∞0 (ℝN), we have

lim
n→∞
∫
ℝN

∫
ℝN

|un(x) − un(y)|N/s−2(un(x) − un(y))(φ(x) − φ(y))
|x − y|2N

dx dy

= ∫
ℝN

∫
ℝN

|u(x) − u(y)|N/s−2(u(x) − u(y))(φ(x) − φ(y))
|x − y|2N

dx dy

and
lim
n→∞
∫
ℝN

V(x)|un|N/s−2unφ dx = ∫
ℝN

V(x)|u|N/s−2uφ dx,

which implies that
⟨I󸀠ε(uε), φ⟩ = lim

n→∞
⟨I󸀠ε(un), φ⟩ for all φ ∈ C∞0 (ℝ

N).

By the characterization of uε and Fatou’s lemma, we have

cε ≤ Iε(uε) = Iε(uε) −
s
N ⟨I
󸀠
ε(uε), uε⟩

≤ ∫
ℝN

∫
ℝN

F(uε(y))[( sN )f(uε(x))uε(x) − (
1
2 )F(uε(x))]

|x − y|N−μ
dx dy

≤ lim inf
n→∞
∫
ℝN

∫
ℝN

F(un(y))[ sN f(un(x))un(x) − (
1
2 )F(un(x))]

|x − y|N−μ
dx dy

≤ lim inf
n→∞
[Iε(un) −

s
N ⟨I
󸀠
ε(un), un⟩]

≤ cε .

Together with I󸀠ε(uε) = 0, we have Iε(uε) = cε . Then, by (F3), we have

cε = Iε(uε) −
1
2μ̄ ⟨I
󸀠
ε(uε), uε⟩

≤ (
s
N −

1
2μ̄ )‖uε‖

N/s
ε +

1
2μ̄ ∫
ℝN

[
1
|x|N−μ
∗ F(uε)](f(uε)uε − μ̄F(uε)) dx dy

≤ lim inf
n→∞
((

s
N −

1
2μ̄ )‖un‖

N/s
ε +

1
2μ̄ ∫
ℝN

[
1
|x|N−μ
∗ F(un)](f(un)un − μ̄F(un)) dx dy)

≤ lim inf
n→∞
(Iε(un) −

1
2μ̄ ⟨I
󸀠
ε(un), un⟩)

≤ cε .

This implies that
lim
n→∞
‖un‖ε = ‖uε‖ε .
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So, un → uε ≥ 0 in Eε , showing that Iε verifies the (PS)cε condition. There it is only needed to show that uε ̸= 0
for small ε > 0. Next, arguing by contradiction, assume that uε = 0. By the arguments explored in the proof of
Lemma 3.1, we can deduce that there exists δ > 0 and a sequence {yn} ⊂ ℤ such that

lim
n→∞
∫

B1(yn)

|un|
N
s dx ≥ δ. (4.4)

Defining ũn(x) = un(x + yn), we have
∫

B1(0)

|ũn|2 dx ≥ δ.

It is easy to see that ũn ⇀ ũ ̸= 0 in Eε , ũn → ũ in Lqloc(ℝ
N), q ∈ [N/s, +∞), ũn → ũ a.e. on ℝN . By using the fact

that ũn ≥ 0 for all n ∈ ℕ, there exist ζ > 0 and a subset Ω ⊂ ℝN with a positive measure such that ũ(x) > ζ for
all x ∈ Ω.

Let {tn} be the sequence such that {tnun} ⊂ NV∞ . Hence,
JV∞ (tnun) ≥ cV∞ and ⟨J󸀠V∞ (tnun), tnun⟩ = 0. (4.5)

If tn → +∞ as n → +∞, by (4.5) and for n large enough, we have

0 = t−N/sn ⟨J󸀠V∞ (tnun), tnun⟩
= t−N/sn ⟨J󸀠V∞ (tn ũn), tn ũn⟩
≤ ∫
ℝN

∫
ℝN

|ũn(x) − ũn(y)|N/s

|x − y|2N
dx dy + ∫

ℝN

V∞|ũn|N/s dx − t−N/sn ∫
Ω

∫
Ω

F(tn ũn(y))
|x − y|N−μ

f(tn ũn(x))tn ũn(x) dx dy.

By (F5), we know that

lim inf
n→+∞

t−N/sn ∫
Ω

∫
Ω

F(tn ũn(y))
|x − y|N−μ

f(tn ũn(x))tn ũn(x) dx dy = +∞.

Together with the boundedness of ‖ũn‖ε , we get a contradiction, which implies that {tn} is bounded. Without
loss of generality, we may assume that 0 ≤ tn ≤ T1. Given ς > 0, by condition (V), there exists R = R(ς) > 0 such
that

V(εx) ≥ V∞ − ς for any x ∈ ℝN \ BR(0). (4.6)
Then, by the arbitrariness of ς, we have

cε + on(1) = Iε(un)

≥ Iε(tnun) +
s − stN/s

N ⟨I󸀠ε(un), un⟩

= Iε(tnun) + on(1)

= IV∞ (tnun) + stN/sn
N ∫
ℝ

[V(εx) − V∞]|un|N/s dx + on(1)

≥ cV∞ + stN/sn
N ∫

BR(0)

[V(εx) − V∞]|un|N/s dx +
stN/sn
N ∫
ℝN\BR(0)

[V(εx) − V∞]|un|N/s dx + on(1)

≥ cV∞ − s(V∞ − V0)TN/S1
N ∫

BR(0)

|un|N/s dx −
sTN/s1
N sup
ℝN\BR(0)
[V∞ − V(εx)]‖un‖N/sN/s + on(1)

≥ cε +
stN/s∞
N ∫
ℝN

[V∞ − V(εx)]|u∞|N/s dx −
sTN/s1
N sup
ℝN\BR(0)
[V∞ − V(εx)]‖un‖N/sN/s + on(1)

≥ cε +
stN/s∞
2N ∫
ℝ

[V∞ − V(εx)]|u∞|N/s dx + on(1)

> cε ,

which is a contradiction due to uε = 0. Thus, we have completed the proof.
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5 Concentration of positive solutions

In this section, we are going to show the concentration behavior of positive ground state solutions.

Lemma 5.1. Let εn → 0 and let {un} be the sequence of solutions obtained in Lemma 4.2. Then there exists
a sequence {yn} ⊂ ℝ such that vn = un(x + yn) has a convergent subsequence in E. Moreover, up to a subsequence,
yn → y ∈ M.

Proof. Let {un} be the sequence of solutions obtained in Lemma 4.2. It is easy to see that cεn = Iεn (un) → cV0 ,
{un} is bounded in EV0 , and

0 < cV0 = lim sup
n→∞

cεn <
s
N
⋅ [
(N + μ)αN,s

2Nα0
]
N−s
s .

Following the arguments explored in the proof of Theorem 3.1, there exist r, δ > 0 and ỹn ∈ ℝ such that

lim inf
n→∞
∫

Br(ỹn)

|un|
N
s dx ≥ δ.

Setting vn(x) = un(x + ỹn), up to a subsequence if necessary, we may assume vn ⇀ v ̸≡ 0 in EV0 . Let tn > 0 such
that ṽn = tnvn ∈ NV0 . Then

cV0 ≤ JV0 (ṽn) = JV0 (tnun) ≤ Iεn (tnun) ≤ Iεn (un) → cV0 ,

which implies that JV0 (ṽn) → cV0 as n →∞. Then the sequence {ṽn} is a minimizing sequence, and, by the
Ekeland variational principle [20], we may also assume that it is a bounded (PS) sequence at cV0 . Thus, for some
subsequence, ṽn ⇀ ṽ weakly in EV0 with ṽ ̸= 0 and J󸀠V0 (ṽ) = 0. Applying the same arguments as the ones used
in the proof of Lemma 3.1, we have that ṽn → ṽ in EV0 . Since {tn} is bounded, we can assume that, for some
subsequence, tn → T2 > 0, and so vn → v in EV0 , where v = ṽ/T2.

Next, we will show that {yn} = {εn ỹn} has a subsequence satisfying yn → y ∈ M. We point out that {yn}
is bounded in ℝN . Indeed, if not, there would exist a subsequence, which we still denote by {yn}, such that
|yn| → ∞. Since ṽn → ṽ in EV0 and V0 < V∞, we have

cV0 =
s
N ‖ṽ‖

N/s
V0 −

1
2 ∫
ℝN

(
1
|x|N−μ
∗ F(ṽ))F(ṽ) dx

<
s
N ‖ṽ‖

N/s
V∞ − 12 ∫

ℝN

(
1
|x|N−μ
∗ F(ṽ))F(ṽ) dx

≤ lim inf
n→∞
[
s
N ( ∫
ℝN

∫
ℝN

(ṽn(x) − ṽn(y))N/s

|x − y|2N
dx dy + ∫

ℝN

V(εnx + yn)ṽN/sn dx) − 12 ∫
ℝN

(
1
|x|N−μ
∗ F(ṽ))F(ṽ) dx]

= lim inf
n→∞
[
stN/sn
N ( ∫
ℝN

∫
ℝN

(un(x) − un(y))N/s

|x − y|2N
dx dy + ∫

ℝN

V(εnx)uN/sn dx)

−
1
2 ∫
ℝN

(
1
|x|N−μ
∗ F(tnun))F(tnun) dx]

= lim inf
n→∞

Iεn (tnun)

≤ lim inf
n→∞

Iεn (un)

= cV0 ,

and hence the absurd shows that {yn} stays bounded and, up to a subsequence, yn → y ∈ ℝN . Then necessarily
y ∈ M; otherwise, we would again get a contradiction as above.

Let εn → 0 as n →∞, and let un be the ground state solution of

(−Δ)sN/su + V(εnx)|u|
N
s −2u = [ 1

|x|N−μ
∗ F(u)]f(u) in ℝN .
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From Lemma 4.1 we know that
lim
n→∞

Iεn (un) → cV0 .

Then there exists a subsequence ỹn ∈ ℝ such that vn = un(x + ỹn) > 0 is a solution of

(−Δ)sN/su + Vn(x)|u|
N
s −2u = [ 1

|x|N−μ
∗ F(u)]f(u) in ℝN , (5.1)

where Vn(x) = V(εnx + εn ỹn). Moreover, {vn} has a convergent subsequence in EV0 and yn → y ∈ M, up to a
subsequence, where yn = εn ỹn . Hence, there exists h ∈ W s,p(ℝN) such that

|vn(x)| ≤ h(x) a.e. in ℝN for all n ∈ ℕ.

Lemma 5.2. Assume that (V), (F1), (F3)–(F6) and

lim
t→0

f(t)
|t|N/s−1

= 0 (5.2)

hold. Then there exists C > 0 such that ‖vn‖L∞(ℝN ) ≤ C for all n ∈ ℕ. Furthermore,
lim
|x|→∞

vn(x) = 0 uniformly in n ∈ ℕ.

Proof. Using similar arguments to the ones explored by [4], we can obtain that
󵄨󵄨󵄨󵄨󵄨󵄨

1
|x|N−μ
∗ F(h)
󵄨󵄨󵄨󵄨󵄨󵄨 ≤ C.

Since F is a nondecreasing function, we know that

0 ≤ [ 1
|x|N−μ
∗ F(vn)] ≤ [

1
|x|N−μ
∗ F(h)].

For any R > 0, 0 < r ≤ R/2, let η ∈ C∞(ℝN), 0 ≤ η ≤ 1, with η(x) = 1when |x| ≥ R, η(x) = 0when |x| ≤ R − r,
and |∇η| ≤ 2/r. Following the technique explored in [38], for L > 0, we set vL,n = min{vn , L} and

γ(vn) = γL,β(vn) = ηpv
p(β−1)
L,n vn ,

with β > 1 to be determined later. Set

Λ(t) = |t|
p

p and Γ(t) =
t

∫
0

(γ󸀠(τ))
1
p dτ.

Thus we have the conclusion as in [9]:

Λ󸀠(a − b)(γ(a) − γ(b)) ≥ |Γ(a) − Γ(b)|p for any a, b ∈ ℝ,

from which we have

|Γ(vn(x)) − Γ(vn(y))|p ≤ |vn(x) − vn(y)|p−2(vn(x) − vn(y))((ηpv
p(β−1)
L,n vn)(x) − (ηpv

p(β−1)
L,n vn)(y)). (5.3)

Using γ(vn) = ηpv
p(β−1)
L,n vn as a test function in (5.1), in view of (5.3) and the Cauchy inequality, we have

[Γ(vn)]
p
s,p + ∫
ℝN

Vn(x)ηp|vn|pv
p(β−1)
L,n dx

≤ ∫
ℝN

∫
ℝN

|vn(x) − vn(y)|p−2(vn(x) − vn(y))
|x − y|2N

[(ηpvp(β−1)L,n vn)(x) − (ηpv
p(β−1)
L,n vn)(y)] dx dy

+ ∫
ℝN

Vn(x)ηp|vn|pv
p(β−1)
L,n dx

= ∫
ℝN

∫
ℝN

F(vn(y))f(vn(x))ηpv
p(β−1)
L,n vn

|x − y|N−μ
dx dy

≤ C ∫
ℝN

f(vn(x))ηpv
p(β−1)
L,n vn dx.
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Since Γ(vn) ≥ 1
β ηvnv

β−1
L,n and the embedding

W s,N/s(ℝN) → Lθ(ℝN), θ ≥ N
s
,

is continuous, there exists a suitable constant S∗ > 0 such that

‖Γ(vn)‖N/sV0/2 ≥ S∗‖Γ(vn)‖
N/s
θ ≥

1
βp S∗‖ηvnv

β−1
L,n ‖

N/s
θ ,

where the norm ‖ ⋅ ‖V0/2 is defined by

‖u‖V0/2 = ([u]
p
s,p + ‖u‖

p
V0/2,p)

1
p and ‖u‖V0/2,p = ( ∫

ℝN

(V0|u|p)/2 dx)
1
p
.

Recall that for each ε > 0, by the hypothesis (5.2), there exist ε and Cε > 0 such that, for any u ∈ W s,N/s(ℝN),

f(u)u ≤ ε|u|N/s + Cq,ε|u|N/sH(βα0 , u)

holds. Then we obtain

1
βp S∗‖ηvnv

β−1
L,n ‖

N/s
θ + ∫
ℝN

Vn(x)ηp|vn|pv
p(β−1)
L,n dx

≤ ε ∫
ℝN

|ηvnv
β−1
L,n |

N/s dx + Cq,ε ∫
ℝN

ηp|vn|N/sv
p(β−1)
L,n H(βα0 , vn) dx.

Choose 0 < ε < V0/2. Then we have

1
βp S∗‖ηvnv

β−1
L,n ‖

N/s
θ ≤ Cq,ε( ∫

ℝN\BR−r(0) |vnv
β−1
L,n |

Nt
s(t−1) dx) t−1t ( ∫

ℝN

H(tβα0 , vn) dx)
1
t
.

Take wL,n = ηvnv
β−1
L,n . By using the Trudinger–Moser inequality in W s,N/s(ℝN) with t > 1 and t near 1 and

t
t−1 ≫

N
s such that

pt
t−1 < θ, there exists a constant D > 0 such that

‖wL,n‖
p
θ ≤ Dβ

p‖vnv
β−1
L,n ‖

p
(pt/(t−1))(|x|≥R−r) .

Note that

|vL,n|
pβ
θβ(|x|≥R) = ( ∫

ℝN\BR(0)

|vL,n|θβ)
N
sθ

≤ ( ∫
ℝN

|ηvnv
β−1
L,n |

θ dx)
N
sθ

= ‖wL,n‖
p
θ

≤ Dβp‖vnv
β−1
L,n ‖

p
(pt/(t−1))(|x|≥R−r)

≤ Dβp‖vn‖
pβ
(pβt/(t−1))(|x|≥R−r) .

By applying Fatou’s lemma, we deduce

‖vn‖
pβ
θβ(|x|≥R) ≤ Dβ

p‖vn‖
pβ
(pβt/(t−1))(|x|≥R−r) .

Now, we set β = θ(t−1)
pt > 1. Then we have

‖vn‖θβ2(|x|≥R) ≤ D
1
pβ2 β

1
β2 ‖vn‖(pβ2 t/(t−1))(|x|≥R−r)

= D
1
pβ2 β

1
β2 ‖vn‖θβ(|x|≥R−r)

≤ D
1
p (

1
β +

2
β2
)β

1
β +

2
β2 ‖vn‖(pβt/(t−1))(|x|≥R−2r) .
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Following the arguments explored by [26], we set r = 2−(m+1)R. Iterating the above process, we can infer that

‖vn‖θβm(|x|≥R) ≤ D
∑mj=1 1

pβj β∑
m
j=1 j

βj ‖vn‖(pβt/(t−1))(|x|≥R/2) , where m is a positive integer. (5.4)

Taking the limit in (5.4) as m →∞, we get that, for all n,

‖vn‖∞(|x|≥R) ≤ C‖vn‖(pβt/(t−1))(|x|≥R/2) , (5.5)

where
C = D∑

∞
j=1 1

pβj β∑
∞
j=1 j

βj < +∞.

Set γ̃(vn) = vnv
p(β−1)
L,n . Repeating the above process and after a minor modification, we have

‖vn‖∞ ≤ C,

where
C = D∑

∞
j=1 1

pβj β∑
∞
j=1 j

βj ‖vn‖(pβt/(t−1)) < +∞.

Then, using the fact that vn → v in EV0 on the right-hand side of (5.5), for any n ∈ ℕ and for each δ > 0 fixed,
there exists R > 0 such that ‖vn‖∞(|x|≥R) < δ. Thus,

lim
|x|→∞

vn(x) = 0 uniformly in n ∈ ℕ,

and the proof is complete.

5.1 Proof of Theorem 1.3 completed

Let bn denote a maximum point of vn , and recall that

δ ≤ ∫
Br(ỹn)

|un|N/s dx = ∫
Br(0)

|vn|N/s dx ≤ wN rN |vn|N/s∞ ≤ C.

Then the sequence {vn} is a bounded sequence in ℝN . Thus, there exists R > 0 such that {bn} ⊂ BR(0), and the
global maximum of uεn is attained at zn = bn + ỹn and

εnzn = εnbn + εn ỹn = εnbn + yn .

From the boundedness of {bn} we have
lim
n→∞

zn = y,

which together with (V2) yields
lim
n→∞

V(εzn) = V0 .

If uε is a positive solution of (2.1), the function wε(x) = uε( xε ) is a positive solution of (1.1). Thus, the maxima
points ηε and zε of wε and uε , respectively, satisfy the equality ηε = εzε , and in turn

lim
ε→0

V(ηε) = V0 .

The proof is now complete.
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