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Abstract
In this paper, we study the followingweighted nonlocal systemwith critical exponents related
to the Stein–Weiss inequality

⎧
⎪⎪⎨

⎪⎪⎩

−�u = 1

|x |α
(∫

RN

v p(y)

|x − y|μ|y|α dy

)

uq ,

−�v = 1

|x |α
(∫

RN

uq(y)

|x − y|μ|y|α dy

)

v p,

By using moving plane arguments in integral form, we obtain symmetry, regularity and
asymptotic properties, as well as sufficient conditions for the nonexistence of solutions to
the nonlocal Stein–Weiss system.
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1 Introduction

Under suitable symmetry hypotheses, notably radial symmetry, classical estimates and
embedding properties of function spaces admit substantial improvements. For instance, the
following radial estimate of Strauss [32] establishes that all radial functions u ∈ H1(RN )

(N ≥ 2) satisfy

|x |(N−1)/2|u(x)| ≤ C ‖∇u‖L2 , |x | ≥ 1.

This inequality shows that a control on the H1 norm of u gives a pointwise bound and decay
of u, which are false in the general case. This phenomenon is quite natural, in the sense that
symmetric functions can be regarded as functions defined on lower dimensional manifolds,
hence satisfying stronger estimates, extended by the action of some group of symmetries.
Radial functions are essentially functions on R+, while the norms on RN introduce suitable
dimensional weights connected to the volume form. Related weighted interpolation inequal-
ities are due to Caffarelli et al. [4].

A central role in the analysis developed in this paper is played by the fractional integral

(Tμφ)(x) =
∫

RN

φ(y)

|x − y|μ dy, 0 < μ < N .

Weighted L p estimates for Tμ is a fundamental problem of harmonic analysis, with a wide
range of applications. Starting from the classical one-dimensional case studied by Hardy and
Littlewood, an exhaustive analysis has been made on the admissible classes of weights and
ranges of indices (see [30] and the references therein). In the special case of power weights
the optimal result is due to Stein and Weiss [31], which established the following weighted
Hardy–Littlewood–Sobolev inequality, which is now called the Stein–Weiss inequality.

Proposition 1.1 (Weighted HLS inequality [27]) Let 1 < t, r < ∞, 0 < μ < N, α + β ≥ 0
and 0 < α + β + μ ≤ N, f ∈ Lt (RN ), and h ∈ Lr (RN ). There exists a sharp constant
Ct,r ,α,β,μ,N such that

∫

RN

∫

RN

f (x)h(y)

|x |α|x − y|μ|y|β dxdy ≤ C(t, r , N , μ, α, β)‖ f ‖t‖h‖r ,
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where

1

t
+ 1

r
+ α + β + μ

N
= 2

and

1 − 1

t
− μ

N
<

α

N
< 1 − 1

t
,

where C is independent of f and h. Moreover, for any h ∈ Lr (RN ), we have
∥
∥
∥
∥

∫

RN

h(y)

|x |α|x − y|μ|y|β dy‖s ≤ C(s, N , μ, α, β)‖h

∥
∥
∥
∥

r
,

where s satisfies 1 + 1
s = 1

r + α+β+μ
N and α

N < 1
s <

α+μ
N .

This inequality reduces to the classical Hardy–Littlewood–Sobolev inequality if α = β =
0. In this case, Lieb [28] applied the Riesz rearrangement inequalities to prove that the best
constant for the classical Hardy–Littlewood–Sobolev inequality can be achieved by some
extremals. Lieb also classified the solutions of the integral equation

u(x) =
∫

RN

u(y)
N+τ
N−τ

|x − y|N−τ
dy, x ∈ R

N (1.1)

as an open problem. Dou and Zhu [12] classified the extremal functions of the reversed HLS
inequality and they computed the best constant. In fact, Eq. (1.1) arises as an Euler–Lagrange
equation for a functional under a constraint in the context of the Hardy–Littlewood–Sobolev
inequality and is closely related to the well-known fractional equation

(−�)
τ
2 u = u

N+τ
N−τ , x ∈ R

N . (1.2)

When N ≥ 3, τ = 2, Eq. (1.2) goes back to

− �u = u
N+2
N−2 , x ∈ R

N , (1.3)

which is a special case of the Lane–Emden equation

− �u = u p, x ∈ R
N . (1.4)

The classification of the solutions of Eq. (1.3) and the related best Sobolev constant play
an important role in the Yamabe problem, which is the prescribed scalar curvature problem
on Riemannian manifolds. It is well known that for 0 < p < N+2

N−2 , Gidas and Spruck [16]
proved that Eq. (1.4) has no positive solutions. This result is optimal in the sense that for any
p ≥ N+2

N−2 , there are infinitely many positive solutions to (1.4). Gidas et al. [15], Caffarelli et
al. [3] proved the symmetry and uniqueness of the positive solutions respectively. Chen and
Li [6], Li [21] simplified the results above as an application of the moving plane method. Wei
and Xu [33] generalized the classification of the solutions of the more general Eq. (1.2) with
τ being any even number between 0 and N . Later on, Chen et al. [8] developed the method
of moving planes in integral form in order to prove that any critical points of the functional is
radially symmetric and they gave a positive answer to the Lieb open problem involving Eq.
(1.1). Li [24] also studied the regularity of the locally integrable solution for problem (1.1)
and used the moving sphere method to establish the classification of solutions.

For the doubly weighted case, Lieb [28] proved the existence of a sharp constant, provided
that either one of r and t equals 2 or r = t . For 1 < r , t < ∞ with 1

r + 1
t = 1, the sharp
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constant is given by Beckner in [1, 2]. It is well known that the corresponding Euler-Lagrange
equations for the Stein–Weiss inequality are the system of integral equations

⎧
⎪⎪⎨

⎪⎪⎩

u(x) =
∫

RN

vq(y)

|x |α|x − y|μ|y|β dy,

v(x) =
∫

RN

u p(y)

|x |β |x − y|μ|y|α dy,

(1.5)

where 0 < p, q < +∞, 0 < μ < N , α
N < 1

p+1 <
μ+α

N and 1
p+1 + 1

q+1 = μ+α+β
N . In [10]

and [17], the authors obtained the symmetry, monotonicity and the optimal integrability of
solutions to problem (1.5). In the special case when μ = N − 2, since the integral system
(1.5) is equivalent to the nonlinear singular PDE system

⎧
⎪⎪⎨

⎪⎪⎩

−�(|x |αu(x)) = vq(x)

|x |β ,

−�(|x |βv(x)) = u p(x)

|x |α ,

(1.6)

Chen and Li [11] proved the uniqueness of the solutions and classified solutions of problem
(1.6) if α = β and p = q . Next, Lei et al. [20] studied the asymptotic radial symmetry and
growth estimates of positive solutions for (1.5). Liu and Lei [26] discussed the nonexistence
results for (1.5), and they also considered the existence of positive solutions for the following
weighted system with double bounded coefficients

⎧
⎪⎪⎨

⎪⎪⎩

u(x) = c1(x)

∫

RN

vq(y)

|x |α|x − y|μ|y|β dy,

v(x) = c2(x)

∫

RN

u p(y)

|x |β |x − y|μ|y|α dy,

(1.7)

where 0 < p, q < +∞, 0 < μ + α + β < N , α
N < 1

p+1 <
μ+α

N and β
N < 1

q+1 <
μ+β

N .
More generally, Chen et al. [5] established the symmetry and regularity results related to

the weighted Hardy–Sobolev type system
⎧
⎪⎪⎨

⎪⎪⎩

u(x) =
∫

RN

f1(u(y), v(y))

|x |α|x − y|μ|y|β dy,

v(x) =
∫

RN

f2(u(y), v(y))

|x |β |x − y|μ|y|α dy,

(1.8)

where

f1(u(y), v(y)) = λ1u p1(y) + μ1v
q1(y) + γ1uα1(y)vβ1(y),

f2(u(y), v(y)) = λ2u p2(y) + μ2v
q2(y) + γ2uα2(y)vβ2(y),

and nonnegative constants λi , μi , γi (i = 1, 2) are not equal to zero simultaneously. For the
special case of (1.8) corresponding to α = β = 0, there are some contributions on the system
of integral equations

⎧
⎪⎪⎨

⎪⎪⎩

u(x) =
∫

RN

u p(y)vq(y)

|x − y|N−γ
dy,

v(x) =
∫

RN

uq(y)v p(y)

|x − y|N−γ
dy,

(1.9)
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where 0 < γ < N , 1 ≤ p, q ≤ N+γ
N−γ

with p + q ≤ N+γ
N−γ

. When γ = 2, Li and Ma [22]
proved the symmetry and uniqueness of the positive solutions for (1.9) with critical exponents
p + q = N+2

N−2 . Furthermore, Yu [34] studied the more general integral system
⎧
⎪⎪⎨

⎪⎪⎩

u(x) =
∫

RN

f (u(y), v(y))

|x − y|N−γ
dy,

v(x) =
∫

RN

g(u(y), v(y))

|x − y|N−γ
dy,

(1.10)

where f , g satisfy the following monotonicity conditions: f (s1, s2) and g(s1, s2) are nonde-
creasing in si for fixed s j and, additionally,

f (s1,s2)
s

p1
1 s

q1
2

and g(s1,s2)
s

p2
1 s

q2
2

are nondecreasing in si for

fixed s j with pi , qi ≥ 0 and pi + qi = N+γ
N−γ

.
From the weighted Hardy–Littlewood–Sobolev inequality with α = β and t = r , assum-

ing that |u|p ∈ Lt (RN ), we easily get the following inequality
∫

RN

∫

RN

|u(x)|p|u(y)|p

|x |α|x − y|μ|y|α dxdy ≤ Ct,N ,μ,α‖u‖p
pt‖u‖p

pt ,

where t satisfies

2

t
+ 2α + μ

N
= 2.

Furthermore, if u ∈ H1(RN ), from the Sobolev embedding theorems, we have

2 ≤ qt ≤ 2N

N − 2
,

and hence

2 − 2α + μ

N
≤ p ≤ 2N − 2α − μ

N − 2
.

Accordingly, the critical exponent 2∗
α,μ := 2N−2α−μ

N−2 (2∗α,μ := 2− 2α+μ
N ) is called the upper

(lower) critical exponent in the sense of the weighted Hardy–Littlewood–Sobolev inequality.
It is obvious that

∫

RN

∫

RN

|u(x)|2∗
α,μ |u(y)|2∗

α,μ

|x |α|x − y|μ|y|α dxdy ≤ C(N , μ, α)‖u‖2·2
∗
α,μ

2N
N−2

≤ C(N , μ, α)‖∇u‖2·2
∗
α,μ

2 .

(1.11)

Therefore, we see that the best constant problem of (1.11) is related to the following critical
nonlocal Hartree equation

− �u = 1

|x |α
(∫

RN

|u(y)|2∗
α,μ

|x − y|μ|y|α dy

)

|u|2∗
α,μ−2u, x ∈ R

N , (1.12)

which is a special case of the weighted Choquard equation

− �u = 1

|x |α
(∫

RN

|u(y)|p(y)

|x − y|μ|y|α dy

)

|u|p−2u, x ∈ R
N . (1.13)

The classification of solutions to problem (1.13) has attracted a lot of interest recently. If
α = 0, Eq. (1.13) reduces to

− �u =
(∫

RN

|u(y)|p

|x − y|μ dy

)

|u|p−2u, x ∈ R
N . (1.14)
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Miao et al. [29] established the existence of solutions of (1.14) if p = 2, μ = 4 and N ≥ 5.
For the symmetry and uniqueness of solutions for the nonlocal Hartree equation, by using the
moving plane method introduced in [8, 9], Liu [25], Lei [19] and Du and Yang [14] classified
the positive solutions of problem (1.14) with the critical exponent 2N−μ

N−2 . Moreover, Du and
Yang [14] also proved the nondegeneracy of the unique solutions for the equation when μ

is close to N . As applications, Ding et al. [35] investigated the existence of semiclassical
solutions of the critical Choquard equation with critical frequency.

The readers may turn to [18, 19] and the references therein for more backgrounds about
the Hartree type equations. For (1.13) with α 	= 0, the authors in [13] proved the existence of
positive ground state solutions the critical equation by a nonlocal version of the concentration-
compactness principle. They also established the regularity of positive solutions and proved
the symmetry of these solutions by the moving plane method in integral form [7]. Finally,
we recall that Li et al. [23] studied the equation without variational structure and classified
the nonpositive solutions.

2 Main results

This paper is devoted to the study of some qualitative properties to the positive solutions of
three nonlocal elliptic systems with weighted Stein–Weiss type convolution part. We first
consider the following nonlocal system without a variational structure

⎧
⎪⎪⎨

⎪⎪⎩

−�u = 1

|x |α
(∫

RN

v p(y)

|x − y|μ|y|α dy

)

uq ,

−�v = 1

|x |α
(∫

RN

uq(y)

|x − y|μ|y|α dy

)

v p,

(2.1)

where N ≥ 3, α ≥ 0, 0 < μ < N , p, q > 1 and 0 < 2α + μ ≤ N .
In Sect. 3, by investigating an equivalent integral systemwithRiesz potential,we are able to

prove some qualitative properties of the positive solutions for problem (2.1). In fact, we obtain
the symmetry result for the positive solutions of (2.1) via the moving plane arguments of
integral form, which can be easily applied to more complicated equations without maximum
principles.

Theorem 2.1 Suppose that N ≥ 3, α ≥ 0, 0 < μ < N, p, q > 1 and 0 < 2α + μ ≤ N.
If (u, v) ∈ Ls0(RN ) × Ls0(RN ) is a pair of positive solutions of system (2.1) with s0 =

N (p+q−1)
N+2−2α−μ

, then u and v are radially symmetric and decreasing about the origin.

If p + q = 2 · 2∗
α,μ − 1, then s0 = 2N

N−2 , and so (u, v) ∈ L2∗
(RN ) × L2∗

(RN ). Assuming
that p, q lie in some suitable intervals depending on the parameters α, μ, then we can apply
the regularity lifting lemma [9] to prove that the positive integral solutions possess better
integral properties.

Theorem 2.2 Suppose that N = 3, 4, 5, 6, α ≥ 0, 0 < μ < N and N − 2 ≤ 2α + μ ≤ N.

Let (u, v) ∈ L
2N

N−2 (RN ) × L
2N

N−2 (RN ) be a pair of positive solutions of system (2.1), where

p, q satisfy 2(N−2α−μ)
N−2 ≤ p, q ≤ min

{
4

N−2 ,
N+6−2(2α+μ)

N−2

}
and p + q = 2 · 2∗

α,μ − 1. Then

(u, v) ∈ Ls(RN ) × Ls(RN ) with

s ∈
(

N

N − 2
,+∞

)

.
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By using the symmetry and regularity results obtained above, we establish the asymptotic
behaviour of solutions at infinity.

Theorem 2.3 Suppose that N = 3, 4, 5, 6, α ≥ 0, 0 < μ < N, p, q > 1 and N − 2 ≤ 2α +
μ ≤ N. Let (u, v) ∈ L

2N
N−2 (RN )× L

2N
N−2 (RN ) be a pair of positive solutions of system (2.1).

If p, q satisfy p+q = 2·2∗
α,μ−1 and 2(N−2α−μ)

N−2 ≤ p, q ≤ min
{

4
N−2 ,

N+2+2(N+2−2α−μ)
N−2

}
,

then the following properties hold.

(1) If 0 ≤ α < 2, then both u(x) and v(x) are bounded and, moreover, we have u(x),
v(x) ∈ C∞(RN − {0}).

(2) For large |x |, we have u(x) � C
|x |N−2 and v(x) � C

|x |N−2 .

Next, we are interested in the following nonlocal system with variational structure
⎧
⎪⎪⎨

⎪⎪⎩

−�u = 1

p|x |α
(∫

RN

v p(y)

|x − y|μ|y|α dy

)

uq−1,

−�v = 1

q|x |α
(∫

RN

uq(y)

|x − y|μ|y|α dy

)

v p−1,

(2.2)

where N ≥ 3, α ≥ 0, 0 < μ < N , p, q > 1 and 0 < 2α + μ ≤ N . Notice that system (2.2)
becomes (1.13) if p = q and u = v, but problem (2.2) has not been well studied if p 	= q .

In Sect. 4, we are concerned with the nonexistence of positive solutions to system (2.2),
provided that p +q = 2 ·2∗

α,μ, which is called a critical condition. We first prove that system
(2.2) has no positive solutions in the subcritical case.

Theorem 2.4 Assume that N ≥ 3, α ≥ 0, 0 < μ < N, p, q > 1 and 0 < 2α + μ ≤ N.
Let (u, v) ∈ W 2,2

loc (RN ) × W 2,2
loc (RN ) be a pair of solutions of (2.2). If p + q < 2 · 2∗

α,μ, then
u ≡ v ≡ 0.

Analogously to the arguments for problem (2.1), we can also draw the conclusions for the
system (2.2), such as symmetry, regularity and asymptotic behavior. Here we shall assume
that u, v are integrable solutions belonging to Ls0(RN ) with s0 = N (p+q−2)

N+2−2α−μ
.

We establish the following symmetry result.

Theorem 2.5 Suppose that N ≥ 3, α ≥ 0, 0 < μ < N, p, q ≥ 2 and 0 < 2α + μ ≤ N.
Let (u, v) ∈ Ls0(RN ) × Ls0(RN ) be a pair of positive solutions of system (2.2) with s0 =

N (p+q−2)
N+2−2α−μ

. Then u and v are radially symmetric and decreasing about the origin.

As we can see, for the critical case p +q = 2 ·2∗
α,μ, we get (u, v) ∈ L2∗

(RN )× L2∗
(RN ).

Hence, arguing in the same way as Theorems 2.2 and 2.3, the regularity and decay properties
are stated as follows.

Theorem 2.6 Suppose that N = 3, 4, 5, 6, α ≥ 0, 0 < μ < N, p, q ≥ 2 and N − 2 ≤ 2α +
μ ≤ N. Let (u, v) ∈ L

2N
N−2 (RN )×L

2N
N−2 (RN ) be a pair of positive solutions of system (2.2). If

p, q satisfy p+q = 2·2∗
α,μ and 2(N−2α−μ)

N−2 ≤ p−1, q−1 ≤ min
{

4
N−2 ,

N+2+2(N+2−2α−μ)
N−2

}
,

then (u, v) ∈ Ls(RN ) × Ls(RN ) with

s ∈
(

N

N − 2
,+∞

)

.

Theorem 2.7 Suppose that N = 3, 4, 5, 6, α ≥ 0, 0 < μ < N, p, q ≥ 2 and N − 2 ≤ 2α +
μ ≤ N. Let (u, v) ∈ L

2N
N−2 (RN )×L

2N
N−2 (RN ) be a pair of positive solutions of system (2.2). If

123
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p, q satisfy p+q = 2·2∗
α,μ and 2(N−2α−μ)

N−2 ≤ p−1, q−1 ≤ min
{

4
N−2 ,

N+2+2(N+2−2α−μ)
N−2

}
,

then the following properties hold true.

(1) If 0 ≤ α < 2, then both u(x) and v(x) are bounded and, moreover, we have u, v ∈
C∞(RN − {0}).

(2) For large |x |, we have u(x) � C
|x |N−2 and v(x) � C

|x |N−2 .

Finally, we study the following Hamiltonian-type system
⎧
⎪⎪⎨

⎪⎪⎩

−�u = 1

|x |α1
(∫

RN

v p(y)

|x − y|μ1 |y|α1 dy

)

v p−1,

−�v = 1

|x |α2
(∫

RN

uq(y)

|x − y|μ2 |y|α2 dy

)

uq−1,

(2.3)

where N ≥ 3, 0 < μ1, μ2 < N , α1, α2 ≥ 0, 0 < 2α1 + μ1 ≤ N , 0 < 2α2 + μ2 ≤ N and
p, q > 1.

In the last section, we verify the symmetry of positive solutions of the Hamiltonian system
(2.3) with convolution part.

Theorem 2.8 Suppose that N ≥ 3, αi ≥ 0, 0 < μi < N and 0 < 2αi + μi ≤ min {4, N },
i = 1, 2. If (u, v) ∈ D1,2(RN ) × D1,2(RN ) is a pair of positive solutions of (2.3) and

(p, q) =
(
2N−2α1−μ1

N−2 ,
2N−2α2−μ2

N−2

)
, then u and v are radially symmetric and decreasing

about the origin.

An outline of the paper is as follows. In Sect. 3 we mainly focus on the nonlocal Hartree
system (2.1). By translating the equation into an equivalent integral system, we apply a
regularity lifting lemma to obtain the regularity of the solutions and themoving planemethods
in integral form to study the symmetry of the positive solutions. Besides these, the decay
at infinity is also shown by careful estimates. In Sect. 4 we will study system (2.2). Firstly,
by establishing a Pohožaev identity, we prove a non-existence result. In this part we will
also prove the regularity of the solutions by some iterative arguments and singular integral
analysis. Finally, we prove the symmetry of solutions for the Hamiltonian system (2.3). This
is done by using the moving plane method in integral form.

3 Qualitative properties for the nonlocal system (2.1)

In this section, we discuss the qualitative properties of system (2.1) with the critical condition
p + q = 2 · 2∗

α,μ − 1, including symmetry, regularity and asymptotic behavior at infinity. It
is worth noting that system (2.1) is equivalent to the following integral system in R

N ,
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

z(x) =
∫

RN

v p(y)

|x |α|x − y|μ|y|α dy,

h(x) =
∫

RN

uq(y)

|x |α|x − y|μ|y|α dy,

u(x) = RN

∫

RN

z(y)uq(y)

|x − y|N−2 dy,

v(x) = RN

∫

RN

h(y)v p(y)

|x − y|N−2 dy,

(3.1)

where RN = Γ ( N−2
2 )

4π
N
2

.
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3.1 Symmetry

In this subsection, we establish the symmetry of the positive solutions for (3.1) by means of
the moving plane method in integral forms developed by Chen et al. [8]. We start this part
with some basic definitions. For λ ∈ R, define

�λ = {x = (x1, . . . , xn) | x1 < λ} , xλ = (2λ − x1, . . . , xn),

uλ(x) = u(xλ), vλ(x) = v(xλ), zλ(x) = z(xλ), hλ(x) = h(xλ),

and

�u
λ = {x ∈ �λ | u(x) > uλ(x)} , �v

λ = {x ∈ �λ | v(x) > vλ(x)} ,

�z
λ = {x ∈ �λ | z(x) > zλ(x)} , �h

λ = {x ∈ �λ | h(x) > hλ(x)} .

By straightforward computation we obtain

u(x) =RN

∫

�λ

z(y)uq(y)

|x − y|N−2 dy + RN

∫

RN −�λ

z(y)uq(y)

|x − y|N−2 dy

=RN

∫

�λ

z(y)uq(y)

|x − y|N−2 dy + RN

∫

�λ

z(yλ)uq(yλ)

|x − yλ|N−2 dy,

and

uλ(x) =RN

∫

�λ

z(y)uq(y)

|xλ − y|N−2 dy + RN

∫

RN −�λ

z(y)uq(y)

|xλ − y|N−2 dy

=RN

∫

�λ

z(y)uq(y)

|xλ − y|N−2 dy + RN

∫

�λ

z(yλ)uq(yλ)

|xλ − yλ|N−2 dy.

Since |xλ − yλ| = |x − y| and |xλ − y| = |x − yλ|, it follows that

u(x) − uλ(x) = RN

∫

�λ

(
1

|x − y|N−2 − 1

|xλ − y|N−2 )(zuq − zλuq
λ)dy, (3.2)

and

v(x) − vλ(x) = RN

∫

�λ

(
1

|x − y|N−2 − 1

|xλ − y|N−2 )(hv p − hλv
p
λ )dy. (3.3)

For p, q > 1, we have the following estimates.

Lemma 3.1 Under the assumption of Theorem 2.1, for any λ < 0, there exists a constant
C > 0 such that

‖u − uλ‖Ls0 (�u
λ ) ≤ C‖v‖p

Ls0 (�u
λ )

‖u‖q−1
Ls0 (�u

λ )
‖u − uλ‖Ls0 (�u

λ )

+ C‖u‖q
Ls0 (�u

λ )
‖v‖p−1

Ls0 (�v
λ)

‖v − vλ‖Ls0 (�v
λ), (3.4)

and

‖v − vλ‖Ls0 (�v
λ) ≤ C‖u‖q

Ls0 (�v
λ)

‖v‖p−1
Ls0 (�v

λ)
‖v − vλ‖Ls0 (�v

λ)

+ C‖v‖p
Ls0 (�v

λ)
‖u‖q−1

Ls0 (�u
λ )

‖u − uλ‖Ls0 (�u
λ ). (3.5)
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Proof For any x ∈ �λ, notice |xλ − y| ≥ |x − y|, by using the mean value theorem, from
(3.2) and (3.3), we easily deduce

u(x) − uλ(x) ≤ RN q
∫

�u
λ

zuq−1(u − uλ)

|x − y|N−2 dy + RN

∫

�z
λ

uq(z − zλ)

|x − y|N−2 dy,

and

v(x) − vλ(x) ≤ RN p
∫

�v
λ

hv p−1(v − vλ)

|x − y|N−2 dy + RN

∫

�h
λ

v p(h − hλ)

|x − y|N−2 dy.

In virtue of (u, v) ∈ Ls0(RN )×Ls0(RN )with s0 = N (p+q−1)
N+2−2α−μ

, we suppose that z ∈ Lk(RN ),

h ∈ Lt (RN ), where k and t satisfy

1

k
+ q

s0
= N + 2s0

Ns0
and

1

t
+ p

s0
= N + 2s0

Ns0
. (3.6)

By applying the HLS inequality and the Hölder inequality, we have

‖u − uλ‖Ls0 (�u
λ ) ≤ C‖zuq−1(u − uλ)‖

L
Ns0

N+2s0 (�u
λ )

+ C‖uq(z − zλ)‖
L

Ns0
N+2s0 (�z

λ)

≤ C‖z‖Lk (�u
λ )‖u‖q−1

Ls0 (�u
λ )

‖u − uλ‖Ls0 (�u
λ ) + C‖z − zλ‖Lk (�z

λ)‖u‖q
Ls0 (�u

λ )
.

(3.7)

From (3.6), we obtain

pNk

N + (N − 2α − μ)k
= s0 and

q Nt

N + (N − 2α − μ)t
= s0.

Analogously, we have

h(x) − hλ(x) =
∫

�λ

1

|x − y|μ
(

uq

|x |α|y|α − uq
λ

|xλ|α|yλ|α
)

+ 1

|xλ − y|μ
(

uq
λ

|x |α|yλ|α − uq

|xλ|α|y|α
)

dy

≤
∫

�λ

1

|x |α
(

1

|x − y|μ − 1

|xλ − y|μ
) (

uq

|y|α − uq
λ

|yλ|α
)

dy

≤
∫

�u
λ

uq − uq
λ

|x |α|x − y|μ|y|α dy

≤ q
∫

�u
λ

uq−1(u − uλ)

|x |α|x − y|μ|y|α dy,

(3.8)
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and

z(x) − zλ(x) =
∫

�λ

1

|x − y|μ
(

v p

|x |α|y|α − v
p
λ

|xλ|α|yλ|α
)

+ 1

|xλ − y|μ
(

v
p
λ

|x |α|yλ|α − v p

|xλ|α|y|α
)

dy

≤
∫

�λ

1

|x |α
(

1

|x − y|μ − 1

|xλ − y|μ
) (

v p

|y|α − v
p
λ

|yλ|α
)

dy

≤
∫

�v
λ

v p − v
p
λ

|x |α|x − y|μ|y|α dy

≤ p
∫

�v
λ

v p−1(v − vλ)

|x |α|x − y|μ|y|α dy,

(3.9)

from which we can deduce that

‖h − hλ‖Lt (�h
λ ) ≤ C‖u‖q−1

Ls0 (�u
λ )

‖u − uλ‖Ls0 (�u
λ ), (3.10)

and

‖z − zλ‖Lk (�z
λ) ≤ C‖v‖p−1

Ls0 (�v
λ)

‖v − vλ‖Ls0 (�v
λ). (3.11)

Additionally, using the weighted HLS inequality again, we have

‖z(x)‖Lk (�u
λ ) ≤ C‖v p‖

L
Nk

N+(N−2α−μ)k (�u
λ )

≤ C‖v‖p
Ls0 (�u

λ )
, (3.12)

and

‖h(x)‖Lt (�v
λ) ≤ C‖uq‖

L
Nt

N+(N−2α−μ)t (�v
λ)

≤ C‖u‖q
Ls0 (�v

λ)
. (3.13)

We deduce that z ∈ Lk(�u
λ) and h ∈ Lt (�v

λ).
Combining (3.11), (3.12) with (3.7), we see that (3.4) holds. Similarly, we obtain

‖v − vλ‖Ls0 (�v
λ) ≤ C‖hv p−1(v − vλ)‖

L
Ns0

N+2s0 (�v
λ)

+ C‖v p(h − hλ)‖
L

Ns0
N+2s0 (�h

λ )

≤ C‖h‖Lt (�v
λ)‖v‖p−1

Ls0 (�v
λ)

‖v − vλ‖Ls0 (�v
λ) + C‖h − hλ‖Lt (�h

λ )‖v‖p
Ls0 (�v

λ)
.

(3.14)

Thus, inserting (3.10) and (3.13) into (3.14), we complete the proof. ��
Lemma 3.2 Under the assumption of Theorem 2.1, there exists M > 0 such that for any
λ < −M, we have

u(x) ≤ uλ(x), v(x) ≤ vλ(x) ∀x ∈ �λ. (3.15)

Proof Since u, v are integrable, letting λ → −∞, we have

‖v‖p
Ls0 (�u

λ )
‖u‖q−1

Ls0 (�u
λ )

≤ 1

2C
,

‖u‖q
Ls0 (�v

λ)
‖v‖p−1

Ls0 (�v
λ)

≤ 1

2C
,

‖u‖q
Ls0 (�u

λ )
‖v‖p−1

Ls0 (�v
λ)

≤ 1

4C
,
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and

‖v‖p
Ls0 (�v

λ)
‖u‖q−1

Ls0 (�u
λ )

≤ 1

4C
,

where the constant C is the same as in Lemma 3.1. Hence, inserting those inequalities into
(3.4) and (3.5), as λ → −∞, it follows that

‖u(x) − uλ(x)‖Ls (�u
λ ) = 0, ‖v(x) − vλ(x)‖Lr (�v

λ) = 0,

which shows that �u
λ = �v

λ = ∅. Therefore, there exists M > 0 such that for any λ < −M ,
relation (3.15) holds. ��

We now can move the plane Tλ = {
x ∈ R

N |x1 = λ
}
to the right as long as (3.15) is

satisfied. Naturally, denote

λ0 = sup
{
λ | u(x) ≤ uρ(x), v(x) ≤ vρ(x), x ∈ �ρ, ρ ≤ λ

}
.

We observe that λ0 < +∞.
Next, we deduce the following auxiliary property.

Lemma 3.3 Under the assumption of Theorem 2.1, then for any λ0 < 0, we have

u(x) ≡ uλ0(x), v(x) ≡ vλ0(x) ∀x ∈ �λ0 . (3.16)

Proof Suppose that at λ0 < 0, there holds u(x) ≤ uλ0(x) and v(x) ≤ vλ0(x), but u(x) 	≡
uλ0(x) or v(x) 	≡ vλ0(x) on �λ0 .

We claim that there exists ε > 0 such that u(x) ≤ uλ(x) and v(x) ≤ vλ(x) on �λ for any
λ ∈ [λ0, λ0 + ε).

Indeed, for any η > 0, we can choose R > 0 large enough such that

‖v‖p
Ls0 (RN −BR(0)))

‖u‖q−1
Ls0 (RN −BR(0)))

≤ η

2
(3.17)

and

‖u‖q
Ls0 (RN −BR(0)))

‖v‖p−1
Ls0 (RN −BR(0)))

≤ η

2
. (3.18)

For such R > 0 and λ > λ0, we show that the measures of the sets �u
λ ∩ BR(0) and

�v
λ ∩ BR(0) go to 0 as λ → λ0.
Assume that

u(x) 	≡ uλ0(x) on �λ0 .

From (3.8), we obtain

h(x) − hλ0(x) < 0 on �λ0 .

Thus, by (3.3), we yield

v(x) − vλ0(x) < 0 on �λ0 .

Combining with (3.9), it follows that

z(x) − zλ0(x) < 0 on �λ0 .

From (3.2), we have

u(x) − uλ0(x) < 0 on �λ0 .
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Naturally, for any δ > 0, we define

Dδ = {
x ∈ �λ0 ∩ BR(0) : uλ0(x) − u(x) > δ

}
,

Eδ = {
x ∈ �λ0 ∩ BR(0) : uλ0(x) − u(x) ≤ δ

}
,

and

Gλ = (�λ − �λ0) ∩ BR(0).

Obviously, we get

lim
δ→0

L(Eδ) = 0, (3.19)

and

lim
λ→λ0

L(Gλ) = 0, (3.20)

where L is the Lebesgue measure. For any x ∈ �u
λ ∩ Dδ , since

u(x) − uλ(x) = u(x) − uλ0(x) + uλ0(x) − uλ(x) > 0,

we have

uλ0(x) − uλ(x) > uλ0(x) − u(x) > δ.

Hence, by the Chebyshev inequality, for fixed δ > 0, we obtain that

L(�u
λ ∩ Dδ) ≤ 1

δs0

∫

�u
λ∩Dδ

|uλ0(x) − uλ(x)|s0dx ≤ 1

δs0

∫

BR(0)
|uλ0(x) − uλ(x)|s0dx → 0

(3.21)

if λ → λ0. Notice that

�u
λ ∩ BR(0) ⊂ (�u

λ ∩ Dδ) ∪ Eδ ∪ Gλ,

From (3.19)–(3.21), as λ → λ0 and δ → 0, we can easily get

L(�u
λ ∩ BR(0)) → 0. (3.22)

Analogously, we obtain

L(�v
λ ∩ BR(0)) → 0. (3.23)

Combining (3.22), (3.23), (3.17) with (3.18), there exists ε > 0 such that for any λ ∈
[λ0, λ0 + ε),

‖v‖p
Ls0 (�u

λ )
‖u‖q−1

Ls (�u
λ )

≤ 1

2C
,

‖u‖q
Ls0 (�v

λ)
‖v‖p−1

Ls0 (�v
λ)

≤ 1

2C
,

‖u‖q
Ls0 (�u

λ )
‖v‖p−1

Ls0 (�v
λ)

≤ 1

4C
,

and

‖v‖p
Ls0 (�v

λ)
‖u‖q−1

Ls0 (�u
λ )

≤ 1

4C
,
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where the constant C is the same as in Lemma 3.1. By the same arguments as above, we
can conclude that �u

λ = �v
λ = ∅. Therefore, there exists ε > 0 such that u(x) ≤ uλ(x) and

v(x) ≤ vλ(x) on �λ for any λ ∈ [λ0, λ0 + ε). This contradicts the definition of λ0, hence
we obtain u(x) ≡ uλ0(x) on �λ0 .

Similarly, if v(x) 	≡ vλ0(x) on�λ0 , which is also a contradiction. The proof is completed.
��

3.2 Proof of Theorem 2.1

Clearly, we can also move the plane from +∞ to left, and define

λ1 = inf
{
λ | u(x) ≤ uρ(x), v(x) ≤ vρ(x), x ∈ �

′
ρ, ρ ≥ λ

}
,

where �
′
ρ = {

x ∈ R
N |x1 > ρ

}
.

If λ0 = λ1 	= 0, then both u and v are radially symmetric and decreasing about the plane
x1 = λ0, which implies u(x) ≡ uλ0(x) and v(x) ≡ vλ0(x) on�λ0 . Since |x − y| < |xλ0 − y|
and |y| > |yλ0 |, we deduce from (3.9) that

z(x) − zλ0(x) ≤
∫

�λ0

1

|x |α
(

1

|x − y|μ − 1

|xλ0 − y|μ
) (

1

|y|α − 1

|yλ0 |α
)

v
p
λ0

dy < 0.

Therefore, we obtain that

0 = u(x) − uλ0(x) = RN

∫

�λ0

(
1

|x − y|N−2 − 1

|xλ0 − y|N−2 )(z − zλ0)u
q
λ0

dy < 0,

which is impossible. Hence, we get λ0 = λ1 = 0. Notice that the direction of x1 is arbitrary,
hence u, v are radially symmetric and decreasing about origin. ��

3.3 Regularity

Since the integrability and the regularity play an essential role in estimating the decay rates
of u(x) if |x | → ∞, it is necessary for us to discuss the integrability of solutions to system
(2.1) by applying the regularity lifting theorem (see in [9,Theorem 3.3.1]) to (2.1).

Lemma 3.4 Let X and Y be Banach spaces with norms ‖ · ‖X and ‖ · ‖Y , respectively. The
subspace Z = X ∩ Y of X and Y , is endowed with a new norm by

‖ · ‖Z = p
√

‖ · ‖p
X + ‖ · ‖p

Y , p ∈ [1,∞] .

Suppose that T is a contraction map from Banach space X into itself and from Banach space
Y into itself. If f ∈ X and there exists a function g ∈ Z = X ∩ Y such that f = T f + g,
then f also belongs to Z.

For some constant A > 0, we define

u A(x) =
{

u(x), u(x) > A or |x | > A;
0, otherwise.

and u B(x) = u(x) − u A(x). Similarly, we can define vA(x) and vB(x). Then we define the
functions

Fu(m) = RN

∫

RN

uq(y)m(y)

|x − y|N−2 dy,
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Tv(w) = RN

∫

RN

v p(y)w(y)

|x − y|N−2 dy,

Wu(a) =
∫

RN

uq−1(y)a(y)

|x |α|x − y|μ|y|α dy,

Gv(b) =
∫

RN

v p−1(y)b(y)

|x |α|x − y|μ|y|α dy.

Suppose a, b ∈ Ls(RN ), m ∈ Lk(RN ), and h ∈ Lt (RN ). We define the operator

TA : Ls(RN ) × Ls(RN ) × Lk(RN ) × Lt (RN ) → Ls(RN ) × Ls(RN ) × Lk(RN ) × Lt (RN ),

TA(a, b, m, w) = (Fu A (m), TvA (w), GvA (b), Wu A (a)),

with the norm

‖(a, b, m, w)‖Ls (RN )×Ls (RN )×Lk (RN )×Lt (RN )

= ‖a‖Ls (RN ) + ‖b‖Ls (RN ) + ‖m‖Lk (RN ) + ‖w‖Lt (RN ).

Hence, we deduce that (u, v, z, h) satisfies the operator equation

(u, v, z, h) = TA(u, v, z, h) + (Fu B (z), TvB (h), GvB (v), Wu B (u)).

Next, we will obtain the main result of Theorem 2.2 by proving the following two lemmas.

Lemma 3.5 Assume that p + q = 2 · 2∗
α,μ − 1 and s, k, t satisfy

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

s >
N

N − 2
,

s >
2N

2N + p(N − 2) − 2(N + 2 − 2α − μ)
,

s >
2N

2N + q(N − 2) − 2(N + 2 − 2α − μ)
,

2N > [p(N − 2) − 4]s,
2N > [q(N − 2) − 4]s,
1

s
− 1

k
= q(N − 2) − 4

2N
,

1

s
− 1

t
= p(N − 2) − 4

2N
.

Then for A sufficiently large, TA is a contraction map from Ls(RN )× Ls(RN )× Lk(RN )×
Lt (RN ) to itself.

Proof Since s > N
N−2 , 2N > [q(N − 2) − 4]s and 1

s − 1
k = q(N−2)−4

2N , by the Hardy–
Littlewood–Sobolev inequality and the Hölder inequality, we have

‖Fu A (m)‖Ls (RN ) ≤ C‖uq
Am‖

L
Ns

N+2s (RN )
≤ C‖u A‖q

L2∗ (RN )
‖m‖Lk (RN ),

Similarly, from 2N > [p(N − 2) − 4]s and 1
s − 1

t = p(N−2)−4
2N , we get

‖TvA (w)‖Ls (RN ) ≤ C‖v p
Aw‖

L
Ns

N+2s (RN )
≤ C‖vA‖p

L2∗ (RN )
‖w‖Lt (RN ).
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In addition, notice that s > 2N
2N+p(N−2)−2(N+2−2α−μ)

and s > 2N
2N+q(N−2)−2(N+2−2α−μ)

.
Using the weighted HLS inequality and the Hölder inequality, we obtain

‖Wu A (a)‖Lt (RN ) ≤ C‖uq−1
A a‖

L
Nt

N+(N−2α−μ)t (RN )

≤ C‖uq−1
A a‖

L
2Ns

2N+[2(N+2−2α−μ)−p(N−2)]s (RN )

≤ C‖u A‖q−1
L2∗ (RN )

‖a‖Ls (RN ),

and

‖GvA (b)‖Lk (RN ) ≤ C‖v p−1
A b‖

L
Nk

N+(N−2α−μ)k (RN )

≤ C‖v p−1
A b‖

L
2Ns

2N+[2(N+2−2α−μ)−q(N−2)]s (RN )

≤ C‖vA‖p−1
L2∗ (RN )

‖b‖Ls (RN ).

By virtue of u, v ∈ L
2N

N−2 (RN ), we can choose A large enough such that

C‖u A‖q−1
L2∗ (RN )

<
1

4
and C‖vA‖p−1

L2∗ (RN )
<

1

4
.

Thus, TA is a contraction map from Ls(RN ) × Ls(RN ) × Lk(RN ) × Lt (RN ) to itself. ��

Lemma 3.6 Suppose that 3 ≤ N ≤ 6, α ≥ 0, 0 < μ < N and N − 2 ≤ 2α + μ ≤ N. Let

(u, v, z, h) ∈ L
2N

N−2 (RN ) × L
2N

N−2 (RN ) × Lk0(RN ) × Lt0(RN ) be a set of positive solutions
of system (3.1) with k0 = 2N

4−(q−1)(N−2) and t0 = 2N
4−(p−1)(N−2) , where p, q satisfying

2(N−2α−μ)
N−2 ≤ p, q ≤ min

{
4

N−2 ,
N+6−2(2α+μ)

N−2

}
and p+q = 2·2∗

α,μ−1. Then (u, v, z, h) ∈
Ls(RN ) × Ls(RN ) × Lk(RN ) × Lt (RN ) with

s ∈
(

N

N − 2
,+∞

)

, k ∈
(

2N

4 − (q − 2)(N − 2)
,

2N

4 − q(N − 2)

)

and t ∈
(

2N

4 − (p − 2)(N − 2)
,

2N

4 − p(N − 2)

)

.

Proof Firstly, under the assumption of Lemma 3.5, we claim that

(Fu B (z), TvB (h), GvB (v), Wu B (u)) ∈ Ls(RN ) × Ls(RN ) × Lk(RN ) × Lt (RN ).

In fact, we know that |u B | ≤ A and u B = 0 for |x | > A. Following the same estimates as in
the proof of the above Lemma, we easily have

‖Fu B (z)‖Ls (RN ) ≤ C‖uq
B z‖

L
Ns

N+2s (RN )
≤ C‖uq

B‖L A1 (RN )‖z‖Lk0 (RN ),

and

‖TvB (h)‖Ls (RN ) ≤ C‖v p
Bh‖

L
Ns

N+2s (RN )
≤ C‖v p

B‖L A2 (RN )‖h‖Lt0 (RN ),

where A1 = 2Nsq
2N+[2(N+2−2α−μ)−p(N−2)]s , A2 = 2Nsp

2N+[2(N+2−2α−μ)−q(N−2)]s , k0 =
2N

4−(q−1)(N−2) and t0 = 2N
4−(p−1)(N−2) satisfy 2N + [2(N + 2− 2α − μ) − p(N − 2)]s > 0,
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2N +[2(N +2−2α−μ)−q(N −2)]s > 0, 4−(q−1)(N −2) > 0 and 4−(p−1)(N −2) > 0.
Moreover, we can get

‖Wu B (u)‖Lt (RN ) ≤ C‖uq−1
B u‖

L
Nt

N+(N−2α−μ)t (RN )

≤ C‖uq−1
B u‖

L
2Ns

2N+[2(N+2−2α−μ)−p(N−2)]s (RN )

≤ C‖uq−1
B ‖L A3 (RN )‖u‖L2∗ (RN ),

and

‖GvB (v)‖Lk (RN ) ≤ C‖v p−1
B v‖

L
Nk

N+(N−2α−μ)k (RN )

≤ C‖v p−1
B v‖

L
2Ns

2N+[2(N+2−2α−μ)−q(N−2)]s (RN )

≤ C‖v p−1
B ‖A4‖v‖L2∗ (RN ),

where A3 = 2Ns(q−1)
2N+[2(N+2−2α−μ)−(p+1)(N−2)]s , A4 = 2Ns(p−1)

2N+[2(N+2−2α−μ)−(q+1)(N−2)]s , and we
require 2N + [2(N + 2 − 2α − μ) − (p + 1)(N − 2)]s > 0 and 2N + [2(N + 2 − 2α −
μ) − (q + 1)(N − 2)]s > 0. Hence, we have

(Fu B (z), TvB (h), GvB (v), Wu B (u)) ∈ Ls(RN ) × Ls(RN ) × Lk(RN ) × Lt (RN ),

which implies TA is also a contraction map from L
2N

N−2 (RN ) × L
2N

N−2 (RN ) × Lk0(RN ) ×
Lt0(RN ) to itself. Write

X = L
2N

N−2 (RN ) × L
2N

N−2 (RN ) × Lk0(RN ) × Lt0(RN )

and

Y = Ls(RN ) × Ls(RN ) × Lk(RN ) × Lt (RN ).

Evidently, if s, k and t satisfy
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

s >
N

N − 2
,

s >
2N

2N + p(N − 2) − 2(N + 2 − 2α − μ)
,

s >
2N

2N + q(N − 2) − 2(N + 2 − 2α − μ)
,

2N > [p(N − 2) − 4]s,
2N > [q(N − 2) − 4]s,
2N + [2(N + 2 − 2α − μ) − p(N − 2)]s > 0,

2N + [2(N + 2 − 2α − μ) − q(N − 2)]s > 0,

2N + [2(N + 2 − 2α − μ) − (p + 1)(N − 2)]s > 0,

2N + [2(N + 2 − 2α − μ) − (q + 1)(N − 2)]s > 0,

1

s
− 1

k
= q(N − 2) − 4

2N
,

1

s
− 1

t
= p(N − 2) − 4

2N
,

(3.24)
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we deduce that (u, v, z, h) ∈ Ls(RN ) × Ls(RN ) × Lk(RN ) × Lt (RN ) by the regularity
lifting theorem. From (3.24), if 1

s − 1
k = q(N−2)−4

2N , 1
s − 1

t = p(N−2)−4
2N , then s, k, t should

satisfy
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

N

N − 2
≥ 2N

2N + p(N − 2) − 2(N + 2 − 2α − μ)
,

N

N − 2
≥ 2N

2N + q(N − 2) − 2(N + 2 − 2α − μ)
,

p(N − 2) − 4 ≤ 0,

q(N − 2) − 4 ≤ 0,

2(N + 2 − 2α − μ) − p(N − 2) ≥ 0,

2(N + 2 − 2α − μ) − q(N − 2) ≥ 0,

2(N + 2 − 2α − μ) − (p + 1)(N − 2) ≥ 0,

2(N + 2 − 2α − μ) − (q + 1)(N − 2) ≥ 0.

More accurately, we deduce that if p, q satisfy 2(N−2α−μ)
N−2 < p, q ≤ min

{
4

N−2 ,

N+6−2(2α+μ)
N−2

}
, then (u, v, z, h) ∈ Ls(RN ) × Ls(RN ) × Lk(RN ) × Lt (RN ) with

s ∈
(

N

N − 2
,+∞

)

, k ∈
(

2N

4 − (q − 2)(N − 2)
,

2N

4 − q(N − 2)

)

and t ∈
(

2N

4 − (p − 2)(N − 2)
,

2N

4 − p(N − 2)

)

.

The proof is now complete. ��

3.4 Decay

In this part, we will show the decay rate of the solutions of the critical weighted Hartree
system (2.1).

3.5 Proof of Theorem 2.3

We first prove that |x |αh(x) ∈ L∞(RN ). It is obvious that

|x |αh(x) =
∫

RN

uq(y)

|x − y|μ|y|α dy.

Thus, for any r > 0, we obtain

||x |αh(x)| ≤
∫

Br (0)

|u(y)|q
|x − y|μ|y|α dy +

∫

RN −Br (0)

|u(y)|q
|x − y|μ|y|α dy. (3.25)

On the one hand, for x ∈ R
N − B2r (0), we have |x − y| > |y|, we have

∫

Br (0)

|u(y)|q
|x − y|μ|y|α dy <

∫

Br (0)

|u(y)|q
|y|μ+α

dy

≤ ‖u‖q

L
qk

k−1 (Br (0))

∥
∥
∥
∥

1

|y|μ+α

∥
∥
∥
∥

Lk (Br (0))
< ∞,
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where 1 < k < min
{

N
N−q(N−2) ,

N
μ+α

}
if N − q(N − 2) > 0, while 1 < k < N

μ+α
if

N − q(N − 2) ≤ 0. For x ∈ B2r (0), we have
∫

Br (0)

|u(y)|q
|x − y|μ|y|α dy ≤

∫

Br (0)

|u(y)|q
|y|μ+α

dy +
∫

B3r (x)

|u(y)|q
|x − y|μ+α

dy < ∞.

Thus, we can obtain that
∫

Br (0)

|u(y)|q
|x − y|μ|y|α dy < ∞. (3.26)

On the other hand,
∫

RN −Br (0)

|u(y)|q
|x − y|μ|y|α dy

=
∫

(RN −Br (0))∩Br (x)

|u(y)|q
|x − y|μ|y|α dy +

∫

(RN −Br (0))∩(RN −Br (x))

|u(y)|q
|x − y|μ|y|α dy

:= Q1 + Q2.

As in the preceding estimates, we have

Q1 =
∫

(RN −Br (0))∩Br (x)

|u(y)|q
|x − y|μ|y|α dy ≤ 1

rα

∫

(RN −Br (0))∩Br (x)

|u(y)|q
|x − y|μ dy

≤ 1

rα

∫

Br (x)

|u(y)|q
|x − y|μ dy

≤ 1

rα
‖u‖q

L
qk

k−1 (Br (x))

∥
∥
∥
∥

1

|y|μ
∥
∥
∥
∥

Lk (Br (0))
< ∞,

where 1 < k < min
{

N
N−q(N−2) ,

N
μ

}
if N − q(N − 2) > 0, while 1 < k < N

μ
if N − q(N −

2) ≤ 0.
We observe that

Q2 =
∫

(RN −Br (0))∩(RN −Br (x))

|u(y)|q
|x − y|μ|y|α dy ≤ 1

rμ

∫

RN −Br (0)

|u(y)|q
|y|α dy

≤ 1

rμ
‖u‖q

L
qk

k−1 (RN −Br (0))

∥
∥
∥
∥

1

|y|α
∥
∥
∥
∥

Lk (RN −Br (0))
< ∞,

where N
α

≤ k < N
N−q(N−2) if N − q(N − 2) > 0, while k ≥ N

α
if N − q(N − 2) ≤ 0.

Therefore, we get
∫

RN −Br (0)

|u(y)|q
|x − y|μ|y|α dy < ∞. (3.27)

By (3.25), (3.26), (3.27), we can conclude that

|x |αh(x) ∈ L∞(RN ). (3.28)

Secondly, we claim that v(x) ∈ L∞(RN ). From (3.1) and (3.28), we have

|v(x)| ≤
∫

RN

|y|α|h(y)||v(y)|p

|x − y|N−2|y|α dy ≤ |||x |αh(x)||L∞(RN )

∫

RN

|v(y)|p

|x − y|N−2|y|α dy.

(3.29)
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For any r > 0, we decompose as follows
∫

RN

|v(y)|p

|x − y|N−2|y|α dy =
∫

Br (0)

|v(y)|p

|x − y|N−2|y|α dy +
∫

RN −Br (0)

|v(y)|p

|x − y|N−2|y|α dy.

(3.30)

On the one hand, for x ∈ R
N − B2r (0),

∫

Br (0)

|v(y)|p

|x − y|N−2|y|α dy <

∫

Br (0)

|v(y)|p

|y|N−2+α
dy

≤ ‖v‖p

L
pk

k−1 (Br (0))

∥
∥
∥
∥

1

|y|N−2+α

∥
∥
∥
∥

Lk (Br (0))
< ∞,

where 1 < k < min
{

N
N−p(N−2) ,

N
N−2+α

}
if N − p(N − 2) > 0, while 1 < k < N

N−2+α
if

N − p(N − 2) ≤ 0. However, for x ∈ B2r (0),
∫

Br (0)

|v(y)|p

|x − y|N−2|y|α dy ≤
∫

Br (0)

|v(y)|p

|y|N−2+α
dy +

∫

B3r (x)

|v(y)|p

|x − y|N−2+α
dy < ∞.

Consequently, we have
∫

Br (0)

|v(y)|p

|x − y|N−2|y|α dy < ∞. (3.31)

On the other hand,
∫

RN −Br (0)

|v(y)|p

|x − y|N−2|y|α dy

=
∫

(RN −Br (0))∩Br (x)

|v(y)|p

|x − y|N−2|y|α dy

+
∫

(RN −Br (0))∩(RN −Br (x))

|v(y)|p

|x − y|N−2|y|α dy := P1 + P2.

(3.32)

Clearly,

P1 =
∫

(RN −Br (0))∩Br (x)

|v(y)|p

|x − y|N−2|y|α dy ≤ 1

rα

∫

Br (x)

|v(y)|p

|x − y|N−2 dy < ∞. (3.33)

In addition, we also have

P2 =
∫

(RN −Br (0))∩(RN −Br (x))

|v(y)|p

|x − y|N−2|y|α dy

≤
∫

RN −Br (0)

|v(y)|p

|y|N−2+α
dy +

∫

RN −Br (x)

|v(y)|p

|x − y|N−2+α
dy.

Since
∫

RN −Br (0)

|v(y)|p

|y|N−2+α
dy ≤ ‖v‖p

L
pk

k−1 (RN −Br (0))

∥
∥
∥
∥

1

|y|N−2+α

∥
∥
∥
∥

Lk (RN −Br (0))
< ∞,

where N
N−2+α

< k < N
N−p(N−2) if N−p(N−2) > 0,while k > N

N−2+α
if N−p(N−2) ≤ 0,

from which we conclude that

P2 =
∫

(RN −Br (0))∩(RN −Br (x))

|v(y)|p

|x − y|N−2|y|α dy < ∞. (3.34)
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Combining with (3.32)–(3.34), we obtain
∫

RN −Br (0)

|v(y)|p

|x − y|N−2|y|α dy < ∞. (3.35)

Through (3.29), (3.30), (3.31), (3.35), we deduce that

v(x) ∈ L∞(RN ).

Finally, we prove that u(x), v(x) ∈ C∞(RN −{0}). For any x ∈ R
N −{0}, we decompose

v(x) as follows

v(x) =
∫

B2r (x)

h(y)v p(y)

|x − y|N−2 dy +
∫

RN −B2r (x)

h(y)v p(y)

|x − y|N−2 dy := K1 + K2,

where r <
|x |
2 . It has been established in [27,Chapter 10] that for any δ < 2,

K1 =
∫

B2r (x)

h(y)v p(y)

|x − y|N−2 dy ∈ Cδ(RN − {0}). (3.36)

If we can obtain

K2 =
∫

RN −B2r (x)

h(y)v p(y)

|x − y|N−2 dy ∈ C∞(RN − {0}),

then together with (3.36) we can conclude that v(x) ∈ Cδ(RN − {0}). Thus, combining the
classical bootstrap technique [27,Chapter 10], we prove that v(x) ∈ C∞(RN − {0}).

In the following we will show that

K2 ∈ C∞(RN − {0}).
Define

ψ(x) =
∫

RN

h(y)v p(y)

|x − y|N−2 χ{RN −B2r (x)}dy.

We claim that

ψ(x) ∈ C1(RN − {0}).
Indeed, for any small t < r , 0 < θ < 1 and if ei is the unit i th vector, then

∣
∣
∣
∣
ψ(x + tei ) − ψ(x)

t

∣
∣
∣
∣ ≤ 1

|t |
∫

RN

∣
∣
∣
∣

h(y)v p(y)

|x + tei − y|N−2 χ{RN −B2r (x+tei )} − h(y)v p(y)

|x − y|N−2 χ{RN −B2r (x)}
∣
∣
∣
∣ dy

≤ C
∫

RN

|h(y)||v(y)|p

|x + θ tei − y|N−1 χ{RN −B2r (x+θ tei )}dy

≤ C
∫

Br (0)

|h(y)||v(y)|p

|x − y|N−1 dy + C
∫

RN −Br (x)−Br (0)

|h(y)||v(y)|p

|x − y|N−1 dy.

Since |x |αh(x), v(x) ∈ L∞(RN ), it follows that
∫

Br (0)

|h(y)||v(y)|p

|x − y|N−1 dy ≤ 1

r N−1 |||x |αh||L∞(RN )||v||p
L∞(RN )

∫

Br (0)

1

|y|α dy < ∞. (3.37)

Clearly, we also see that
∫

RN −Br (x)−Br (0)

|h(y)||v(y)|p

|x − y|N−1 dy

≤ |||x |αh||L∞(RN )

∫

RN −Br (0)

|v(y)|p

|y|N−1+α
dy + |||x |αh||L∞(RN )

∫

RN −Br (x)

|v(y)|p

|x − y|N−1+α
dy.
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Then by the regularity result we have
∫

RN −Br (0)

|v(y)|p

|y|N−1+α
dy ≤ ‖v(y)‖p

L
pk

k−1 (RN −Br (0))

∥
∥
∥
∥

1

|y|N−1+α

∥
∥
∥
∥

Lk (RN −Br (0))
< ∞,

where the parameters α, μ, k satisfy one of following four cases:

(1) if N − p(N − 2) > 0, α ≤ 1, then N
N−1+α

< k < N
N−p(N−2) ;

(2) if N − p(N − 2) > 0, 1 < α < 2, then 1 < k < N
N−p(N−2) ;

(3) if N − p(N − 2) ≤ 0, α ≤ 1, then k > N
N−1+α

;
(4) if N − p(N − 2) ≤ 0, 1 < α < 2, then k > 1.

Therefore we can deduce that
∫

RN −Br (x)−Br (0)

|h(y)||v(y)|p

|x − y|N−1 dy < ∞. (3.38)

Thus, from (3.37), (3.38) and theLebesgue dominated convergence theorem,we can conclude
that ψ(x) ∈ C1(RN −{0}). Repeating the above process, we can deduce ψ(x) ∈ C∞(RN −
{0}), which implies K2 ∈ C∞(RN − {0}), so that v(x) ∈ C∞(RN − {0}). Similarly, we
have |x |αz(x) ∈ L∞(RN ). Therefore, we can also obtain u(x) ∈ L∞(RN ) and u(x) ∈
C∞(RN − {0}).

Write A = RN
∫

RN z(y)uq(y)dy. From Lemma 3.6, we have (u, v, z, h) ∈ Ls(RN ) ×
Ls(RN ) × Lk(RN ) × Lt (RN ), where s, k and t satisfy

1

s
∈

(

0,
N − 2

N

)

,
1

k
∈

(
4 − q(N − 2)

2N
,
2N − q(N − 2)

2N

)

and
1

t
∈

(
4 − p(N − 2)

2N
,
2N − p(N − 2)

2N

)

.

We can take

1

s
= N − 2

2N
+ ε

2Nq
and

1

k
= 2N − q(N − 2) − ε

2N
such that

q

s
+ 1

k
= 1,

where ε > 0 sufficiently small. Applying the Hölder inequality, we have

A ≤ RN ‖u‖q
s ‖z‖k < ∞.

For fixed R > 0,

|x |N−2u(x) − A =RN

∫

RN

( |x |N−2

|x − y|N−2 − 1

)

z(y)uq(y)dy

=RN

∫

BR(0)

( |x |N−2

|x − y|N−2 − 1

)

z(y)uq(y)dy

+ RN

∫

RN −BR(0)

( |x |N−2

|x − y|N−2 − 1

)

z(y)uq(y)dy

:=M1 + M2.

For large |x |, by the Lebesgue dominated convergence theorem and

|M1| ≤ RN

∫

BR(0)
| |x |N−2

|x − y|N−2 − 1|z(y)uq(y)dy ≤ C
∫

BR(0)
z(y)uq(y)dy < ∞,
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we can see that lim|x |→∞ |M1| = 0.

Decompose M2 into two parts by

M21 = RN

∫

(RN −BR(0))−B |x |
2

(x)

|x |N−2

|x − y|N−2 z(y)uq(y)dy

and

M22 = RN

∫

B |x |
2

(x)

|x |N−2

|x − y|N−2 z(y)uq(y)dy.

Since |x − y| ≥ |x |
2 when y ∈ (RN − BR(0)) − B |x |

2
(x), we have

M21 ≤ C
∫

RN −BR(0)
z(y)uq(y)dy,

which implies M21 → 0 as R → +∞.
In the following, we estimate M22 as |x | → +∞. Clearly, from Theorem 2.1 we know

u, v, z, h are radially symmetric and decreasing about x0 = 0. Then we can write

U (r) = U (|x |) = u(x), V (r) = V (|x |) = v(x),

and

Z(r) = Z(|x |) = z(x), H(r) = H(|x |) = h(x).

Notice that |x |
2 < |y| <

3|x |
2 for y ∈ B |x |

2
(x), we deduce that

u(y) ≤ u
( x

2

)
= U

( |x |
2

)

, v(y) ≤ v
( x

2

)
= V

( |x |
2

)

,

and

z(y) ≤ z
( x

2

)
= Z

( |x |
2

)

, h(y) ≤ h
( x

2

)
= H

( |x |
2

)

.

Therefore,

M22 ≤ |x |N−2RN Z

( |x |
2

)

U q
( |x |

2

) ∫

B |x |
2

(x)

dy

|x − y|N−2

≤ C |x |N−2Z

( |x |
2

)

U q
( |x |

2

) ∫ |x |
2

0
r2

dr

r

≤ C |x |N Z

( |x |
2

)

U q
( |x |

2

)

.

(3.39)

By choosing 1
s = N−2

2N + 2ε
2Nq and 1

k = 2N−q(N−2)−ε
2N with sufficiently small ε > 0 such that

q
s + 1

k > 1, together with the integrability results, we get (u, z) ∈ Ls(RN ) × Lk(RN ).
Since u, z are decreasing about x0 = 0, we have

U s
( |x |

2

)

|x |N ≤ C
∫

B |x |
2

(0)−Bρ(0)
us(y)dy ≤ C,
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and

Zk
( |x |

2

)

|x |N ≤ C,

from which we conclude that

U

( |x |
2

)

≤ C |x |− N
s , Z

( |x |
2

)

≤ C |x |− N
k . (3.40)

Inserting (3.40) into (3.39), as |x | → +∞, we have

M22 ≤ C |x |N (1− q
s − 1

k ) → 0.

Therefore, we conclude that

lim|x |→∞ |x |N−2u(x) − A = lim|x |→∞(M1 + M21 + M22) = 0,

which implies u(x) � C
|x |N−2 as |x | → +∞. Similarly, we have v(x) � C

|x |N−2 as |x | → +∞.
The proof is completed. ��

4 Conclusions for the variational system (2.2)

In this section, we are going to study the nonlocal variational system (2.2). By using similar
arguments as for the system (2.1), we can also prove symmetry and regularity properties,
as well as the decay of the positive solutions to system (2.2). Furthermore, we establish the
nonexistence results under the subcritical condition.

4.1 Nonexistence results for the subcritical case

We first obtain the corresponding Pohožaev type identity for the subcritical case of system
(2.2).

Lemma 4.1 Assume that N ≥ 3, 0 < μ < N, α ≥ 0 and 0 < 2α + μ ≤ N. Let (u, v)

∈ W 2,2
loc (RN ) × W 2,2

loc (RN ) be a pair of solutions of (2.2), then there holds

(N − 2)

2

∫

RN
|∇u|2dx + (N − 2)

2

∫

RN
|∇v|2dx

= 2N − 2α − μ

pq

∫

RN

∫

RN

v p(x)uq(y)

|x |α|x − y|μ|y|α dxdy.

Proof We define a cut-off function ϕ ∈ C∞
0 (RN ) with 0 ≤ ϕ ≤ 1, satisfying ϕ = 1 in B1(0)

and ϕ = 0 outside B1(0). For 0 < λ < ∞ and x ∈ R
N , we denote

ψu,λ(x) = ϕ(λx)x · ∇u(x) and ψv,λ(x) = ϕ(λx)x · ∇v(x).

Multiplying the first and the second equation of (2.2) by ψu,λ(x) and ψv,λ(x) respectively,
and integrating by part, we get

∫

RN
∇u∇ψu,λdx = 1

p

∫

RN

(∫

RN

v p(y)

|x |α|x − y|μ|y|α dy

)

uq−1(x)ψu,λ(x)dx,
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and
∫

RN
∇v∇ψv,λdx = 1

q

∫

RN

(∫

RN

uq(y)

|x |α|x − y|μ|y|α dy

)

v p−1(x)ψv,λ(x)dx .

But

lim
λ→0

∫

RN
∇u∇ψu,λdx = − N − 2

2

∫

RN
|∇u|2dx, (4.1)

and

lim
λ→0

∫

RN
∇v∇ψv,λdx = − N − 2

2

∫

RN
|∇v|2dx . (4.2)

Next, we claim that

1

p
lim
λ→0

∫

RN

(∫

RN

v p(y)

|x |α|x − y|μ|y|α dy

)

uq−1(x)ψu,λ(x)dx

+ 1

q
lim
λ→0

∫

RN

(∫

RN

uq(y)

|x |α|x − y|μ|y|α dy

)

v p−1(x)ψv,λ(x)dx

= −2N − 2α − μ

pq

(∫

RN

uq(y)

|x |α|x − y|μ|y|α dy

)

v p(x)dx .

(4.3)

Indeed, letting

ū(x) = u(x)

|x | α
q

and v̄(x) = v(x)

|x | α
p
,

we have

x · ∇u(x)

|x | α
q

= x · ∇ū(x) + α

q
ū(x) and

x · ∇v(x)

|x | α
p

= x · ∇v̄(x) + α

p
v̄(x).

Then we have

1

q

∫

RN

(∫

RN

uq(y)

|x |α|x − y|μ|y|α dy

)

v p−1(x)ψv,λ(x)dx

= α

pq

∫

RN

(∫

RN

ūq(y)

|x − y|μ dy

)

v̄ p(x)ϕ(λx)dx

+ 1

q

∫

RN

(∫

RN

ūq(y)

|x − y|μ dy

)

v̄ p−1(x)x · ∇v̄(x)ϕ(λx)dx,

(4.4)

and

1

p

∫

RN

(∫

RN

v p(y)

|x |α|x − y|μ|y|α dy

)

uq−1(x)ψu,λ(x)dx

= α

pq

∫

RN

(∫

RN

v̄ p(y)

|x − y|μ dy

)

ūq(x)ϕ(λx)dx

+ 1

p

∫

RN

(∫

RN

v̄ p(y)

|x − y|μ dy

)

ūq−1(x)x · ∇ū(x)ϕ(λx)dx .

(4.5)
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A direct calculation shows that
∫

RN

(∫

RN

ūq(y)

|x − y|μ dy

)

v̄ p−1(x)x · ∇v̄(x)ϕ(λx)dx

=
∫

RN

(∫

RN

ūq(y)

|x − y|μ dy

)

x · ∇
(

v̄ p(x)

p

)

ϕ(λx)dx

= −
∫

RN

(∫

RN

ūq(y)

|x − y|μ dy

)

[λx · ∇ϕ(λx) + Nϕ(λx)]
v̄ p(x)

p
dx

+ μ

∫

RN

∫

RN

(
ūq(y)

|x − y|μ
)

1

|x − y|2 x · (x − y)ϕ(λx)
v̄ p(x)

p
dxdy.

(4.6)

We can also deduce that
∫

RN

(∫

RN

v̄ p(y)

|x − y|μ dy

)

ūq−1(x)x · ∇ū(x)ϕ(λx)dx

= −
∫

RN

(∫

RN

v̄ p(y)

|x − y|μ dy

)

[λx · ∇ϕ(λx) + Nϕ(λx)]
ūq(x)

q
dx

+ μ

∫

RN

(∫

RN

v̄ p(y)

|x − y|μ
)

1

|x − y|2 x · (x − y)ϕ(λx)
ūq(x)

q
dxdy

= −
∫

RN

(∫

RN

v̄ p(y)

|x − y|μ dy

)

[λx · ∇ϕ(λx) + Nϕ(λx)]
ūq(x)

q
dx

− μ

∫

RN

∫

RN

(
ūq(y)

|x − y|μ
)

1

|x − y|2 y · (x − y)ϕ(λy)
v̄ p(x)

q
dxdy.

(4.7)

Combining (4.4) with (4.5) and adding (4.6) to (4.7), we conclude from the dominated
convergence Theorem that

1

p
lim
λ→0

∫

RN

(∫

RN

v p(y)

|x |α|x − y|μ|y|α dy

)

uq−1(x)ψu,λ(x)dx

+ 1

q
lim
λ→0

∫

RN

(∫

RN

uq(y)

|x |α|x − y|μ|y|α dy

)

v p−1(x)ψv,λ(x)dx =

− 2N − 2α − μ

pq

(∫

RN

uq(y)

|x |α|x − y|μ|y|α dy

)

v p(x)dx .

(4.8)

Therefore, taking (4.1)–(4.3) into account, we infer that

N − 2

2

∫

RN
|∇u|2dx + N − 2

2

∫

RN
|∇v|2dx

= 2N − 2α − μ

pq

∫

RN

∫

RN

v p(x)uq(y)

|x |α|x − y|μ|y|α dxdy.

The proof is now complete. ��

4.2 Proof of Theorem 2.4

We first multiply the first equation of (2.2) by u and multiply the second equation of (2.2) by
v, then it follows that

∫

RN
|∇u|2dx = 1

p

∫

RN

∫

RN

v p(x)uq(y)

|x |α|x − y|μ|y|α dxdy,
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and
∫

RN
|∇v|2dx = 1

q

∫

RN

∫

RN

v p(x)uq(y)

|x |α|x − y|μ|y|α dxdy.

Together with the identity in Lemma 4.1, we deduce
(

N − 2

2
− 2N − 2α − μ

pq

) ∫

RN

∫

RN

v p(x)uq(y)

|x |α|x − y|μ|y|α dxdy = 0.

If p + q <
2(2N−2α−μ)

N−2 , we get

u ≡ v ≡ 0.

The proof is complete. �

4.3 Qualitative properties for the critical case

Next we focus on the qualitative results of system (2.2) with critical condition p + q =
2(2N−2α−μ)

N−2 = 2 · 2∗
α,μ, including symmetry, regularity and asymptotic behavior at infinity.

4.3.1 Symmetry

Analogously, we consider the following equivalent integral system in RN

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

z(x) =
∫

RN

v p(y)

|x |α|x − y|μ|y|α dy,

h(x) =
∫

RN

uq(y)

|x |α|x − y|μ|y|α dy,

u(x) = RN

∫

RN

z(y)uq−1(y)

|x − y|N−2 dy,

v(x) = RN

∫

RN

h(y)v p−1(y)

|x − y|N−2 dy.

(4.9)

For λ ∈ R, define

�λ = {x = (x1, . . . , xn) | x1 < λ} , xλ = (2λ − x1, . . . , xn),

uλ(x) = u(xλ), vλ(x) = v(xλ), zλ(x) = z(xλ), hλ(x) = h(xλ),

and

�u
λ = {x ∈ �λ | u(x) > uλ(x)} , �v

λ = {x ∈ �λ | v(x) > vλ(x)} ,

�z
λ = {x ∈ �λ | z(x) > zλ(x)} , �h

λ = {x ∈ �λ | h(x) > hλ(x)} .

We rewrite u(x) and uλ(x) as

u(x) =RN

∫

�λ

z(y)uq−1(y)

|x − y|N−2 dy + RN

∫

RN −�λ

z(y)uq−1(y)

|x − y|N−2 dy

=RN

∫

�λ

z(y)uq−1(y)

|x − y|N−2 dy + RN

∫

�λ

z(yλ)uq−1(yλ)

|x − yλ|N−2 dy
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and

uλ(x) =RN

∫

�λ

z(y)uq−1(y)

|xλ − y|N−2 dy + RN

∫

RN −�λ

z(y)uq−1(y)

|xλ − y|N−2 dy

=RN

∫

�λ

z(y)uq−1(y)

|xλ − y|N−2 dy + RN

∫

�λ

z(yλ)uq−1(yλ)

|xλ − yλ|N−2 dy.

Since |xλ − yλ| = |x − y| and |xλ − y| = |x − yλ|, it follows that

u(x) − uλ(x) = RN

∫

�λ

(
1

|x − y|N−2 − 1

|xλ − y|N−2

)

(zuq−1 − zλuq−1
λ )dy,

(4.10)

and

v(x) − vλ(x) = RN

∫

�λ

(
1

|x − y|N−2 − 1

|xλ − y|N−2

)

(hv p−1 − hλv
p−1
λ )dy.

(4.11)

For the case p, q > 2, we have the following property.

Lemma 4.2 Under the assumption of Theorem 2.5, for any λ < 0, there exists a constant
C > 0 such that

‖u − uλ‖Ls0 (�u
λ ) ≤ C‖v‖p

Ls0 (�u
λ )

‖u‖q−2
Ls0 (�u

λ )
‖u − uλ‖Ls0 (�u

λ )

+ C‖u‖q−1
Ls0 (�u

λ )
‖v‖p−1

Ls0 (�v
λ)

‖v − vλ‖Ls0 (�v
λ), (4.12)

and

‖v − vλ‖Ls0 (�v
λ) ≤ C‖u‖q

Ls0 (�v
λ)

‖v‖p−2
Ls0 (�v

λ)
‖v − vλ‖Ls0 (�v

λ)

+ C‖v‖p−1
Ls0 (�v

λ)
‖u‖q−1

Ls0 (�u
λ )

‖u − uλ‖Ls0 (�u
λ ). (4.13)

Proof For any x ∈ �λ, notice |xλ − y| ≥ |x − y|, using the mean value theorem, from (4.10)
and (4.11), we easily deduce

u(x) − uλ(x) ≤ RN (q − 1)
∫

�u
λ

zuq−2(u − uλ)

|x − y|N−2 dy + RN

∫

�z
λ

uq−1(z − zλ)

|x − y|N−2 dy,

and

v(x) − vλ(x) ≤ RN (p − 1)
∫

�v
λ

hv p−2(v − vλ)

|x − y|N−2 dy + RN

∫

�h
λ

v p−1(h − hλ)

|x − y|N−2 dy.

In virtue of (u, v) ∈ Ls0(RN ) × Ls0(RN ) with s0 = N (p+q−2)
N+2−2α−μ

, assume that z ∈ Lk(RN ),

h ∈ Lt (RN ), where k, t such that

1

k
+ q − 1

s0
= N + 2s0

Ns0
and

1

t
+ p − 1

s0
= N + 2s0

Ns0
. (4.14)

Then we have

pNk

N + (N − 2α − μ)k
= s0 and

q Nt

N + (N − 2α − μ)t
= s0.
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By applying the HLS inequality and the Hölder inequality, we lead

‖u − uλ‖Ls0 (�u
λ ) ≤ C‖zuq−2(u − uλ)‖

L
Ns0

N+2s0 (�u
λ )

+ C‖uq−1(z − zλ)‖
L

Ns0
N+2s0 (�z

λ)

≤ C‖z‖Lk (�u
λ )‖u‖q−2

Ls0 (�u
λ )

‖u − uλ‖Ls0 (�u
λ ) + C‖z − zλ‖Lk (�z

λ)‖u‖q−1
Ls0 (�u

λ )
.

(4.15)

Similarly, we obtain

‖v − vλ‖Ls0 (�v
λ) ≤ C‖hv p−2(v − vλ)‖

L
Ns0

N+2s0 (�v
λ)

+ C‖v p−1(h − hλ)‖
L

Ns0
N+2s0 (�h

λ )

≤ C‖h‖Lt (�v
λ)‖v‖p−2

Ls0 (�v
λ)

‖v − vλ‖Ls0 (�v
λ) + C‖h − hλ‖Lt (�h

λ )‖v‖p−1
Ls0 (�v

λ)
.

(4.16)

Combining with relations (3.10)–(3.13), we easily obtain (4.12) and (4.13). We complete the
proof. ��

For the case p = q = 2 or p > 2 and q = 2, Lemma 4.2 can be replaced by the following
lemmas.

Lemma 4.3 Under the assumption of Theorem 2.5, if p = q = 2, for any λ < 0, there exists
a constant C > 0 such that

‖u − uλ‖Ls0 (�u
λ ) ≤ C‖u‖Ls0 (�u

λ )‖v‖Ls0 (�v
λ)‖v − vλ‖Ls0 (�v

λ),

and

‖v − vλ‖Ls0 (�v
λ) ≤ C‖v‖Ls0 (�v

λ)‖u‖Ls0 (�u
λ )‖u − uλ‖Ls0 (�u

λ ).

Lemma 4.4 Under the assumption of Theorem 2.5, if p > 2 and q = 2, for any λ < 0, there
exists a constant C > 0 such that

‖u − uλ‖Ls0 (�u
λ ) ≤ C‖u‖Ls0 (�u

λ )‖v‖p−1
Ls0 (�v

λ)
‖v − vλ‖Ls0 (�v

λ), (4.17)

and

‖v − vλ‖Ls0 (�v
λ) ≤ C‖u‖2Ls0 (�v

λ)‖v‖p−2
Ls0 (�v

λ)
‖v − vλ‖Ls0 (�v

λ)

+ C‖v‖p−1
Ls0 (�v

λ)
‖u‖Ls0 (�u

λ )‖u − uλ‖Ls0 (�u
λ ). (4.18)

In the following, we provide the starting of the moving plane methods by using the Ls0

estimates proved above.

Lemma 4.5 Under the assumption of Theorem 2.5, there exists M > 0 such that for any
λ < −M, we have

u(x) ≤ uλ(x), v(x) ≤ vλ(x) ∀x ∈ �λ. (4.19)

Proof Since u, v are integrable, if λ → −∞, we have

‖v‖p
Ls0 (�u

λ )
‖u‖q−2

Ls (�u
λ )

≤ 1

2C
,

‖u‖q
Ls0 (�v

λ)
‖v‖p−2

Ls0 (�v
λ)

≤ 1

2C
,

and

‖v‖p−1
Ls0 (�v

λ)
‖u‖q−1

Ls0 (�u
λ )

≤ 1

4C
,
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where the constant C is the same as in Lemma 4.2. Hence, inserting those inequalities into
(4.12) and (4.13), as λ → −∞, it follows

‖u(x) − uλ(x)‖Ls (�u
λ ) = 0, ‖v(x) − vλ(x)‖Lr (�v

λ) = 0,

which shows that �u
λ = �v

λ = ∅. Therefore, there exists M > 0 such that for any λ < −M ,
relation (4.19) holds. ��

We now can move the plane Tλ = {
x ∈ R

N |x1 = λ
}
to the right as long as (4.19) is

satisfied. Setting

λ0 = sup
{
λ | u(x) ≤ uρ(x), v(x) ≤ vρ(x), x ∈ �ρ, ρ ≤ λ

}
,

we observe that λ0 < +∞.
Next, we deduce the following property.

Lemma 4.6 Under the assumption of Theorem 2.5, then for any λ0 < 0, we have

u(x) ≡ uλ0(x), v(x) ≡ vλ0(x) ∀x ∈ �λ0 . (4.20)

Proof Suppose that at λ0 < 0, there holds u(x) ≤ uλ0(x) and v(x) ≤ vλ0(x), but u(x) 	≡
uλ0(x) or v(x) 	≡ vλ0(x) on �λ0 .

We claim that there exists ε > 0 such that u(x) ≤ uλ(x) and v(x) ≤ vλ(x) on �λ for any
λ ∈ [λ0, λ0 + ε).

Actually, for any η > 0, there exists a suitable R > 0 large enough such that

‖v‖p
Ls0 (RN −BR(0)))

‖u‖q−2
Ls (RN −BR(0)))

≤ η

2
,

‖u‖q
Ls0 (RN −BR(0)))

‖v‖p−2
Ls0 (RN −BR(0)))

≤ η

2
,

and

‖v‖p−1
Ls0 (RN −BR(0)))

‖u‖q−1
Ls0 (RN −BR(0)))

≤ η

4
.

For such R > 0 and λ > λ0, we can verify that the measure of the set �λ ∩ BR(0) goes to 0
as λ → λ0.

By contradiction, we assume that

u(x) 	≡ uλ0(x) in �λ0 .

From (3.8), we obtain

h(x) − hλ0(x) < 0 on �λ0 ..

Thus, by (4.11), we yield

v(x) − vλ0(x) < 0 on �λ0 .

Combining with (3.9), it follows that

z(x) − zλ0(x) < 0 on �λ0 ,

together with (4.10), we have

u(x) − uλ0(x) < 0 on �λ0 .

Therefore, we can apply a similar argument as in Lemma 3.3 to conclude that u(x) ≡ uλ0(x)

and v(x) ≡ vλ0(x) for any x ∈ �λ0 . ��
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4.4 Proof of Theorem 2.5

Similarly, we can move the plane from +∞ to left, and define

λ1 = inf
{
λ | u(x) ≤ uρ(x), v(x) ≤ vρ(x), x ∈ �

′
ρ, ρ ≥ λ

}
,

where �
′
ρ = {

x ∈ R
N |x1 > ρ

}
. If λ0 = λ1 	= 0, then both u and v are radially symmetric

and decreasing about the plane x1 = λ0, which implies u(x) ≡ uλ0(x) and v(x) ≡ vλ0(x)

on �λ0 . Since |x − y| < |xλ0 − y| and |y| > |yλ0 |, it is easy to deduce from (3.9) that

z(x) − zλ0(x) ≤
∫

�λ0

1

|x |α
(

1

|x − y|μ − 1

|xλ0 − y|μ
) (

1

|y|α − 1

|yλ0 |α
)

v
p
λ0

dy < 0.

Therefore, we obtain that

0 = u(x) − uλ0(x) = RN

∫

�λ0

(
1

|x − y|N−2 − 1

|xλ0 − y|N−2

)

(z − zλ0)u
q−1
λ0

dy < 0,

which is impossible. Hence, we get λ0 = λ1 = 0. Notice that the direction of x1 is arbitrary,
hence u, v are radially symmetric and decreasing about the origin. �

4.4.1 Regularity

Taking similar derivations as Theorem 2.2, we need to define the functions

Fu(m) = RN

∫

RN

uq−1(y)m(y)

|x − y|N−2 dy,

Tv(w) = RN

∫

RN

v p−1(y)w(y)

|x − y|N−2 dy,

Wu(a) =
∫

RN

uq−1(y)a(y)

|x |α|x − y|μ|y|α dy,

Gv(b) =
∫

RN

v p−1(y)b(y)

|x |α|x − y|μ|y|α dy.

Suppose a, b ∈ Ls(RN ), m ∈ Lk(RN ), and h ∈ Lt (RN ), we also define the operator

TA : Ls(RN ) × Ls(RN ) × Lk(RN ) × Lt (RN ) → Ls(RN ) × Ls(RN ) × Lk(RN ) × Lt (RN ),

TA(a, b, m, w) = (Fu A (m), TvA (w), GvA (b), Wu A (a)).

Then (u, v, z, h) satisfies the operator equation

(u, v, z, h) = TA(u, v, z, h) + (Fu B (z), TvB (h), GvB (v), Wu B (u)).

In order to prove themain result of Theorem 2.6, we shall establish the following two lemmas.
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Lemma 4.7 Assume that p + q = 2 · 2∗
α,μ and s, k, t satisfy

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

s >
N

N − 2
,

s >
2N

2N + (p − 1)(N − 2) − 2(N + 2 − 2α − μ)
,

s >
2N

2N + (q − 1)(N − 2) − 2(N + 2 − 2α − μ)
,

2N > [(p − 1)(N − 2) − 4]s,
2N > [(q − 1)(N − 2) − 4]s,
1

s
− 1

k
= (q − 1)(N − 2) − 4

2N
,

1

s
− 1

t
= (p − 1)(N − 2) − 4

2N
.

Then for A sufficiently large, TA is a contraction map from Ls(RN )× Ls(RN )× Lk(RN )×
Lt (RN ) to itself.

Lemma 4.8 Suppose that 3 ≤ N ≤ 6, α ≥ 0, 0 < μ < N and N − 2 ≤ 2α + μ ≤ N. Let

(u, v, z, h) ∈ L
2N

N−2 (RN ) × L
2N

N−2 (RN ) × Lk0(RN ) × Lt0(RN ) be a set of positive solutions
of system (4.9) with k0 = 2N

4−(q−2)(N−2) and t0 = 2N
4−(p−2)(N−2) , where p, q satisfying

p + q = 2 · 2∗
α,μ and 2(N−2α−μ)

N−2 ≤ p − 1, q − 1 ≤ min
{

4
N−2 ,

N+2+2(N+2−2α−μ)
N−2

}
. Then

(u, v, z, h) ∈ Ls(RN ) × Ls(RN ) × Lk(RN ) × Lt (RN ) with

s ∈
(

N

N − 2
,+∞

)

, k ∈
(

2N

4 − (q − 3)(N − 2)
,

2N

4 − (q − 1)(N − 2)

)

and

t ∈
(

2N

4 − (p − 3)(N − 2)
,

2N

4 − (p − 1)(N − 2)

)

.

4.4.2 Decay

The proof of this part is the same as the Theorem 2.3, here we omit for convenience.

5 Symmetry for the Hamiltonian system (2.3)

In this section, we shall prove the symmetry of (2.3) by discussing the following equivalent
integral system in R

N

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

z(x) =
∫

RN

v p(y)

|x |α1 |x − y|μ1 |y|α1 dy,

h(x) =
∫

RN

uq(y)

|x |α2 |x − y|μ2 |y|α2 dy,

u(x) = RN

∫

RN

z(y)v p−1(y)

|x − y|N−2 dy,

v(x) = RN

∫

RN

h(y)uq−1(y)

|x − y|N−2 dy,

(5.1)
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where p = 2∗
α1,μ1

= 2N−2α1−μ1
N−2 and q = 2∗

α2,μ2
= 2N−2α2−μ2

N−2 .
For λ ∈ R, define

�λ = {x = (x1, . . . , xn)|x1 < λ} , xλ = (2λ − x1, . . . , xn),

uλ(x) = u(xλ), vλ(x) = v(xλ), wλ(x) = w(xλ), gλ(x) = g(xλ),

and

�u
λ = {x ∈ �λ|u(x) > uλ(x)} , �v

λ = {x ∈ �λ|v(x) > vλ(x)} ,

�w
λ = {x ∈ �λ|w(x) > wλ(x)} , �

g
λ = {x ∈ �λ|g(x) > gλ(x)} .

We easily get

u(x) =RN

∫

�λ

z(y)v p−1(y)

|x − y|N−2 dy + RN

∫

RN −�λ

z(y)v p−1(y)

|x − y|N−2 dy

=RN

∫

�λ

z(y)v p−1(y)

|x − y|N−2 dy + RN

∫

�λ

z(yλ)v p−1(yλ)

|x − yλ|N−2 dy,

and

uλ(x) = RN

∫

�λ

z(y)v p−1(y)

|xλ − y|N−2 dy + RN

∫

�λ

z(yλ)v p−1(yλ)

|xλ − yλ|N−2 dy.

Since |xλ − yλ| = |x − y| and |xλ − y| = |x − yλ|, then it follows that

u(x) − uλ(x) = RN

∫

�λ

(
1

|x − y|N−2 − 1

|xλ − y|N−2

)

(zv p−1 − zλv
p−1
λ )dy. (5.2)

Similarly, we obtain

v(x) − vλ(x) = RN

∫

�λ

(
1

|x − y|N−2 − 1

|xλ − y|N−2

)

(huq−1 − hλuq−1
λ )dy. (5.3)

First, we consider the case where 2α1+μ1 	= 4 and 2α2+μ2 	= 4.We have the following
property.

Lemma 5.1 Suppose that αi ≥ 0, 0 < μi < N, 2αi + μi ≤ 3 if N = 3 while 2αi + μi < 4
if N ≥ 4 (i = 1, 2). For any λ < 0, there exists a constant C > 0 such that

‖u − uλ‖L2∗ (�u
λ ) ≤ C

(
‖v‖p

L2∗ (�u
λ )

‖v‖p−2
L2∗ (�u

λ )
+ ‖v‖p−1

L2∗ (�u
λ )

‖v‖p−1
L2∗ (�v

λ)

)
‖v − vλ‖L2∗ (�v

λ),

(5.4)

and

‖v − vλ‖L2∗ (�v
λ) ≤ C

(
‖u‖q

L2∗ (�v
λ)

‖u‖q−2
L2∗ (�v

λ)
+ ‖u‖q−1

L2∗ (�u
λ )

‖u‖q−1
L2∗ (�v

λ)

)
‖u − uλ‖L2∗ (�u

λ ).

(5.5)

Proof For any x ∈ �λ, notice |xλ − y| ≥ |x − y|, using the mean value theorem, from (5.2)
we know that

u(x) − uλ(x) ≤ RN (p − 1)
∫

�u
λ

zv p−2(v − vλ)

|x − y|N−2 dy + RN

∫

�z
λ

v p−1(z − zλ)

|x − y|N−2 dy.
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By applying the HLS inequality and the Hölder inequality, we obtain

‖u − uλ‖L2∗ (�u
λ ) ≤ C‖zv p−2(v − vλ)‖

L
2N

N+2 (�u
λ )

+ C‖v p−1(z − zλ)‖
L

2N
N+2 (�u

λ )

≤ C‖zv p−2‖
L

N
2 (�u

λ )
‖(v − vλ)‖L2∗ (�v

λ)

+ C‖v p−1‖
L

2N
N+2−2α1−μ1 (�u

λ )
‖(z − zλ)‖

L
2N

2α1+μ1 (�z
λ)

≤ C‖z‖
L

2N
2α1+μ1 (�u

λ )
‖v‖p−2

L2∗ (�u
λ )

‖v − vλ‖L2∗ (�v
λ)

+ C‖z − zλ‖
L

2N
2α1+μ1 (�z

λ)
‖v‖p−1

L2∗ (�u
λ )

.

(5.6)

Analogously, we also have

‖v − vλ‖L2∗ (�v
λ) ≤ C‖huq−2(u − uλ)‖

L
2N

N+2 (�v
λ)

+ C‖uq−1(h − hλ)‖
L

2N
N+2 (�v

λ)

≤ C‖huq−2‖
L

N
2 (�v

λ)
‖(u − uλ)‖L2∗ (�u

λ )

+ C‖uq−1‖
L

2N
N+2−2α2−μ2 (�v

λ)
‖(h − hλ)‖

L
2N

2α2+μ2 (�h
λ )

≤ C‖h‖
L

2N
2α2+μ2 (�v

λ)
‖u‖q−2

L2∗ (�v
λ)

‖u − uλ‖L2∗ (�u
λ )

+ C‖h − hλ‖
L

2N
2α2+μ2 (�h

λ )
‖u‖q−1

L2∗ (�v
λ)

.

(5.7)

From (3.8) and (3.9), we can deduce that

‖h − hλ‖
L

2N
2α2+μ2 (�h

λ )
≤ C‖uq−1(u − uλ)‖

L
2N

2N−2α2−μ2 (�h
λ∩�u

λ )

≤ C‖u‖q−1
L2∗ (�u

λ )
‖u − uλ‖L2∗ (�u

λ ). (5.8)

and

‖z − zλ‖
L

2N
2α1+μ1 (�z

λ)
≤ C‖v p−1(v − vλ)‖

L
2N

2N−2α1−μ1 (�z
λ∩�v

λ)

≤ C‖v‖p−1
L2∗ (�v

λ)
‖v − vλ‖L2∗ (�v

λ). (5.9)

Additionally, using the weighted HLS inequality again, we have

‖z(x)‖
L

2N
2α1+μ1 (�u

λ )
≤ C‖v p‖

L
2N

2N−2α1−μ1 (�u
λ )

≤ C‖v‖p
L2∗ (�u

λ )
, (5.10)

and

‖h(x)‖
L

2N
2α2+μ2 (�v

λ)
≤ C‖uq‖

L
2N

2N−2α2−μ2 (�v
λ)

≤ C‖u‖q
L2∗ (�v

λ)
. (5.11)

Inserting (5.8)–(5.11) to (5.6) and (5.7), we can obtain (5.4) and (5.5). The proof is completed.
��

For the case 2αi + μi = 4 (i = 1, 2) or 2α1 + μ1 = 4 and 2α2 + μ2 	= 4, by the same
derivation of the above, it is not difficult to find that the Lemma 5.1 would be replaced by
the following lemmas.

123



Critical Stein–Weiss elliptic systems: symmetry, regularity... Page 35 of 38   109 

Lemma 5.2 Suppose that N ≥ 4, αi ≥ 0, 0 < μi < N and 2αi + μi = 4(i = 1, 2). For any
λ < 0, there exists a constant C > 0 such that

‖u − uλ‖L2∗ (�u
λ ) ≤ C

(
‖v‖L2∗ (�u

λ )‖v‖L2∗ (�v
λ)

)
‖v − vλ‖L2∗ (�v

λ),

and

‖v − vλ‖L2∗ (�v
λ) ≤C

(
‖u‖L2∗ (�u

λ )‖u‖L2∗ (�v
λ)

)
‖u − uλ‖L2∗ (�u

λ ).

Lemma 5.3 Suppose that N ≥ 4, αi ≥ 0, 0 < μi < N, 2α1 + μ1 = 4 and 2α2 + μ2 < 4.
For any λ < 0, there exists a constant C > 0 such that

‖u − uλ‖L2∗ (�u
λ ) ≤C

(
‖v‖L2∗ (�u

λ )‖v‖L2∗ (�v
λ)

)
‖v − vλ‖L2∗ (�v

λ),

and

‖v − vλ‖L2∗ (�v
λ) ≤C

(
‖u‖q

L2∗ (�v
λ)

‖u‖q−2
L2∗ (�v

λ)
+ ‖u‖q−1

L2∗ (�u
λ )

‖u‖q−1
L2∗ (�v

λ)

)
‖u − uλ‖L2∗ (�u

λ ).

The integral inequalities in Lemmas 5.1–5.3 can provide a beginning of the procedure of
moving plane methods in integral forms. Thus, we are going to prove that for sufficiently
small λ, there holds u(x) ≤ uλ(x) and v(x) ≤ vλ(x) for any x ∈ �λ, which implies that we
can start to move the plane from −∞ to the right.

Lemma 5.4 Suppose that N ≥ 3, αi ≥ 0, 0 < μi < N and 0 < 2αi + μi ≤ min {4, N }. Let

(u, v) ∈ L
2N

N−2 (RN ) × L
2N

N−2 (RN ) be a pair of positive solutions of system (5.1), then there
exists M > 0 such that for any λ < −M, we have

u(x) ≤ uλ(x), v(x) ≤ vλ(x) ∀x ∈ �λ. (5.12)

Proof Since u, v are integrable, letting λ → −∞, we have

‖v‖p
L2∗ (�u

λ )
‖v‖p−2

L2∗ (�u
λ )

+ ‖v‖p−1
L2∗ (�u

λ )
‖v‖p−1

L2∗ (�v
λ)

≤ 1

2C
, (5.13)

and

‖u‖q
L2∗ (�v

λ)
‖u‖q−2

L2∗ (�v
λ)

+ ‖u‖q−1
L2∗ (�u

λ )
‖u‖q−1

L2∗ (�v
λ)

≤ 1

2C
, (5.14)

where the constant C is the same as in Lemma 5.1. Hence, as λ → −∞ in (5.4) and (5.5),
we easily get

‖u(x) − uλ(x)‖L2∗ (�u
λ ) = 0, ‖v(x) − vλ(x)‖L2∗ (�v

λ) = 0,

which shows that �u
λ = �v

λ = ∅. Therefore, there exists M > 0 such that for any λ < −M ,
relation (5.12) holds. ��

Consequently, we now move the plane Tλ = {
x ∈ R

N |x1 = λ
}
to the right as long as

(5.12) is satisfied. We can certainly define

λ0 = sup
{
λ | u(x) ≤ uρ(x), v(x) ≤ vρ(x), x ∈ �ρ, ρ ≤ λ

}
,

hence λ0 < +∞. This can be seen by applying a similar argument as in the above lemmas
from λ near +∞.

Next,we deduce that u, v are symmetric about the critical plane x1 = λ0 in the x1 direction.
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Lemma 5.5 Under the assumption of Lemma 5.4, for any λ0 < 0, we have

u(x) ≡ uλ0(x), v(x) ≡ vλ0(x) ∀x ∈ �λ0 . (5.15)

Proof Suppose on the contrary that at λ0 < 0, there hold u(x) ≤ uλ0(x) and v(x) ≤ vλ0(x),
but u(x) 	≡ uλ0(x) or v(x) 	≡ vλ0(x) on �λ0 . It is sufficient to claim that there exists an
ε > 0 such that u(x) ≤ uλ(x) and v(x) ≤ vλ(x) on �λ for any λ ∈ [λ0, λ0 + ε).

Indeed, for any η > 0, we can choose suitable R > 0 large enough such that

‖v‖p
L2∗ (RN −BR(0))

‖v‖p−2
L2∗ (RN −BR(0))

+ ‖v‖p−1
L2∗ (RN −BR(0)))

‖v‖p−1
L2∗ (RN −BR(0)))

≤ η,

(5.16)

and

‖u‖q
L2∗ (RN −BR(0)))

‖u‖q−2
L2∗ (RN −BR(0)))

+ ‖u‖q−1
L2∗ (RN −BR(0)))

‖u‖q−1
L2∗ (RN −BR(0)))

≤ η.

(5.17)

For such R > 0 and λ > λ0, we can also show that the measures of the sets �u
λ ∩ BR(0) and

�v
λ ∩ BR(0) go to 0 as λ → λ0.
By contradiction, we assume that

u(x) 	≡ uλ0(x) on �λ0 .

From (3.8) and (3.9), we obtain

h(x) − hλ0(x) < 0, z(x) − zλ0(x) ≤ 0.

Thus, by (5.2) and (5.3), we yield

v(x) − vλ0(x) < 0 on �λ0 ,

u(x) − uλ0(x) < 0 on �λ0 .

Naturally, take the same derivations as in Lemma 3.3, we obtain that

L(�u
λ ∩ BR(0)) → 0, (5.18)

and

L(�v
λ ∩ BR(0)) → 0, (5.19)

where L is the Lebesgue measure.
Combining (5.16)–(5.19), there exists an ε > 0 such that for any λ ∈ [λ0, λ0 + ε),

‖v‖p
L2∗ (�u

λ )
‖v‖p−2

L2∗ (�u
λ )

+ ‖v‖p−1
L2∗ (�u

λ )
‖v‖p−1

L2∗ (�v
λ)

≤ 1

2C
, (5.20)

and

‖u‖q
L2∗ (�v

λ)
‖u‖q−2

L2∗ (�v
λ)

+ ‖u‖q−1
L2∗ (�u

λ )
‖u‖q−1

L2∗ (�v
λ)

≤ 1

2C
, (5.21)

where the constant C is the same as in Lemma 5.1. By the same arguments as above, we can
conclude that �u

λ = �v
λ = ∅. Therefore, there exists an ε > 0 such that u(x) ≤ uλ(x) and

v(x) ≤ vλ(x) on �λ for any λ ∈ [λ0, λ0 + ε). This contradicts the definition of λ0, then we
have u(x) ≡ uλ0(x) on �λ0 .

Similarly, if v(x) 	≡ vλ0 on �λ0 , we obtain a contradiction. The proof is completed. ��
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5.1 Proof of Theorem 2.8

Similarly, we can also move the plane from +∞ to left, and define

λ1 = inf
{
λ | u(x) ≤ uρ(x), v(x) ≤ vρ(x), x ∈ �

′
ρ, ρ ≥ λ

}
,

where �
′
ρ = {

x ∈ R
N |x1 > ρ

}
.

If λ0 = λ1 	= 0, then both u and v are radially symmetric and decreasing about the plane
x1 = λ0, which implies u(x) ≡ uλ0(x) and v(x) ≡ vλ0(x) on �λ0 . Thus, we also get

z(x) − zλ0(x) < 0 and h(x) − hλ0(x) < 0,

from which we can deduce that

0 = u(x) − uλ0(x) =RN

∫

�λ0

(
1

|x − y|N−2 − 1

|xλ0 − y|N−2

)

(z − zλ0)v
p−1
λ0

dy

≤RN

∫

�λ0

1

|x − y|N−2 (z − zλ0)v
p−1
λ0

dy < 0.

This contradiction shows that λ0 = λ1 = 0. Since the direction of x1 is arbitrary, we conclude
that u and v are radially symmetric and decreasing about the origin. �
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