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a b s t r a c t

In this paper, we study the Ekeland variational principle for equilibrium problems under
the setting of real Banach spaces. We make use of techniques related to infinite dimen-
sional spaces to solve the weakly compact case and introduce a suitable weakened set of
coerciveness to deal with the non weakly compact case. Some old results for the Euclidean
space Rn are generalized under weakened conditions of semicontinuity and applications
to countable rather than finite systems of equilibrium problems on real Banach spaces are
derived. Applications to quasi-hemivariational inequalities are discussed.
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1. Introduction

The Ekeland variational principle is a powerful tool which entails the existence of approximate solutions ofminimization
problems for lower semicontinuous functions on complete metric spaces. It is widely used to solve different problems of
differential equations and partial differential equations, fixed point theory, optimization, mathematical programming and
many other problems of nonlinear analysis. Roughly speaking, Ekeland’s variational principle states that there exist points
which are almost points of minima and where the gradient is small. In particular, it is not always possible to minimize
a nonnegative continuous function on a complete metric space. Ekeland’s variational principle is a very basic tool that is
effective in numerous situations, which led to many new results and strengthened a series of known results in various
fields of analysis, geometry, the Hamilton–Jacobi theory, extremal problems, the Ljusternik–Schnirelmann theory, etc. The
Ekeland variational principle [1] was established in 1974 and is the nonlinear version of the Bishop–Phelps theorem [2,3],
with its main feature of how to use the norm completeness and a partial ordering to obtain a point where a linear functional
achieves its supremum on a closed bounded convex set.

The so-called equilibrium problem is a problem of finding x∗
∈ A such that

Φ

x∗, y


≥ 0 for all y ∈ A, (EP)

where A is a given set and Φ : A × A −→ R is a bifunction, called equilibrium bifunction if Φ (x, x) = 0, for every x ∈ E.
Such a problem is also known under the name of equilibrium problem in the sense of Blum, Muu and Oettli (see [4,5]) or Ky
Fan equilibrium problem (see [6]).
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It is well known that variational inequalities, mathematical programming, Nash equilibrium, optimization and many
other problems arising in nonlinear analysis are special cases of equilibrium problems, see for example [7–9] and the
references therein.

In this paper, the set A is not assumed to be necessarily convexwhich leads to an interesting case of equilibriumproblems
called sometimes nonconvex equilibrium problems, see [10] and the references therein.

The Ekeland variational principle for equilibrium problems has been first considered in [7,11] in the setting of the
Euclidean space Rn. It has also been the subject of study in [12] for vector equilibrium problems defined on complete
metric spaces and with values in locally convex spaces ordered by closed convex cones. Latter on, several authors have
been interested in such problems and several results have been obtained under various kinds of generalized metric spaces
including quasi-metric spaceswith different types of functions such as τ -functions andQ -functions. Many connectionswith
fixed point theory such as the Caristi–Kirk-type fixed point theorem for multivalued mappings have been derived.

In [7,11], the authors mention that the results of the Ekeland variational principle for equilibrium problems and systems
of equilibrium problems obtained on compact and on closed subsets of Euclidean spaces could be extended to reflexive
Banach spaces. Motivated by this question, we establish that this is not systematic and depends also on other properties and
especially, on the finite or infinite dimension of the space.

In this paper, we obtain under weakened conditions of semicontinuity an existence result for equilibrium problems
defined on weakly compact subsets of real (non necessarily reflexive) Banach spaces. Then, we introduce a weakly compact
set of coerciveness rather than closed balls in order to solve equilibrium problems defined on weakly closed subsets of real
reflexive Banach spaces.

Instead of finite systems of equilibrium problems on the Euclidean space Rn, we consider here countable systems of
equilibrium problems defined on real Banach spaces. Then, we solve the problemwhen it is defined on weakly sequentially
compact subsets and make use of the properties of countable product of real Banach spaces to solve the problems when it
is defined on weakly closed subsets.

In the last part of this paper, we give a discussion in order to make connection between the Ekeland variational principle
and fixed point theory. Such connection may be useful in certain situations and in particular, when dealing with variational
inequalities. To our knowledge, there does not seem to be any result in the literature with application of the Ekeland
variational principle in the analysis studies of variational inequalities. In this direction, we consider quasi-hemivariational
inequalities introduced in [13]. Quasi-hemivariational inequalities are generalization ofmultivalued variational inequalities
and several connections with equilibrium problems are obtained, see also [14–16,10] for recent and old investigations on
the subject. Our approach is based on a result of [15] stating that a point is a solution of a quasi-hemivariational inequality
if and only if it is a fixed point of a suitable multivalued mapping.

2. Notations and preliminaries

As it is well known, the Ekeland variational principle characterizes the completeness of a metric space and has many
applications in nonlinear analysis. Several forms and variants of the Ekeland variational principle exist in the literature
where the following result summarizes the relationship between this famous variational principle and the completeness of
metric spaces.

Theorem 2.1. Let (X, d) be a metric space. Then X is complete if and only if for every lower semicontinuous and lower bounded
function f : X → R ∪ {+∞} and for every ε > 0 there exists a point x∗

∈ X satisfying
f

x∗


≤ min

x∈X
f (x) + ε,

f (x) − f

x∗


+ εd


x∗, x


≥ 0, ∀x ∈ X .

Since the problem of minimization is a special case of equilibrium problems, an extended form of the Ekeland variational
principle called Ekeland variational principle for equilibrium problems has been first introduced in [11,7] in the setting of
the Euclidean space Rn. It is followed by several extensions under different kinds of conditions by several authors, see for
instance, [17].

Here is the complete metric version of the Ekeland variational principle for equilibrium problems.

Theorem 2.2. Let A be a nonempty closed subset of a complete metric space (X, d) and Φ : A × A → R be a bifunction. Assume
that the following conditions hold:

(1) Φ (x, x) = 0, for every x ∈ A;
(2) Φ (z, x) ≤ Φ (z, y) + Φ (y, x), for every x, y, z ∈ A;
(3) Φ is lower bounded and lower semicontinuous in its second variable.

Then, for every ε > 0 and for every x0 ∈ A, there exists x∗
∈ A such that

Φ

x0, x∗


+ εd


x0, x∗


≤ 0,

Φ

x∗, x


+ εd


x∗, x


> 0, ∀x ∈ A, x ≠ x∗.
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In the sequel, we make use of some techniques of semicontinuity of functions on a subset introduced recently in
[18,16,10] to obtain new results concerning the existence of solutions of nonconvex equilibrium problems.

Let X be Hausdorff topological space, x ∈ X and f : X −→ R a function. Following [16], the function f is said to be

(1) sequentially upper semicontinuous at x if for every sequence (xn)n in X converging to x, we have

f (x) ≥ lim sup
n→+∞

f (xn)

where lim supn→+∞ f (xn) = infn supk≥n f (xk).
(2) sequentially lower semicontinuous at x if −f is sequentially upper semicontinuous at x.

The function f is said to be sequentially upper (resp. sequentially lower) semicontinuous on a subset S of X if it is sequentially
upper (resp. sequentially lower) semicontinuous at every point of S. Obviously, when X is a metrizable space, sequential
lower and upper semicontinuity coincide respectively with the classical notions of lower and upper semicontinuity.

In the sequel, for r > 0, we denote

Kr = {x ∈ E | ∥x∥ ≤ r}

the closed ball of center 0 and radius r of a real Banach space E.

3. Existence results for nonconvex equilibrium problems

Before going further, let us recall that a Hausdorff topological space is called sequentially compact if every sequence
has a converging subsequence. A subset A of a Hausdorff topological space is called sequentially compact if it sequentially
compact as a topological subspace. In general, sequentially compact spaces are different from compact spaces. However, in
the setting of Banach spaces, a subset is weakly sequentially compact if and only if it is weakly compact (Eberlein–S̆mulian
theorem, see [19]).

The following result is a generalization of [7, Proposition 2] (see also [11]) to weakly compact (not necessarily convex)
subset of real Banach spaces. This result guarantees the existence of solutions to equilibriumproblems in theweakly compact
case.

Proposition 3.1. Let A be a nonempty weakly compact subset of a real Banach space E and Φ : A × A → R be a bifunction.
Assume that the following conditions hold:

(1) Φ (x, x) = 0, for every x ∈ A;
(2) Φ (z, x) ≤ Φ (z, y) + Φ (y, x), for every x, y, z ∈ A;
(3) Φ is lower bounded and lower semicontinuous in its second variable.
(4) Φ is weakly sequentially upper semicontinuous in its first variable.

Then, the equilibrium problem (EP) has a solution.

Proof. By Theorem 2.2, for every n ∈ N∗, let xn ∈ A be a 1
n -solution of the equilibrium problem (EP). Therefore

Φ (xn, y) ≥ −
1
n
∥xn − y∥ ∀y ∈ A.

Since A is weakly compact, the sequence (xn)n has aweakly converging subsequence

xnk


k to some x∗

∈ A. SinceΦ is weakly
sequentially upper semicontinuous in its first variable on A, we have

Φ

x∗, y


≥ lim sup

k→+∞

Φ

xnk , y


≥ lim sup

k→+∞


−

1
nk

∥xnk − y∥


= 0 ∀y ∈ A.

This means that x∗ is a solution to the equilibrium problem (EP). �

The following result is a generalization of [7, Theorem 15] (see also [11]) and guarantees the existence of solutions
to equilibrium problems in the non weakly compact case. Instead of Euclidean space Rn, this generalization makes more
clear in the setting of infinite dimensional spaces, the conditions imposed on both A and the subset of coerciveness. This
generalization is also obtained under weakened conditions of semicontinuity of the bifunction involved.

Theorem 3.2. Let A be a nonempty weakly closed subset of a real reflexive Banach space E and Φ : A × A → R be a bifunction,
and suppose the following conditions hold:

(1) Φ (x, x) = 0, for every x ∈ A;
(2) Φ (z, x) ≤ Φ (z, y) + Φ (y, x), for every x, y, z ∈ A;
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(3) there exists a nonempty weakly compact subset K of A such that

∀x ∈ A \ K , ∃y ∈ A, ∥y∥ < ∥x∥, Φ (x, y) ≤ 0;

(4) Φ is weakly sequentially lower semicontinuous in its second variable on K;
(5) the restriction of Φ on K × K is lower bounded in its second variable;
(6) the restriction of Φ on K × K is weakly sequentially upper semicontinuous in its first variable.

Then, the equilibrium problem (EP) has a solution.

Proof. For every x ∈ A, define the subset

L (x) = {y ∈ A | ∥y∥ ≤ ∥x∥, Φ (x, y) ≤ 0} ,

and put S (x) = clA (L (x)), where the closure is taken with respect to the weak topology of A. We have the following
properties:

(1) The subset S (x) is nonempty, for every x ∈ A. This holds easily from the fact that x ∈ L (x).
(2) The subset S (x) is weakly compact, for every x ∈ A. Indeed, for every x ∈ A, the subset L (x) is contained in the weakly

compact subset K∥x∥ and then, S (x) is weakly compact.
(3) For every x, y ∈ A, if y ∈ S (x), then S (y) ⊂ S (x). Indeed, since L (y) is bounded, then for every z ∈ S (y), there exists a

sequence (zn)n in L (y) weakly converging to z, (see for example, [20, Proposition 3.6.23]). It follows that ∥zn∥ ≤ ∥y∥ ≤

∥x∥ andΦ (x, zn) ≤ Φ (x, y)+Φ (y, zn) ≤ 0, for every n. It follows that the sequence (zn)n lies in L (x) and then, z ∈ S (x).

On the other hand, the restriction of Φ on K × K satisfies all the conditions of Proposition 3.1 and therefore, there exists
x∗

∈ K such that

Φ

x∗, y


≥ 0 ∀y ∈ K .

Suppose that x∗ is not a solution of the equilibrium problem (EP) and let x ∈ A such that Φ (x∗, x) < 0. Since S (x) is
nonempty weakly compact subset, then the norm, which is weakly lower semicontinuous, attains its lower bound on S (x).
Let yx ∈ S (x) be such that

∥yx∥ = min
y∈S(x)

∥y∥

and since L (x) is bounded, let (yn)n be a weakly converging sequence in L (x) to yx. We have two cases:

• Suppose first that yx ∈ K . Since Φ (x∗, x) < 0, choose ε > 0 such that Φ (x∗, x) ≤ −ε. Since Φ (x, yn) ≤ 0, for every n,
then

Φ

x∗, yn


≤ Φ


x∗, x


+ Φ (x, yn) ≤ −ε.

The bifunction Φ being weakly sequentially lower semicontinuous in its second variable on K , we obtain

Φ

x∗, yx


≤ lim inf

n→+∞
Φ


x∗, yn


≤ −ϵ < 0

which yields a contradiction.
• Suppose now that yx ∉ K . Then, there exists y1 ∈ A, ∥y1∥ < ∥yx∥ and Φ (yx, y1) ≤ 0. Thus,

y1 ∈ S (yx) ⊂ S (x) and ∥y1∥ < ∥yx∥ = min
y∈S(x)

∥y∥

which is impossible.

The proof is complete. �

4. Existence results for nonconvex countable systems of equilibrium problems

Inspired by the study of systems of variational inequalities, countable andnon countable systems of equilibriumproblems
have been introduced and investigated in the literature, see, for instance, [21,22]. Instead of finite systems of equilibrium
problems studied in [11,7] bymeans of the Ekeland variational principle, we consider here countable systems of equilibrium
problems which are usually defined in the following manner.

Let I be a countable index set which could be identified sometimes to the set {i | i ∈ N}. By a system of equilibrium
problems we understand the problem of finding x∗

=

x∗

i


i∈I ∈ A such that

Φi

x∗, yi


≥ 0 for all i ∈ I and all yi ∈ Ai, (SEP)

where Φi : A × Ai → R, A =


i∈I Ai with Ai some given set.
In the sequel, we suppose that Ai is a closed subset of a metric space (Xi, di), for every i ∈ I . An element of the set

Ai
=


j∈I
j≠i

Aj will be represented by xi; therefore, x ∈ A can be written as x =

xi, xi


∈ Ai

× Ai. The space X =


i∈I Xi will
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be endowed by the product topology. Without loss of generality, wemay assume that di is bounded by 1, for every i ∈ I . The
distance d on X defined by

d (x, y) =


i∈I

1
2i
di (xi, yi) for every x = (xi)i∈I , y = (yi)i∈I ∈ X

is a complete metric compatible with the topology of X . Thus, the space (X, d) is a complete metric space.
The following result is the Ekeland variational principle for countable systems of equilibrium problems defined on

complete metric spaces. It generalizes [7, Theorem 14] (see also [11, Theorem 2.2]) stated for finite systems of equilibrium
problems under the setting of the Euclidean space Rn.

Theorem 4.1. Let Ai be a nonempty closed subset of a completemetric space (Xi, di), for every i ∈ I , and assume that the following
conditions hold:

(1) Φi (x, xi) = 0, for every i ∈ I and every x =

xi, xi


∈ A;

(2) Φi (z, xi) ≤ Φi (z, yi) + Φi (y, xi), for every i ∈ I , every xi, yi ∈ Ai and every y, z ∈ A such that y =

yi, yi


;

(3) Φi is lower bounded and lower semicontinuous in its second variable, for every i ∈ I .

Then, for every ε > 0 and for every x0 =

x0i


i∈I ∈ A, there exists x∗

=

x∗

i


i∈I ∈ A such that for each i ∈ I , we have

Φi

x0, x∗

i


+ εdi


x0i , x

∗

i


≤ 0,

Φi

x∗, xi


+ εdi


x∗

i − xi


> 0, ∀xi ∈ Ai, xi ≠ x∗

i .

Proof. By replacing Φ by 1
ε
Φ , we may assume without loss of generality that ε = 1. Let i ∈ I be arbitrarily fixed, and for

every x = (xi)i∈I ∈ A, put

Fi (x) = {yi ∈ Ai | Φi (x, yi) + di (xi, yi) ≤ 0} .

Clearly, these subsets are closed and nonempty since xi ∈ Fi (x), for every i ∈ I . In addition, if yi ∈ Fi (x), for some x ∈ A,
yi ∈ Ai and i ∈ I , then Fi (y) ⊂ Fi (x), for every y =


yi, yi


∈ A. Indeed, suppose these conditions hold and let z = (zi)i∈I

∈ Fi (y). Then, we have

Φi (x, yi) + di (xi, yi) ≤ 0 and Φi (y, zi) + di (yi, zi) ≤ 0.

It follows by addition that

Φi (x, zi) + di (xi, zi) ≤ Φi (x, yi) + Φi (y, zi) + di (xi, yi) + di (yi, zi) ≤ 0

and then, z ∈ Fi (x).
For every x ∈ A, define now

vi (x) = inf
zi∈Fi(x)

Φi (x, zi)

which is finite since Φi is lower bounded in its second variable, for every i ∈ I .
For every zi ∈ Fi (x), we have

d (xi, zi) ≤ −Φi (x, zi) ≤ − inf
zi∈Fi(x)

Φi (x, zi) = −vi (x) .

It follows that δ (Fi (x)) ≤ −2vi (x), for every i ∈ I and every x ∈ A, where δ (S) stands for the diameter of the set S.
Fix now x0 =


x0i


i∈I ∈ A and choose for each i ∈ I an element x1i ∈ Fi


x0


such that

Φi

x0, x1i


≤ vi


x0


+ 2−1.

Put x1 =

x1i


i∈I ∈ A and for each i ∈ I an element x2i ∈ Fi


x0


such that

Φi

x1, x2i


≤ vi


x1


+ 2−2.

Put x2 =

x2i


i∈I ∈ A. Proceeding by induction, we construct a sequence (xn)n in A such that xn+1

i ∈ Fi (xn) and

Φi

xn, xn+1

i


≤ vi


xn


+ 2−(n+1), for every i ∈ I and every n ∈ N.

Note that

vi

xn+1

= inf
zi∈Fi(xn+1)

Φi

xn+1, zi


≥ inf

zi∈Fi(xn)
Φi


xn+1, zi


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≥ inf
zi∈Fi(xn)


Φi


xn, zi


− Φi


xn, xn+1

i


= inf

zi∈Fi(xn)
Φi


xn, zi


− Φi


xn, xn+1

i


= vi


xn


− Φi


xn, xn+1

i


which yields

vi

xn+1

≥ vi

xn


− Φi


xn, xn+1

i


≥ vi


xn


−


vi


xn


+ 2−(n+1) .

It follows that vi

xn+1


≥ −2−(n+1) and then,

δ

Fi


xn


≤ −2vi


xn


≤ 2 × 2−n.

The sequence (Fi (xn))n being a decreasing sequence of closed subsets of the complete metric space (Ei, di) with diameter
tending to zero, then for every i ∈ I , there exists x∗

i ∈ Ai such that
n∈N

δ

Fi


xn


=


x∗

i


.

Put x∗
=


x∗

i


i∈I ∈ A. For every i ∈ I , since x∗

i ∈ Fi

x0


, then

Φi

x0, x∗

i


+ di


x0i , x

∗

i


≤ 0.

On the other hand, since x∗

i ∈ Fi (xn), then Fi (x∗) ⊂ Fi (xn), for every n and then Fi (x∗) =

x∗

i


, for every i ∈ I .

Now, if xi ∈ Ai is such that xi ≠ x∗

i , then xi ∉ Fi (x∗). It follows that

Φi

x∗, xi


+ di


x∗

i , xi


> 0

which completes the proof. �

When Xi is replaced by a real Banach space Ei, for every i ∈ I , we denote by ∥ · ∥i the norm of Ei and by di its associate
distance. As before, we may assume without loss of generality that each di is a bounded metric on Ei, for every i ∈ I . The
distance d defined on E =


i∈I Ei as above makes E a real complete metric topological vector space. Note that the distance

d cannot be induced by a norm since I is infinite. In this case weak sequential compactness and weak compactness need not
coincide on E.

In the sequel, E will be endowed with the product of the weak topologies of Ei denoted by σ .
The following result is a generalization of [7, Proposition 2] in the case of real Banach spaces. This result guarantees the

existence of solutions to countable systems of equilibrium problems in the weakly compact case. It is also a generalization
of Proposition 3.1 and its proof is similar.

Proposition 4.2. Let Ai be a nonempty weakly closed subset of a real Banach space Ei and Φi : A × Ai → R, for every i ∈ I .
Assume the following conditions hold:
(1) Φi (x, xi) = 0, for every i ∈ I and every x =


xi, xi


∈ A;

(2) Φi (z, xi) ≤ Φi (z, yi) + Φi (y, xi), for every i ∈ I , every xi, yi ∈ Ai and every y, z ∈ A such that y =

yi, yi


;

(3) Φi is lower bounded and lower semicontinuous in its second variable, for every i ∈ I;
(4) Φi is sequentially upper semicontinuous in its first variable with respect to the topology σ , for every i ∈ I;
(5) A is sequentially compact subset of E with respect to the topology σ .
Then, the system of equilibrium problems (SEP) has a solution.
Proof. The proof is similar to that of Proposition 3.1. By Theorem 4.1, for every n ∈ N∗, let xn =


xni


i∈I ∈ A be a 1

n -solution
of the system of equilibrium problems (SEP). Therefore

Φi

xn, yi


≥ −

1
n
∥xni − yi∥i ∀yi ∈ Ai.

Since A is sequentially compact subset of E with respect to the topology σ , then the sequence (xn)n has a converging
subsequence (xnk)k to some x∗

=

x∗

i


i∈I ∈ A with respect to the topology σ . It follows that the subsequence


xnki


k is

weakly converging to x∗

i ∈ Ai, for every i ∈ I . Since Φi is sequentially upper semicontinuous in its first variable on A with
respect to the topology σ , for every i ∈ I , we have

Φi

x∗, yi


≥ lim sup

k→+∞

Φi

xnk , yi


≥ lim sup

k→+∞


−

1
nk

∥xnki − yi∥


= 0 ∀i ∈ I, ∀yi ∈ A.

This means that x∗ is a solution to the system of equilibrium problems (SEP). �
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The following result is a generalization of [7, Theorem 15] and guarantees the existence of solutions to countable systems
of equilibrium problems in the non weakly compact case.

Theorem 4.3. Let Ai be a nonempty weakly closed subset of a real reflexive Banach space Ei and Φi : A×Ai → R, for every i ∈ I .
Assume that the following conditions hold:

(1) Φi (x, xi) = 0, for every i ∈ I and every x =

xi, xi


∈ A;

(2) Φi (z, xi) ≤ Φi (z, yi) + Φi (y, xi), for every i ∈ I , every xi, yi ∈ Ai and every y, z ∈ A such that y =

yi, yi


;

(3) there exists a nonempty closed subset Ki of Ai for every i ∈ I , such that

for every x =

xi, xj


∈ A with xj ∉ Kj, for some j ∈ I,

there exists yj ∈ Aj such that ∥yj∥ < ∥xj∥ and Φj

x, yj


≤ 0;

(4) Φi is weakly sequentially lower semicontinuous in its second variable on Ki, for every i ∈ I;
(5) the restriction of Φi on


i∈I Ki


× Ki is lower bounded in its second variable, for every i ∈ I;

(6) the restriction of Φi on


i∈I Ki

× Ki is sequentially upper semicontinuous in its first variable with respect to the topology

σ , for every i ∈ I;
(7) The subset


i∈I Ki is sequentially compact subset of E with respect to the topology σ .

Then, the system of equilibrium problems (SEP) has a solution.

Proof. For every x =

xi, xi


∈ A and every i ∈ I , define the subset

Li (x) = {yi ∈ Ai | ∥yi∥ ≤ ∥xi∥, Φi (x, yi) ≤ 0} ,

and put Si (x) = clAi (Li (x)), where the closure is taken with respect to the weak topology of Ai. By the same argument as in
Theorem 3.2, we have the following properties:

(1) The subset Si (x) is nonempty, for every x ∈ A and every i ∈ I .
(2) The subset Si (x) is weakly compact, for every x ∈ A and every i ∈ I .
(3) For every i ∈ I and every x =


xi, xi


, y =


yi, yi


∈ A, if yi ∈ Si (x), then Si (y) ⊂ Si (x).

On the other hand, the restrictions of Φi on


i∈I Ki

× Ki, for every i ∈ I respectively, satisfy all the conditions of Proposi-

tion 4.2 and therefore, there exists x∗
=


x∗

1, . . . , x
∗
m


∈


i∈I Ki such that

Φi

x∗, yi


≥ 0 for all i ∈ I and all yi ∈ Ki.

Suppose that x∗ is not a solution of the equilibrium problem (SEP) and let xj ∈ Aj be such that Φj

x∗, xj


< 0, for some j ∈ I .

Let xj ∈ Aj be arbitrary and put x =

xj, xj


∈ A. Since Sj (x) is nonempty weakly compact subset, then the norm attains its

lower bound on Sj (x). Let y (x)j ∈ Sj (x) be such that

∥y (x)j∥ = min
yj∈Sj(x)

∥yj∥

and since Lj (x) is bounded, let (yn)n be a weakly converging sequence in Lj (x) to y (x)j. We have two cases:

• Suppose first that y (x)j ∈ Kj. Since Φj

x∗, xj


< 0, choose ε > 0 such that Φj


x∗, xj


≤ −ε. Since Φj (x, yn) ≤ 0, for

every n, then

Φj

x∗, yn


≤ Φj


x∗, xj


+ Φj (x, yn) ≤ −ε.

The bifunction Φj being weakly sequentially lower semicontinuous in its second variable on Kj, we obtain

Φj

x∗, y (x)j


≤ lim inf

n→+∞
Φj


x∗, yn


≤ −ϵ < 0

which yields a contradiction.
• Suppose now that y (x)j ∉ Kj. Let yj ∈ Aj be arbitrary and put yx =


yj, y (x)j


∈ A. Then, there exists yj ∈ Aj, ∥yj∥ <

∥y (x)j ∥ and Φj

yx, yj


≤ 0. Thus,

yj ∈ Sj (yx) ⊂ Sj (x) and ∥yj∥ < ∥y (x)j ∥ = min
yj∈Sj(x)

∥yj∥

which is impossible.

The proof is complete. �
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5. Existence results for quasi-hemivariational inequalities

Recall that if E is a real Banach space which is continuously embedded in Lp (Ω; Rn), for some 1 < p < +∞ and n ≥ 1,
where Ω is a bounded domain in Rm,m ≥ 1, then a quasi-hemivariational inequality is a problem of the form: find u ∈ E and
z ∈ A (u) such that

⟨z, v⟩ + h (u) J0 (iu; iv) − ⟨Fu, v⟩ ≥ 0 ∀v ∈ E, (QHVI)

where i is the canonical injection of E into Lp (Ω; Rn), A : E ⇒ E∗ is a nonlinear multivalued mapping, F : E → E∗ is a
nonlinear operator, J : Lp (Ω; Rn) → R is a locally Lipschitz functional and h : E → R is a given nonnegative functional.
We denote by E∗ the dual space of E and by ⟨., .⟩ the duality pairing between E∗ and E.

Recall that a function φ : E → R is called locally Lipschitzian if for every u ∈ E, there exists a neighborhood U of u and a
constant Lu > 0 such that

|φ (w) − φ (v) | ≤ Lu∥w − v∥X ∀w ∈ U, ∀v ∈ U .

If φ : E → R is locally Lipschitzian near u ∈ E, then the Clarke generalized directional derivative of φ at u in the direction of
v ∈ E, denoted by Φ0 (u, v), is defined by

φ0 (u, v) = lim sup
w→u
λ↓0

φ (w + λv) − φ (w)

λ
.

The Clarke generalized gradient of a locally Lipschitzian functional φ : E → R at a point u0 ∈ E, denoted ∂φ (u0), is the
subset of E defined by

∂φ (u0) =

ξ ∈ E∗

| Φ0 (u0, v) ≥ ⟨ξ, v⟩, for all v ∈ E

.

Among several important properties of the generalized directional derivative and the generalized gradient of
locally Lipschitzian functions, the following properties are usually used (for proofs and related properties, we refer to
[23, Proposition 2.1.1]).

Suppose that φ : E → R is locally Lipschitzian near u ∈ E. Then,

(1) the function v −→ φ0 (u, v) is finite, positively homogeneous and subadditive;
(2) the function (u, v) −→ φ0 (u, v) is upper semicontinuous.

Sometimes for technical reasons, the quasi-hemivariational inequality (QHVI) is replaced by the following quasi-
hemivariational inequality: Find u ∈ E and z ∈ A (u) such that

⟨z, v − u⟩ + h (u) J0 (iu; iv − iu) − ⟨Fu, v − u⟩ ≥ 0 ∀v ∈ E.

In [16,10], some equilibrium problems’ techniques have been employed to solve the quasi-hemivariational inequality
(QHVI). There are two bifunctions approach considered in this study. First the equilibrium bifunction Φ1 : E × E → R is
defined by

Φ1 (u, v) = inf
v∗∈A(v)

⟨v∗, v − u⟩ + h (u) J0 (iu; iv − iu) − ⟨Fu, v − u⟩.

Under the condition of lower quasi-hemicontinuity of A on E with respect to the weak* topology of E∗, if the equilibrium
problem

find u ∈ E such that Φ1 (u, v) ≥ 0 ∀v ∈ E

has a solution, then the quasi-hemivariational inequality problem (QHVI) has a solution, see [16, Theorem 4.3].
The second equilibrium bifunction Φ2 : E × E → R is defined by

Φ2 (u, v) = sup
u∗∈A(u)

⟨u∗, v − u⟩ + h (u) J0 (iu; iv − iu) − ⟨Fu, v − u⟩.

Any solution of the quasi-hemivariational inequality problem (QHVI) is a solution of the equilibrium problem.

Find u ∈ E such that Φ2 (u, v) ≥ 0 ∀v ∈ E.

The converse holds under additional conditions on the values of the set-valued mapping A, see [10, Theorem 4.1].
Although the semicontinuity of Φ1 and Φ2 in their first and second variable is now known and holds from those of the

functions and multivalued mappings involved, it seems to be not easy to verify if Φ1 or Φ2 satisfies all the conditions in
order to apply the Ekeland variational principle for equilibrium problems. Nothing can ensure that the condition related to
the triangle inequality must be satisfied. This means that the condition

Φ (z, x) ≤ Φ (z, y) + Φ (y, x) , for every x, y, z ∈ E

of Theorem 2.2 or related versions, is far to be clear when it is verified.
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It is well-known that fixed point theory is a powerful tool for the existence of solutions to several types of variational
inequalities. In [24,25], the existence of solutions ofmultivaluedmixed variational inequalities is obtained bymeans of fixed
points of a suitable multivalued mapping constructed by solving strongly convex programs.

In this approach, recall that by [15, Proposition 2.1], a point u∗
∈ E is a solution of the quasi-hemivariational inequality

problem (QHVI) if and only if u∗ is a fixed point of the multivalued mapping H , that is u∗
∈ H (u∗), where H : E ⇒ E is the

multivalued mapping defined by
H (u) = F−1 

A (u) + h (u) i∗∂ J (iu)

.

On the other hand and as mentioned in many papers, the Ekeland variational principle is a subject which is very close to
the problem of fixed point theory of multivalued mapping, see for instance, [26,17] and the references therein.

Following [26,17], a function q : X × X → R+ where (X, d) is a metric space, is called a Q -function if the following
conditions hold:
(1) q (x, z) ≤ q (x, y) + q (y, z), for every x, y, z ∈ X;
(2) Let x ∈ X and (yn)n be a converging sequence to some y ∈ X . If there exists M > 0 such that q (x, yn) ≤ M , for every n,

then q (x, z) ≤ M;
(3) For every ε >, there exists δ > 0 such that

(q (x, y) ≤ δ and q (x, z) ≤ δ) H⇒ d (y, z) ≤ ε.

The following result is only an adapted and partial version of [17, Theorem 10.21] which is much more stronger.

Theorem 5.1. Let X be a complete metric space, q : X × X → R+ is a Q -function, ϕ : (−∞, +∞] → R+ a nondecreasing
function, and f : X → R∪{+∞} is a proper, lower semicontinuous and lower bounded function. Let T : E ⇒ E be a multivalued
mapping with nonempty values. If T satisfies the following condition: there exists y ∈ T (x) such that

q (x, y) ≤ ϕ (f (x)) (f (x) − f (y)) ,

then T has a fixed point.

In our opinion, one of the advantages of this result is that the triangle inequality is now required on an additional function,
namely the function q. It should be interesting to deeply investigate the structure of the multivalued mapping H in order to
find sufficient conditions on the involved functions and multivalued mappings leading to satisfaction of all the conditions
of the above theorem. Depending on the quasi-hemivariational inequality studied, it may be now possible to construct the
functions q, ϕ and f as in Theorem 5.1 which provides us with a fixed point of the multivalued mapping H and solves the
quasi-hemivariational inequality problem (QHVI).
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