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Abstract. We consider a nonlinear implicit evolution inclusion driven by

a nonlinear, nonmonotone, time-varying set-valued map and defined in the
framework of an evolution triple of Hilbert spaces. Using an approximation

technique and a surjectivity result for parabolic operators of monotone type,

we show the existence of a periodic solution.

1. Introduction. In this paper we study the following periodic implicit evolution
inclusion {

d

dt
(Bu(t)) +A(t, u(t)) 3 0 for almost all t ∈ T = [0, b]

B(u(0)) = B(u(b)).

}
(1)

Problem (1) is defined in the framework of an evolution triple (X,H,X∗) of
Hilbert spaces (see Section 2), where B ∈ L(X,X∗) and A : T × X → 2X

∗
is a

map measurable in t ∈ T and such that for almost all t ∈ T , A(t, ·) is bounded and
pseudo-monotone.

Implicit evolution equations were studied by Andrews, Kuttler & Schillor [1],
Barbu [2], Barbu & Favini [4], Favini & Yagi [6], Liu [11], and Showalter [15]. How-
ever, in all these works, the operator A was time-invariant and maximal monotone.
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Moreover, the aforementioned works treat the Cauchy problem. We are not aware
of any work on implicit evolution equations treating the periodic problem. We
mention also the works of Barbu & Favini [3] and DiBenedetto & Showalter [5],
treating the case where B is nonlinear monotone. For this case the hypotheses and
the techniques are different.

This paper is strongly influenced by Lions [10]. In fact, our existence result
(Theorem 7) is based on a multivalued version of a surjectivity result, which was
proved for the first time for single-valued maps by Lions [10, Theorem 1.2, p. 319],
see Theorem 4 below. This way we can accommodate the multivalued nature of
the map A(t, x) in problem (1). The fact that we allow A(t, x) to be set-valued
broadens significantly the applicability of our work. Now we can also treat the
subdifferential of continuous but not C1-convex functionals, a situation that the
single-valued formulation cannot handle. In addition, the presence of the operator
B in the time derivative complicates the abstract setting. SinceB can be degenerate,
this adds an additional level of difficulty in the analysis of problem (1) compared
to the applications studied by Lions [10, pp. 321-328]. We overcome the difficulty,
using the elliptic regularization technique, also first introduced by Lions.

2. Mathematical background. Suppose that X and Y are Banach spaces and
X is continuously and densely embedded into Y . Then we know that Y ∗ is contin-
uously embedded into X∗ and if X is reflexive, then the embedding of Y ∗ into X∗

is also dense.

Definition 2.1. By an “evolutions triple”, we mean a triple of spaces

X ↪→ H ↪→ X∗

such that X is a separable reflexive Banach space, H is a separable Hilbert space
identified with its dual (pivot space), and X is continuously embedded into H. We
say that (X,H,X∗) is an evolution triple of Hilbert spaces, if all three spaces are
Hilbert.

Evidently, H∗ = H is continuously and densely embedded into X∗. By || · || (resp
| · |, || · ||∗), we denote the norm of X (resp. of H,X∗). We have

| · | ≤ c1|| · || and || · ||∗ ≤ c2| · | for some c1, c2 > 0.

We denote by 〈·, ·〉 the duality brackets for the pair (X∗, X) and by (·, ·) the
inner product of H. We have

〈·, ·〉|H×X = (·, ·).

Given an evolution triple (X,H,X∗) and 1 < p <∞, we can define the following
Banach space:

Wp(0, b) = {u ∈ Lp(T,X) : u′ ∈ Lp
′
(T,X∗)}.

In this definition, 1
p + 1

p′ = 1 and the derivative u′ of u is understood in the sense

of vectorial distributions. A function u ∈Wp(0, b) viewed as a function with values
in X∗, is absolutely continuous and so

Wp(0, b) ⊆ AC1,p′(T,X∗) = W 1,p′((0, b), X∗).

Also, we know that Lp(T,X∗)∗ = Lp
′
(T,X). The space Wp(0, b) is continuously and

densely embedded into C(T,H) and its elements satisfy the following integration
by parts formula.
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Proposition 1. If (X,H,X∗) is an evolution triple and u, v ∈ Wp(0, b) (1 < p <
∞), then the mapping t 7→ (u(t), v(t)) is absolutely continuous and

d

dt
(u(t), v(t)) = 〈u′(t), v(t)〉+ 〈u(t), v′(t)〉 for almost all t ∈ T.

If (X,H,X∗) is an evolution triple and X is compactly embedded into H, then
H∗ = H is compactly embedded into X∗ (Schauder’s theorem) and Wp(0, b) is
compactly embedded into Lp(T,H). For details, see Gasinski & Papageorgiou [7].

We will use the following notions from set-valued analysis (see [9]).

(a) If V,W are Hausdorff topological spaces and G : V → 2W \{∅} is a multivalued
map, then we say that G(·) is “upper semicontinuous” (“usc” for short), if for
every closed C ⊆W , the set G−(C) = {v ∈ V : G(v) ∩ C 6= ∅} is closed.

(b) If T = [0, b], Y is a separable Banach space and G : T → 2Y \{∅} is a multi-
valued map, then we say that G(·) is “graph measurable” if

GrG = {(t, y) ∈ T × Y : y ∈ G(t)} ∈ LT ⊗B(Y ),

with LT being the Lebesgue σ-field of T and B(Y ) the Borel σ-field on Y .

Given a Banach space, we will use the following notation

Pf(c)(X) = {C ⊆ Y : C is nonempty, closed (and convex)}.

Also, if C ⊆ Y , then we define

|C| = sup {||c||Y : c ∈ C} .

Let Y be a reflexive Banach space and A : Y → 2Y
∗

a multivalued map. We say
that A(·) is “pseudo-monotone”, if the following conditions are satisfied:

• for every y ∈ Y, A(y) is nonempty, closed, and convex;
• A(·) is bounded (that is, maps bounded sets to bounded sets);

• if yn
w−→ y in Y , y∗n

w−→ y∗ in Y ∗ with y∗n ∈ A(yn) for all n ∈ N and

lim sup
n→∞

〈y∗n, yn − y〉Y ∗Y ≤ 0,

then y∗ ∈ A(y) and 〈y∗n, yn〉Y ∗,Y → 〈y∗, y〉Y ∗Y .

Any maximal monotone map A : Y → 2Y
∗\{∅} is pseudo-monotone (see Gasinski

& Papageorgiou [7, pp. 331-332]). As in the case of maximal monotone maps,
pseudo-monotone operators exhibit nice surjectivity properties. In particular, a
pseudo-monotone coercive (that is, inf{〈y∗, y〉Y ∗Y : y∗ ∈ A(y)}/||y||Y → +∞ as
||y||Y → +∞) map is surjective (see Gasinski & Papageorgiou [7, p. 326]).

For dynamic problems (evolution equations), we have the following variant of the
notion of pseudo-monotonicity.

Definition 2.2. Let Y be a reflexive Banach space, L : D(L) ⊆ Y → Y ∗ a linear,
maximal monotone operator, and A : Y → 2Y

∗
a multivalued map. We say that

A(·) is “L-pseudo-monotone”, if the following conditions hold:

(i) for every y ∈ Y , A(y) ⊆ Y ∗ is nonempty, w-compact, and convex;
(ii) A : Y → 2Y

∗\{∅} is usc from every finite dimensional subspace of Y into Y ∗

furnished with the weak topology;

(iii) if {yn}n≥1 ⊆ D(L), yn
w−→ y ∈ D(L) in Y , L(yn)

w−→ L(y) in Y ∗, y∗n ∈ A(yn)

for all n ∈ N, y∗n
w−→ y∗ in Y ∗ and lim supn→∞〈y∗n, yn−y〉 ≤ 0, then y∗ ∈ A(y)

and 〈y∗n, yn〉Y ∗Y → 〈y∗, y〉Y ∗Y .
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These operators have nice surjectivity properties. The following result can be
found in Papageorgiou, Papalini & Renzacci [12] (the single-valued version of this
property is due to Lions [10]).

Theorem 2.3. If Y is a strictly convex reflexive Banach space, L : D(L) ⊆ Y → Y ∗

is a linear, maximal monotone operator, and A : Y → 2Y
∗

is bounded, L-pseudo-
monotone, and coercive, then L+A is surjective.

3. Periodic solutions. In what follows, T = [0, b] and (X,H,X∗) is an evolution
triple of Hilbert spaces. We assume that X is compactly embedded into H (hence
so is H∗ = H into X∗). The hypotheses on the data of (1) are the following:
H(B): B ∈ L(X,X∗) and is symmetric and monotone.
H(A): A : T ×X → Pfc(X∗) is a multivalued map such that

(i) for all x ∈ X, the mapping t 7→ A(t, x) is graph measurable;
(ii) for almost all t ∈ T , the mapping x 7→ A(t, x) is pseudo-monotone;

(iii) for almost all t ∈ T and all x ∈ X, we have

|A(t, x)| ≤ c1(t) + c2||x||p−1

with c1 ∈ Lp
′
(T ), 2 ≤ p <∞ and c2 > 0;

(iv) for almost all t ∈ T and all x ∈ X, we have

inf {〈u∗, x〉 : u∗ ∈ A(t, x)} ≥ c3||x||p − c4(t),

with c3 > 0 and c4 ∈ L1(T ).

Let J : X → X∗ be the duality (Riesz) map on the Hilbert space X. We
know that J(·) is an isometric isomorphism (the Riesz-Fréchet theorem) which is
monotone. Hence for every ε > 0 we have (εJ +B)−1 ∈ L(X∗, X). Then on X∗ we
consider the following bilinear form

(u, v)∗ = 〈(εJ +B)−1u, v〉 for all u, v ∈ X∗. (2)

Hypotheses H(B) imply that (·, ·)∗ is an inner product on X∗. Let | · |∗ denote
the norm corresponding to this inner product. Clearly, | · |∗ and || · ||∗ are equivalent
norms on X∗. So, if V ∗ denotes the space X∗ equipped with the norm | · |∗, then V ∗

is a Hilbert space. Using the Riesz-Fréchet theorem, we identify V ∗ with its dual.
Let Aε : T × V ∗ → Pfc(V ∗) be defined by

Aε(t, v) = A(t, (εJ +B)−1v).

Then we introduce the multivalued Nemitsky map Âε : Lp(T, V ∗) → 2L
p′ (T,V ∗)

corresponding to Aε(·, ·), defined by

Âε(v) = {u ∈ Lp
′
(T, V ∗) : u(t) ∈ Aε(t, v(t)) for almost all t ∈ T}.

Consider the function space

W per
p ((0, b), V ∗) = {u ∈ Lp(T, V ∗) : u′ ∈ Lp

′
(T, V ∗), u(0) = u(b)}.

We know that W per
p ((0, b), V ∗) ↪→ C(T, V ∗) and so the evaluations of u at t = 0 and

t = b make sense. Let L : W per
p ((0, b), V ∗) ⊆ Lp(T, V ∗)→ Lp

′
(T, V ∗) be defined by

L(u) = u′.

We know that L(·) is linear and maximal monotone (see Hu & Papageorgiou [9,
p. 419] and Zeidler [16, p. 855]).
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Proposition 2. If hypotheses H(B), H(A) hold and ε > 0, then for every u ∈
Lp(T, V ∗), Âε(u) ⊆ Lp

′
(T, V ∗) is nonempty, w-compact and convex, and the map-

ping u 7→ Âε(u) is L-pseudo-monotone.

Proof. It is clear that Âε(u) is closed, convex, and bounded, thus w-compact in

Lp
′
(T, V ∗). We need to show that Âε(·) has nonempty values. Note that hypotheses

H(A)(i), (ii) do not imply the graph measurability of (t, x) 7→ Aε(t, x) (see Hu &

Papageorgiouo [9, p. 227]). To show the nonemptiness of Âε(u) we proceed as
follows. Let {sn}n≥1 ⊆ Lp(T, V ∗) be step functions such that

sn → u in Lp(T, V ∗), sn(t)→ u(t) for almost all t ∈ T,
|sn(t)|∗ ≤ |u(t)|∗ for almost all t ∈ T, and for all n ∈ N.

On account of hypothesis H(A)(i), for every n ∈ N the mapping

t 7→ Aε(t, sn(t)) = A(t, (εJ +B)−1sn(t))

is graph measurable. So, we can apply the Yankov-von Neumann-Aumann selection
theorem (see Hu & Papageorgiou [9, p. 158]) and obtain that vn : T → V ∗ is
measurable and vn(t) ∈ Aε(t, sn(t)) for almost all t ∈ T, n ∈ N. Evidently, vn ∈
Lp
′
(T, V ∗) and {vn}n≥1 ⊆ Lp

′
(T, V ∗) is bounded. So, by passing to a suitable

subsequence if necessary we may assume that

vn
w−→ v in Lp

′
(T, V ∗) as n→∞. (3)

Note that the pseudo-monotonicity of Aε(t, ·) (see hypothesis H(A)(ii)) implies
that GrAε(t, ·). is demiclosed (that is, sequentially closed in V ∗ × V ∗w , where V ∗w
denotes the Hilbert space V ∗ furnished with the weak topology). So, by (3) and
Proposition 3.9 of Hu & Papageorgiou [9, p. 694], we have

v(t) ∈ convw − lim supn→∞Aε(t, sn(t)) ⊆ Aε(t, u(t)) for almost all t ∈ T,
⇒ v ∈ Âε(u) and so Âε(·) has nonempty values.

Next, we will prove the L-pseudo-monotonicity of Âε. So, let ((·, ·))∗ denote the

duality brackets for the pair (Lp
′
(T, V ∗), Lp(T, V ∗)), that is,

((v, u))∗ =

∫ b

0

(v(t), u(t))∗dt for all u ∈ Lp(T, V ∗), v ∈ Lp
′
(T, V ∗). (4)

Consider a sequence {un}n≥1 ⊆W per
p ((0, b), V ∗) such that

“un
w−→ u in Lp(T, V ∗), u′n

w−→ u′ in Lp
′
(T, V ∗) and vn ∈ Âε(un) (for all n ∈ N),

such that vn
w−→ v in Lp

′
(T, V ∗) and lim supn→∞((vn, un − u))∗ ≤ 0”.

(5)
We have

((vn, un − u))∗ =

∫ b

0

(vn(t), un(t)− u(t))∗dt (see (4))

=

∫ b

0

〈vn(t), (εJ +B)−1(un − u)(t)〉dt (see (2)).

Let yn(t) = (εJ +B)−1un(t), y(t) = (εJ +B)−1u(t). Then yn, y ∈ Lp(T,X) and
we have

〈vn(t), (εJ +B)−1(un − u)(t)〉 = 〈vn(t), yn(t)− y(t)〉
with vn(t) ∈ A(t, yn(t)) for almost all t ∈ T , all n ∈ N. Evidently,

{yn}n≥1 ⊆ Lp(T,X) is bounded (see (5)). (6)
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Also, we have

y′n = ((εJ +B)−1un)′

⇒ {y′n}n≥1 ⊆ Lp
′
(T,X∗) is bounded (see (5)).

(7)

It follows from (6) and (7) that

{yn}n≥1 ⊆Wp(0, b) is bounded.

So, we may assume that

yn
w−→ y in Wp(0, b) as n→∞. (8)

Evidently, we have y = (εJ +B)−1u and so

(εJ +B)−1un
w−→ (εJ +B)−1u in Lp(T,X).

If we denote by ((·, ·)) the duality brackets for the pair (Lp
′
(T,X∗), Lp(T,X)),

that is,

((v, u)) =

∫ b

0

〈v(t), u(t)〉dt for all u ∈ Lp(T,X), v ∈ Lp
′
(T,X∗),

then we have

lim sup
n→∞

((vn, yn − y)) = lim sup
n→∞

((vn, un − u)) ≤ 0 (see (5)).

Recall that Wp(0, b) is continuously embedded in C(T,H). So, from (8) we have

yn(t)
w−→ y(t) in H for all t ∈ T. (9)

Let ϑn(t) = 〈vn(t), yn(t)− y(t)〉 and let N ⊆ T be the Lebesgue-null set outside
of which hypotheses H(A)(ii), (iii) (iv) hold. Then for t ∈ T\N , we have

ϑn(t) ≥ c3||yn(t)||p − c4(t)− ||y(t)||
(
c1(t) + c2||yn(t)||p−1

)
(10)

(see hypotheses H(A)(iii), (iv)).

Let E = {t ∈ T : lim infn→∞ ϑn(t) < 0}. This is a Lebesgue measurable set.
Suppose that λ1(E) > 0 (λ1(·) denotes the Lebesgue measure on R). From (10),
we see that {yn(t)}n≥1 ⊆ X is bounded for all t ∈ E ∩ (T\N). So, on account of

(9) we obtain that yn(t)
w−→ y(t) in X. Fix t ∈ E ∩ (T\N) and choose a suitable

subsequence (depending on t) such that lim infn→∞ ϑn(t) = limk→∞ ϑnk
(t). The

pseudo-monotonicity of A(t, ·) (see hypothesis H(A)(ii)), implies that

〈vnk
(t), ynk

(t)− y(t)〉 → 0,

a contradiction since t ∈ E. Therefore λ1(E) = 0 and so we have

0 ≤ lim inf
n→∞

ϑn(t) for almost all t ∈ T. (11)

Invoking Fatou’s lemma, we have

0 ≤
∫ b

0

lim inf
n→∞

ϑn(t)dt ≤ lim inf
n→∞

∫ b

0

ϑn(t)dt ≤ lim sup
n→∞

∫ b

0

ϑn(t)dt ≤ 0,

⇒
∫ b

0

ϑn(t)dt→ ϑ as n→∞. (12)

We have |ϑn| = ϑ+
n + ϑ−n = ϑn + 2ϑ−n and ϑ−n (t) → 0 for almost all t ∈ T (see

(11)). Also, from (10) we have

γn(t) ≤ ϑn(t) for almost all t ∈ T, and for all n ∈ N,
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and {γn}n≥1 ⊆ L1(T ) is uniformly integrable. We have

0 ≤ ϑ−n (t) ≤ γ−n (t) for almost all t ∈ T, and for all n ∈ N,
⇒ {ϑ−n }n≥1 ⊆ L1(T ) is uniformly integrable.

Applying the extended dominated convergence theorem (see, for example, Gasin-
ski & Papageorgiou [7, p. 901]), we have∫ b

0

ϑ−n (t)dt→ 0,

⇒ ϑn → 0 in L1(T ) (see (12)).

So, by passing to a subsequence if necessary, we may assume that

ϑn(t)→ 0 for almost all t ∈ T,
⇒ 〈vn(t), yn(t)− y(t)〉 → 0 for almost all t ∈ T.

Since vn(t) ∈ A(t, yn(t)) for almost all t ∈ T and for all n ∈ N, on account of the
pseudo-monotonicity of A(t, ·) (see hypothesis H(A)(ii)), we have

v(t) = A(t, y(t)) = Aε(t, u(t)) for almost all t ∈ T

and vn(t)
w−→ v(t) in X∗, 〈vn(t), yn(t)〉 → 〈v(t), y(t)〉 for almost all t ∈ T .

By the dominated convergence theorem, we have

vn
w−→ v in Lp

′
(T,X∗), ((vn, yn))→ ((v, y)), v ∈ Â(y),

⇒ vn
w−→ v in Lp

′
(T, V ∗), ((vn, un))→ ((v, u))∗, v ∈ Âε(u).

Finally, using Proposition 2.23 of Hu & Papageorgiou [9, p. 43], we easily see

that Âε(·) is usc from finite dimensional subspaces of Lp(T, V ∗) into Lp
′
(T, V ∗)w.

Therefore we conclude that Âε is indeed L-pseudo-monotone.

We consider the following auxiliary approximate periodic problem:{
u′(t) +Aε(t, u(t)) 3 0 for almost all t ∈ T,
u(0) = u(b).

}
(13)

Proposition 3. If hypotheses H(B), H(A) hold and ε > 0, then problem (13) has
a solution uε ∈W per

p ((0, b), V ∗).

Proof. We rewrite (13) as the following abstract operator inclusion

L(u) + Âε(u) 3 0. (14)

Let v ∈ Âε(u). We have

((v, u))∗ = ((v, (εJ +B)−1u)).

Let y = (εJ + B)−1u. Then v ∈ Â(y) and so, using hypothesis H(A)(iv), we
have

((v, y)) =
∫ b

0
〈v(t), y(t)〉dt ≥ c3||y||pLp(T,X) − ||c4||1,

⇒ ((v, u))∗ ≥ c5||u||pLp(T,V ∗) − ||c4||1 for some c5 > 0 (15)

(recall that | · |∗ and || · ||∗ are equivalent norms on X∗). It follows that Âε(·) is
coercive. Clearly, it is bounded (see hypothesis H(A)(iii)). Also, from Proposition

2 we know that Âε(·) is L-pseudo-monotone. Since L(·) is maximal monotone, we
can use Theorem 2.3 and find uε ∈W per

p ((0, b), V ∗) = D(L) such that it solves (14).
Evidently, this is a solution of problem (13).
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Next, we will let ε ↓ 0 to produce a solution of problem (1).

Theorem 3.1. If hypotheses H(B), H(A) hold, then problem (1) has a solution

y ∈ Lp(T,X) which satisfies (By)′ ∈ Lp′(T,X∗).

Proof. For each ε > 0, let uε ∈ W per
p ((0, b), V ∗) be a solution of the approximate

problem (13) (see Proposition 3). We have{
u′ε(t) +Aε(t, uε(t)) 3 0 for almost all t ∈ T,
uε(0) = uε(b).

}
(16)

We take the inner product in V ∗ with uε(t). Then

1

2

d

dt
|u′ε(t)|2∗ + (vε(t), uε(t))∗ = 0 for almost all t ∈ T,

with vε ∈ Lp
′
(T, V ∗), vε(t) ∈ Aε(t, uε(t)) for almost all t ∈ T . Integrating on T and

using (15) and the periodic conditions, we obtain

c5||uε||Lp(T,V ∗) ≤ ||c4||1,
⇒ {uε}ε>0 ⊆ Lp(T, V ∗) is bounded. (17)

We set yε(t) = (εJ +B)−1uε(t). Then

||yε(t)|| ≤ ||(εJ +B)−1||L||uε(t)||∗

⇒ {yε}ε∈(0,1] ⊆ Lp(T,X) is bounded (see (17)). (18)

On account of hypothesis H(A)(iii), we have

|Aε(t, uε(t))| ≤ c1(t) + c2||yε(t)||p−1 for almost all t ∈ T. (19)

Then it follows from (16), (18) and (19) that

{u′ε}ε∈(0,1] ⊆ Lp
′
(T, V ∗) is bounded.

This together with (17) implies that

{uε}ε∈(0,1] ⊆W 1,p′((0, b), V ∗) is bounded (recall that 1 < p′ ≤ 2 ≤ p). (20)

Now let εn = 1
n , un = uεn , yn = yεn , vn = vεn for all n ∈ N. Note that

[(n−1J +B)yn(t)]′ ∈ Lp
′
(T,X∗).

We have  ((n−1J +B)yn(t))′ + vn(t) = 0 for almost all t ∈ T,
vn(t) ∈ A(t, yn(t)) for almost all t ∈ T,
un(0) = un(b).

 (21)

Note that

yn(0) = (εJ +B)−1un(0) = (εJ +B)−1un(b) = yn(b) for all n ∈ N (see (21)). (22)

Also, on account of (18), (20) and (21), we may assume that

yn
w−→ y in Lp(T,X), un

w−→ u in W 1,p′((0, b), V ∗), vn → v in Lp
′
(T,X∗). (23)

We know that W 1,p′((0, b), V ∗) ↪→ C(T, V ∗) continuously. Hence by (17), up to
a subsequence, we have

un
w−→ u in C(T, V ∗),

⇒ yn(t)
w−→ y(t) in X for all t ∈ T, (24)

⇒ B(y(0)) = B(y(b)) (see (22)). (25)
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On the first equation in (21) we act with (yn − y)(t) and then integrate over T .
We obtain

(((
[
n−1J +B

]
yn)′, yn − y)) + ((vn, yn − y)) = 0 for all n ∈ N. (26)

We obtain

(((
[
n−1J +B

]
yp)
′, yn − y))

= (((
[
n−1J +B

]
(yn − y))′, yn − y)) + (((

[
n−1J +B

]
y)′, yn − y)). (27)

Note that

(((
[
n−1J +B

]
y)′, yn − y))→ 0 as n→∞ (see (23)). (28)

Also, we have

(((
[
n−1J +B

]
(yn − y))′, yn − y))

=

∫ b

0

〈n−1(J(yn − y))′, yn − y〉dt+

∫ b

0

〈(B(yn − y))′, yn − y〉dt

=

∫ b

0

1

n
(y′n − y′, yn − y)Xdt+

1

2

∫ b

0

d

dt
〈B(yn − y), yn − y〉dt

(recall that J(·) is the Riesz map for X and see hypothesis H(B))

= 1
n [||(yp − y)(b)|| − ||(yn − y)(0)||] + 1

2 [〈B(yn − y)(b), (yn − y)(b)〉 −
〈B(yn − y)(0), (yn − y)(0)〉]

= 0 for all n ∈ N (see (22), (24)). (29)

So, if we return to (27) and use (28), (29) we obtain

lim
n→∞

(((
[
n−1J +B

]
yn)′, yn − y)) = 0. (30)

If we use (30) in (26), we get

lim
n→∞

((vn, yn − y)) = 0.

Invoking Proposition 2, we have

v ∈ Â(y) and ((vn, yn))→ ((v, y)).

Thus, we obtain from (21) taking the limit as n→∞{
d

dt
(By(t)) +A(t, y(t)) 3 0 for almost all t ∈ T,

B(y(0)) = B(y(b)).

}
Therefore y ∈ Lp(T,X) is a solution of (1) with (By)′ ∈ Lp′(T,X∗).

4. An example. Let T = [0, b] and let Ω ⊆ RN be a bounded domain with a
C2-boundary ∂Ω. We consider the following initial boundary value problem:

d

dt
(m(z)u)− div (a(t, z)Du) +

N∑
k=1

(sinu)Dku+ ∂g(u) 3 0 in T × Ω,

u|T×∂Ω = 0, m(z)u(z, 0) = m(z)u(z, b) for almost all z ∈ Ω.

 (31)

We impose the following conditions on the data for problem (31):

H(m): m ∈ LN/2(Ω) if N > 2, m ∈ Lr(Ω) with r > 1 if N = 2 and m ∈ L1(Ω)
if N = 1, m(z) ≥ 0 for almost all z ∈ Ω, m 6≡ 0.

H(a): a ∈ L∞(T × Ω) and a(t, z) ≥ a0 > 0 for almost all (t, z) ∈ T × Ω.
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H(g): g : R → R is a continuous convex function and its subdifferential ∂g(x)
satisfies

|∂g(x)| ≤ ĉ (1 + |x|p−1) for all x ∈ R, and for some ĉ > 0, 2 ≤ p <∞.

Remark 1. For any continuous convex function g(·), we know that ∂g(x) 6= ∅ for
all x ∈ R (see Gasinski & Papageorgiou [7, p. 527]).

We introduce the following multifunction

Ng(u) = {v ∈ Lp
′
(Ω) : v(z) ∈ ∂g(u(z)) for almost all z ∈ Ω}

for all u ∈ H1
0 (Ω). Evidently, Ng(·) is maximal monotone.

In this case, the evolution triple consists of the following Hilbert spaces:

X = H1
0 (Ω), H = L2(Ω), X∗ = H−1(Ω).

We know that X ↪→ H compactly (by the Sobolev embedding theorem).
Let A1 : T ×X → X∗ be the nonlinear map defined by

〈A1(t, u), h〉 =

∫
Ω

a(t, z)(Du,Dh)RNdz +

∫
Ω

sinu

(
N∑
k=1

Dku

)
hdz

for all u, h ∈ X = H1
0 (Ω).

Then the mapping t 7→ A1(t, u) is measurable, whereas u 7→ A1(t, u) is pseudo-
monotone (see, for example, Zeidler [16, p. 591]). We set

A(t, u) = A1(t, u) +Ng(u).

Then A(t, u) satisfies hypotheses H(A) (see H(a) and H(g)).
In addition, we let B ∈ L(X,X∗) be defined by

Bu(·) = m(·)u(·) for all u ∈ X = H1
0 (Ω).

Clearly, B(·) satisfies H(B).
We can rewrite problem (31) as the following abstract implicit evolution inclusion:{

d

dt
(Bu(t)) +A(t, u(t)) 3 0 for almost all t ∈ T,

B(u(0)) = B(u(b)).

}
We can apply Theorem 3.1 and obtain the following result.

Proposition 4. If hypotheses H(m), H(a), H(g) hold, then problem (31) admits a
solution u ∈ Lp(T,H1

0 (Ω)) with

(Bu)′ ∈ Lp
′
(T,H−1(Ω)).

Remark 2. Using the methods developed in this paper one can also treat antiperi-
odic problems (see Gasinski & Papageorgiou [8]), problems with subdifferential
terms (see Papageorgiou & Rădulescu [13]), and applications to distributed param-
eter control systems (see Papageorgiou, Rădulescu & Repovš [14]).
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0083. V.D. Rădulescu acknowledges the support through a grant of the Romanian
Ministry of Research and Innovation, CNCS–UEFISCDI, project number PN-III-
P4-ID-PCE-2016-0130, within PNCDI III.



IMPLICIT EVOLUTION INCLUSIONS 631

REFERENCES

[1] K. Andrews, K. Kuttler and M. Schillor, Second order evolution equations with dynamic
boundary conditions, J. Math. Anal. Appl., 197 (1996), 781–795.

[2] V. Barbu, Nonlinear Semigroups and Differential Equations in Banach Spaces, Noordhoff,

Leyden, The Netherlands, 1976.
[3] V. Barbu and A. Favini, Existence for implicit differential equations in Banach spaces, Atti

Accad. Naz. Lincei Cl. Sci. Fiz. Mat. Natur. Rend. Mat. Appl., 3 (1992), 203–215.

[4] V. Barbu and A. Favini, Existence for an implicit differential equation, Nonlinear Anal., 32
(1998), 33–40.

[5] E. DiBenedetto and R. Showalter, A pseudo-parabolic variational inequality and Stefan prob-

lem, Nonlinear Anal., 6 (1982), 279–291.
[6] A. Favini and A. Yagi, Multivalued linear operators and degenerate evolution equations, Ann.

Mat. Pura Appl., 163 (1993), 353–384.

[7] L. Gasinski and N. S. Papageorgiou, Nonlinear Analysis, Series in Mathematical Analysis and
Applications, 9. Chapman & Hall/CRC, Boca Raton, FL, 2006.

[8] L. Gasinski and N. S. Papageorgiou, Anti-periodic solutions for nonlinear evolution inclusions,
J. E Equ., 18 (2018), 1025–1047.

[9] S. Hu and N. S. Papageorgiou, Handbook of Multivalued Analysis. Volume I: Theory, Mathe-

matics and its Applications, 419, Kluwer Academic Publishers, Dordrecht, The Netherlands,
1997.
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