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Abstract
In this paper, we study the following weighted nonlocal system with critical exponents related
to the Stein—Weiss inequality
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By using moving plane arguments in integral form, we obtain symmetry, regularity and
asymptotic properties, as well as sufficient conditions for the nonexistence of solutions to
the nonlocal Stein—Weiss system.
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1 Introduction

Under suitable symmetry hypotheses, notably radial symmetry, classical estimates and
embedding properties of function spaces admit substantial improvements. For instance, the
following radial estimate of Strauss [32] establishes that all radial functions u € H LRN)
(N > 2) satisfy

x| VD20 < CIVull 2, x> L

This inequality shows that a control on the H' norm of u gives a pointwise bound and decay
of u, which are false in the general case. This phenomenon is quite natural, in the sense that
symmetric functions can be regarded as functions defined on lower dimensional manifolds,
hence satisfying stronger estimates, extended by the action of some group of symmetries.
Radial functions are essentially functions on R+, while the norms on RY introduce suitable
dimensional weights connected to the volume form. Related weighted interpolation inequal-
ities are due to Caffarelli et al. [4].
A central role in the analysis developed in this paper is played by the fractional integral

(Tup)(x) =/ Mdy, 0O<u<N.
RN |x — y|#
Weighted L? estimates for T, is a fundamental problem of harmonic analysis, with a wide
range of applications. Starting from the classical one-dimensional case studied by Hardy and
Littlewood, an exhaustive analysis has been made on the admissible classes of weights and
ranges of indices (see [30] and the references therein). In the special case of power weights
the optimal result is due to Stein and Weiss [31], which established the following weighted
Hardy-Littlewood—Sobolev inequality, which is now called the Stein—Weiss inequality.

Proposition 1.1 (Weighted HLS inequality [27]) Let 1 <t,r <00, 0 <pu <N, a+ 8> 0
and) <a+B+u <N, f e L’(]RN), and h € L" (]RN). There exists a sharp constant
Cit.ra,p,u,N Such that

F@h)
/ / — LR —dvdy < Cr N B
wy S Il lx = 1Dy

@ Springer



Critical Stein-Weiss elliptic systems: symmetry, regularity... Page3of38 109

where
1 oz+/3+u_2
t r N -
and
1 nu o 1
——— =< =<1--
t N N t

where C is independent of f and h. Moreover, for any h € L" (RY), we have

/ Lﬁdylls <CG N,w, o, B)lh|
RN |x]%]x — y[#]y] !
where s satisfies 1 + 1 =1 + M% and § < § < “F.

This inequality reduces to the classical Hardy—Littlewood—Sobolev inequality if« = 8 =
0. In this case, Lieb [28] applied the Riesz rearrangement inequalities to prove that the best
constant for the classical Hardy-Littlewood—Sobolev inequality can be achieved by some
extremals. Lieb also classified the solutions of the integral equation

N+t

u(x):/ Mdy, x e RN (1.1)
RV |x — y[N 7T

as an open problem. Dou and Zhu [12] classified the extremal functions of the reversed HLS

inequality and they computed the best constant. In fact, Eq. (1.1) arises as an Euler-Lagrange

equation for a functional under a constraint in the context of the Hardy-Littlewood—Sobolev

inequality and is closely related to the well-known fractional equation

(—A)5u =uit, x eRV, (1.2)
When N > 3, t = 2, Eq. (1.2) goes back to
—Au=u¥3, xRV, (1.3)

which is a special case of the Lane-Emden equation
—Au=uP, xeR". (1.4)

The classification of the solutions of Eq. (1.3) and the related best Sobolev constant play
an important role in the Yamabe problem, which is the prescribed scalar curvature problem
N+2

on Riemannian manifolds. It is well known that for 0 < p < §=5, Gidas and Spruck [16]

proved that Eq. (1.4) has no positive solutions. This result is optimal in the sense that for any
p=> %—f%, there are infinitely many positive solutions to (1.4). Gidas et al. [15], Caffarelli et
al. [3] proved the symmetry and uniqueness of the positive solutions respectively. Chen and
Li[6], Li [21] simplified the results above as an application of the moving plane method. Wei
and Xu [33] generalized the classification of the solutions of the more general Eq. (1.2) with
T being any even number between 0 and N. Later on, Chen et al. [8] developed the method
of moving planes in integral form in order to prove that any critical points of the functional is
radially symmetric and they gave a positive answer to the Lieb open problem involving Eq.
(1.1). Li [24] also studied the regularity of the locally integrable solution for problem (1.1)
and used the moving sphere method to establish the classification of solutions.

For the doubly weighted case, Lieb [28] proved the existence of a sharp constant, provided
that either one of » and ¢ equals 2 or » = ¢. For 1 < r,t < oo with % + % = 1, the sharp
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constant is given by Beckner in [1, 2]. It is well known that the corresponding Euler-Lagrange
equations for the Stein—Weiss inequality are the system of integral equations

v (y)
M(X) :/ —dy,
RV |x|%|x — y|#|yl#

ub
v(x) = f ¢dy,
RV [x1Px — yl#]yl®
where 0 < p,q < +oo,0.< n<N,% < # < %and ot +1 = W,FQ[IO]
and [17], the authors obtained the symmetry, monotonicity and the optlmal integrability of
solutions to problem (1.5). In the special case when i = N — 2, since the integral system
(1.5) is equivalent to the nonlinear singular PDE system

(1.5)

@ v?(x)
— A () = S
|x] (1.6)
8 uP (x) '
A o) = =

Chen and Li [11] proved the uniqueness of the solutions and classified solutions of problem
(1.6) if « = B and p = ¢q. Next, Lei et al. [20] studied the asymptotic radial symmetry and
growth estimates of positive solutions for (1.5). Liu and Lei [26] discussed the nonexistence
results for (1.5), and they also considered the existence of positive solutions for the following
weighted system with double bounded coefficients

v (y)
u(x)=61(X)/ TSy
RV [x[%]x — y[*|yl 1.7
u”(y) '
v(x) = c2(x) TEe ooy
RV [x[P|x — ylH]y
whereO<pq<+ooO<,u—|—oc—|—,B<N,N<ﬁ<”7\,‘aand q—ll<#.

More generally, Chen et al. [5] established the symmetry and regularlty results related to
the weighted Hardy—Sobolev type system

u(x) =/ S1 ), v(y)) dy.
RN |X[%]x — y|#]y|P

U(x):/ fa(u(y), v(y))
rN |x|Plx — yl“lyl"‘

(1.8)

)

where

A@@). v()) = 2u?' (y) + pv? (y) + yiu® ()P (),
L), v()) = 2au(y) + pav® () + y2u® (0 (),
and nonnegative constants A;, i, ¥; (i = 1, 2) are not equal to zero simultaneously. For the

special case of (1.8) corresponding to @ = = 0, there are some contributions on the system
of integral equations

M(x):/ u”(y)vq(y)dy,
R

v lx = yNy

v(x)=/ u"(y)v"(y)dy’
R

v lx =y Ny

(1.9)
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where 0 <y < N,1 < p,g < y Y with p 4+ ¢ < +; When y = 2, Li and Ma [22]
proved the symmetry and unlqueness of the positive solutions for (1.9) with critical exponents
p+q= % Furthermore, Yu [34] studied the more general integral system

R (ORI

RV |x —yN7v

1.10

v(x)_/ IR (110
= Jon Ty

where f, g satisfy the following monotonicity conditions: f(s1, s2) and g(sy, s2) are nonde-

creasing in s; for fixed s; and, additionally, f (S L 52) and g(sl ”) are nondecreasing in s; for
1

fixed s; with p;, g; > 0 and p; + ¢; = ny

From the weighted Hardy-Littlewood—Sobolev inequality with « = 8 and ¢t = r, assum-

ing that [u|? € L'(RN), we easily get the following inequality
) [PJu ()P
/ f . e dxdy < Gl lull
RV JRN [X[¥]x — y[H]y]

where t satisfies

t N

)
Rl 'y

Furthermore, if u € H' (RN ), from the Sobolev embedding theorems, we have

2N
2=<qt =< )
N -2
and hence
2_2a+,u <p< 2N —2a —
N N -2
Accordingly, the critical exponent 2}, | := ZNE# Quap :=2— 20‘%) is called the upper

(lower) critical exponent in the sense of the weighted Hardy-Littlewood—Sobolev inequality.
It is obvious that

i (o) PP fu () PP 22z 20
/ f « —dxdy < C(N, ., o)l|ul| 55" < C(N. p, @) Vuly "
RN JrN X[ — y[#]y|
(1.11)

Therefore, we see that the best constant problem of (1.11) is related to the following critical
nonlocal Hartree equation

1 2:‘*“ *
—Au=— / %dy Iulzﬂ-/fzu, x e RV, (1.12)
Ix[* \Jrwv |x — yl[#lyl®
which is a special case of the weighted Choquard equation
1 P
— Au= (/ Mdy> u”~2u, x eRV. (1.13)
Ix[* \Jrw |x — y[#]y[®

The classification of solutions to problem (1.13) has attracted a lot of interest recently. If
a =0, Eq. (1.13) reduces to

~Au= </ Mdy) lul”~2u, x eRN. (1.14)

RN [x — y[#
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Miao et al. [29] established the existence of solutions of (1.14) if p =2, u =4 and N > 5.
For the symmetry and uniqueness of solutions for the nonlocal Hartree equation, by using the
moving plane method introduced in [8, 9], Liu [25], Lei [19] and Du and Yang [14] classified
the positive solutions of problem (1.14) with the critical exponent 211\,\/__2“. Moreover, Du and
Yang [14] also proved the nondegeneracy of the unique solutions for the equation when p
is close to N. As applications, Ding et al. [35] investigated the existence of semiclassical
solutions of the critical Choquard equation with critical frequency.

The readers may turn to [18, 19] and the references therein for more backgrounds about
the Hartree type equations. For (1.13) with o # 0, the authors in [13] proved the existence of
positive ground state solutions the critical equation by a nonlocal version of the concentration-
compactness principle. They also established the regularity of positive solutions and proved
the symmetry of these solutions by the moving plane method in integral form [7]. Finally,
we recall that Li et al. [23] studied the equation without variational structure and classified
the nonpositive solutions.

2 Main results

This paper is devoted to the study of some qualitative properties to the positive solutions of
three nonlocal elliptic systems with weighted Stein—Weiss type convolution part. We first
consider the following nonlocal system without a variational structure

1 P
e ([
lx|* \Jry |x — y[#]y]*

1 q
_szi</ uiwdy)vp,
bele \Jgn 1x — yl#]yle

where N >3, 0>0,0<pu <N,p,g>1and0 <2a+pu <N.

In Sect. 3, by investigating an equivalent integral system with Riesz potential, we are able to
prove some qualitative properties of the positive solutions for problem (2.1). In fact, we obtain
the symmetry result for the positive solutions of (2.1) via the moving plane arguments of
integral form, which can be easily applied to more complicated equations without maximum
principles.

@2.1)

Theorem 2.1 Suppose that N > 3, « > 0,0 < u < N, p,g > 1and 0 <20 + pn < N.
If (u,v) € LO@RN) x LRN) is a pair of positive solutions of system (2.1) with sg =

N(ptg=1) : , — o
N2 a0 then u and v are radially symmetric and decreasing about the origin.

If p+q=2-2%,— 1 thenso = ¥, and so (u, v) € L2 (RY) x L*" (RV). Assuming
that p, ¢ lie in some suitable intervals depending on the parameters «, 1, then we can apply
the regularity lifting lemma [9] to prove that the positive integral solutions possess better
integral properties.

Theorem 2.2 Suppose that N = 3,4,5,6,a > 0,0 <u < Nand N —2 <2a+pu < N.
Let (u,v) € L% Ry x L% (RN be a pair of positive solutions of system (2.1), where
D, q satisfy W < p,q < min {ﬁ, M} andp+q =225, — 1. Then

N-2
(u,v) € LS@®RY) x L5(RN) with
€ N +
_— o).
S\ =2
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By using the symmetry and regularity results obtained above, we establish the asymptotic
behaviour of solutions at infinity.

Theorem 2.3 Suppose that N =3,4,5,6,0 >0,0 <u <N, p,g>land N -2 <2a +
2N 2N

w < N.Let (u,v) € LN-2(RN) x LV-2(RN) be a pair of positive solutions of system (2.1).

If p, q satisfy p+q = 2-2% ,—land 72(1\[1;2_0‘2_”) < p,q < min {ﬁ, —N+2+2(xf§_2a_“) },

then the following properties hold.

(1) If 0 < a < 2, then both u(x) and v(x) are bounded and, moreover, we have u(x),
v(x) € C®RN —{0}).
(2) For large |x|, we have u(x) = \XI% and v(x) = IXI%

Next, we are interested in the following nonlocal system with variational structure

1 p
—Au = (/ Ui(y)dy> uq717
plxl® \Jry [x — y[H]y|*

1 q
—Av = (/ ui(y)dy> v”_l,
qlx|* \Jry |x — y|#]y|*

where N >3, 0 >0,0<u < N, p,g > 1and 0 < 2 + < N. Notice that system (2.2)
becomes (1.13) if p = ¢ and u = v, but problem (2.2) has not been well studied if p # q.

In Sect. 4, we are concerned with the nonexistence of positive solutions to system (2.2),
provided that p+¢ =227, which is called a critical condition. We first prove that system
(2.2) has no positive solutions in the subcritical case.

2.2)

Theorem 2.4 Assume that N > 3,0 > 0,0 < pu < N, p,qg > 1and0 < 200 + u < N.
Let (u,v) € len’cz(RN) X WZ%S(RN) be a pair of solutions of 2.2). If p+q < 2- 22,#’ then
u=v=0.

Analogously to the arguments for problem (2.1), we can also draw the conclusions for the
system (2.2), such as symmetry, regularity and asymptotic behavior. Here we shall assume
that u, v are integrable solutions belonging to L% (RV) with sg = ﬂ’;fjﬂ.

We establish the following symmetry result.

Theorem 2.5 Suppose that N >3, « > 0,0 < u <N, p,gq >2and0 <20+ pn < N.
Let (u,v) € LRN) x LO®RN) be a pair of positive solutions of system (2.2) with sg =

m’;fim. Then u and v are radially symmetric and decreasing about the origin.

As we can see, for the critical case p+q =225, we get (u, v) € LY (RN) x L¥ (RN).

Hence, arguing in the same way as Theorems 2.2 and 2.3, the regularity and decay properties
are stated as follows.

Theorem 2.6 Supposethat N =3,4,5,6,0 >0,0<u <N, p,g>2and N —2 <2a+
w<N.Let(u,v) €L ¥ (RN) x L% (RN) be a pair of positive solutions of system (2.2). If
D, q satisfy p+q = 22;,#‘””% <p—1,g—1 < min {ﬁ, %},
then (u, v) € L*(RY) x L¥(RN) with

€ N —+00
s _ .
N-2

Theorem 2.7 Suppose that N =3,4,5,6,0>0,0<u <N, p,g>2and N —2 <2a+
2N 2N
w < N.Let(u,v) € LV=2([RN)x L¥-2 (RN) be a pair of positive solutions of system (2.2). If
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109 Page80f38 M. Yang et al.

X 2(N—=2a— . 4 N4242(N+2—2a—
p, q satisfy p+q = 2-2;’Mand% <p—1,g—1 < min {m, %},

then the following properties hold true.

(1) If 0 < o < 2, then both u(x) and v(x) are bounded and, moreover, we have u, v €
C® RN —{0}).
(2) For large |x|, we have u(x) = \XI% and v(x) = IXI%

Finally, we study the following Hamiltonian-type system

1 p
—Au = / v’ ) dy pP~1,
[t \JRN [x — y[#t]y]*

1 q
Cpy / WO e,
ez U 1x — ylr2]yle2

where N > 3,0 < u1, 2 < N,aj, a2 > 0,0 <201 +p; <N,0 <20+ 2 <N and
p,q > 1.

In the last section, we verify the symmetry of positive solutions of the Hamiltonian system
(2.3) with convolution part.

(2.3)

Theorem 2.8 Suppose that N > 3, «; > 0,0 < u; < N and 0 < 20; + u; < min {4, N},
i =121 (u,v) e DMERN) x DL2@RN) is a pair of positive solutions of (2.3) and

(p,q) = <2N’/3f127‘“ , ZN}%O_‘Z{’” ), then u and v are radially symmetric and decreasing

about the origin.

An outline of the paper is as follows. In Sect. 3 we mainly focus on the nonlocal Hartree
system (2.1). By translating the equation into an equivalent integral system, we apply a
regularity lifting lemma to obtain the regularity of the solutions and the moving plane methods
in integral form to study the symmetry of the positive solutions. Besides these, the decay
at infinity is also shown by careful estimates. In Sect. 4 we will study system (2.2). Firstly,
by establishing a PohoZaev identity, we prove a non-existence result. In this part we will
also prove the regularity of the solutions by some iterative arguments and singular integral
analysis. Finally, we prove the symmetry of solutions for the Hamiltonian system (2.3). This
is done by using the moving plane method in integral form.

3 Qualitative properties for the nonlocal system (2.1)

In this section, we discuss the qualitative properties of system (2.1) with the critical condition
p+q=2-2% —1,including symmetry, regularity and asymptotic behavior at infinity. It

o, L
is worth noting that system (2.1) is equivalent to the following integral system in RY,

’vp
z(x):/ %d%
RV |X|*x — y[#]y]

ud(y)
hoy = [ — 2D gy
0 ANMWM—ﬂMM“y
_ z(ut(y)
uu)—RNAQT;;ﬂﬁzd»

v(x):RN/ "G
R

v =y V2

3.1)

=

I'(
4

N‘

where Ry = .

e
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3.1 Symmetry

In this subsection, we establish the symmetry of the positive solutions for (3.1) by means of
the moving plane method in integral forms developed by Chen et al. [8]. We start this part
with some basic definitions. For A € R, define

Th={x=01 ..., x) | x1 <A}, x*=Qr—x1,...,x),
w(x) =u@x*), v =v0h), 20 =z2("), k) =h(h),
and
Ti={x e lux >u(x)}, Z={xeZi|vx) > v},
={xreXlz(x) > m@)}, I ={x eIy h(x)>h(x)}.

By straightforward computation we obtain

q q
ux) :RN/ zZ(y)ul(y) dy+RN/ zZ(y)ul(y) dy
5, 1x R

—y|V=2 Noy, X —yIN2

A A
:RN/ |z(y)u‘1(y) dy+RN/ zZ(yMul(y )dy,

x —y|N=2 5, |x — yHN=2
and

1, (x) =Ry / D)y gy, / KAV
R

5, Xt — N2 Noy, xt—yIN2

z(y)u(y) z(yMud (y*)
=RN/ VM) gy Ry | S22
Py |x)\ - Y|N_2 Py |x)h - yA|N_2

Since |x* — y*| = |x — y| and |x* — y| = |x — y*|, it follows that

1
ux) —up(x) =Ry | ( W2

%, |x =

1 q g
|)C)‘ — y|N72 )(Zu - Z}\u)h)dy’ (3'2)

and

1
v(x) —vp(x) = RN/ ( y|N 2 T lefz)(hv — hv!)dy. (3.3)

For p, g > 1, we have the following estimates.

Lemma 3.1 Under the assumption of Theorem 2.1, for any » < 0, there exists a constant
C > 0 such that

||M - u)»”L‘“O()] =< C”U”LSU(EM)”u”LSQ(EM)”u - u)»”L*"O(ZK)
+ C”u”on(Zu)”v”LSo(z )”U - v}n”LSO(E}’f% (34)
and
v — wallzocsyy < Cllullf, 0l 1o = vall o s
Lo(x)) = Lo(xY) L0(%Y) ALY (Z)

+C”v”LSU(2 )”u”LSo(EU)”u u)L”L"'O(E;:} (3.5)
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109  Page 10 0f 38 M. Yang et al.

Proof For any x € X, notice |x* — y| > |x — y|, by using the mean value theorem, from
(3.2) and (3.3), we easily deduce

2 —uy) ul(z —z;)
u(x) —up(x) < RNq/ — v v+ RN/ — vz 4y
e =yl z e =yl

and

hoP~ (v — vy) vP(h — hy)

v(x) —u(x) < RNP/ v Tt RN/ w4y
gy e —yIN 2 o |x = y[N=2

In virtue of (u, v) € L (RN)x L0 (RN) withsg = N(Lq_l), we suppose thatz € LK@RNY,

N+2—-2a—pn
h e L'(R"), where k and ¢ satisfy
Log N+ 1 p Nt o
k S0 Nso t S0 N5 ' '

By applying the HLS inequality and the Ho6lder inequality, we have

lu — il o sy < Cllzu? ™ = up)ll_wsg + Cllu?(z = 221l _nsg
L N+2s9 (E;f) L N+2s0 ():}Z\) (3 7)

—1
= Cllzl gzl gy 1 = Lo sy + Cllz = 2ol oz 1l -

From (3.6), we obtain

pNk gNt
=s9 and =
N+ (N —2a — p)k N 4+ (N —2a — u)t

50-

Analogously, we have

h(x) — hy (x) / ! u ”K
X)—nyyx) = -
5, =yl x|elyle Ayt
1 ul q
+ A,\ - xu dy
(B L W E e B bl R
q q
ffL( [ Al )L_ Y \ay (8)
5, X% \Ux =yt x*—y|# ) \y* [y
qg _ 4
5/ u Uy dy
s I x — yl]y [

WY —u
< q/ %dy,
s T — IRy
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and

@) — 2.(x) / : vr ot
zZ(x) —z(x) = -
5, =yl \x|elyle xre |yt
1 v’ vP
+ k,\ Y dy
[xA — y|# \ fxl®yA e @]yl
P p
L ) () e
5, X1 \Jx —yl* fx* —yl# [y|¢  IyH*
p_ P
5/ #dy
s |x|%x = y#y|*

v lw—v
< P/ #d%
2 el — y[Elyle

from which we can deduce that

Ih =l asty < Cllulfgggm e = urllocsp), (3.10)
and
lz = zallr(ss) = CIIUIILSO(E v =villzsosy)- (3.11)

Additionally, using the weighted HLS inequality again, we have

p

12y < OV o = CI0l o (3.12)

and
v q q

Iz < CIl v = Cllal gy, (3.13)

We deduce that z € L¥(Z¥) and h € L'(ZV).
Combining (3.11), (3.12) with (3.7), we see that (3.4) holds. Similarly, we obtain
v —villLosy) < CllhvP™ 'w=v)l wy A CIP R =R g
LN+2s0 (2 ) LN+2SU (E;z) (3 14)

< Cllhll s 01 g 10 = vallocsy) + Clk = all e 101 5.
Thus, inserting (3.10) and (3.13) into (3.14), we complete the proof. ]

Lemma 3.2 Under the assumption of Theorem 2.1, there exists M > 0 such that for any
A < —M, we have

ulx) < up(x), vx) <v(x) Vx € X. (3.15)

Proof Since u, v are integrable, letting A — —o0, we have

1
”v”LSO(E“) ”u”LSO(E“ = Ev

1
o s 101 sy < 5

1
el s 101500y < 36
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and

P q-1
HUHUO(EA”)”L{”LSO(EK) = 4c’
where the constant C is the same as in Lemma 3.1. Hence, inserting those inequalities into
(3.4) and (3.5), as A — —o0, it follows that
u(x) — Ol pszey =0, o) — vl zy) =0,
which shows that X3 = X} = ¢. Therefore, there exists M > 0 such that for any A < —M,
relation (3.15) holds. O

We now can move the plane 7, = {x eRNx; = k} to the right as long as (3.15) is
satisfied. Naturally, denote

Ao = sup {A [u(x) <upx), v(x) S vp(x), x € Xp, p < A}.

We observe that Ay < +00.
Next, we deduce the following auxiliary property.

Lemma 3.3 Under the assumption of Theorem 2.1, then for any Ly < 0, we have
u(x) = upy(x), v(x) = vy, (x) Vx € Xy,. (3.16)

Proof Suppose that at A9 < 0, there holds u(x) < u;,(x) and v(x) < v;,(x), but u(x) #
Uy (x) or v(x) # vy, (x) on Xy,.

We claim that there exists ¢ > 0 such that u(x) < u, (x) and v(x) < v, (x) on X, for any
A€ [Xo, Ao + &).

Indeed, for any n > 0, we can choose R > 0 large enough such that

g—1 n

14
”v”LSU(RNfBR(O)))”u”LSO(RNfBR(O))) S 5 (317)
and
lull? 1ol 7! <1 (3.18)
L0 (RN —BR(0) " L0 (RN —BR(0))) = 2~ ’

For such R > 0 and A > Lo, we show that the measures of the sets X} N Bg(0) and
X7 N Br(0) gotoOas A — Ap.
Assume that

u(x) # uyy(x) on Xy,

From (3.8), we obtain

h(x) —hjy(x) <0onX,,.
Thus, by (3.3), we yield

v(x) — vy, (x) < 0on Xy,.
Combining with (3.9), it follows that

Z(x) — 23, (x) < O0on X,.
From (3.2), we have

u(x) —uy,(x) <0on Xy,.
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Naturally, for any § > 0, we define

Ds = {x € 3, N BR(0) : upy(x) — u(x) > 8},
Es = {x € Ty, N BR(0) : u3y(x) —u(x) <8},

and
G = (Zy — X)) N Br(0).

Obviously, we get

lim L(Es) =0, (3.19)
§—0

and
lim £(Gy) =0, (3.20)
r—Ag

where £ is the Lebesgue measure. For any x € X} N Ds, since
u(x) — up(x) = u(x) — upg (x) + 1 (x) — up(x) >0,
we have
Uy (x) —up(x) > upy(x) —u(x) > 6.

Hence, by the Chebyshev inequality, for fixed § > 0, we obtain that

L(Z} N Ds) < L/ 13 (X) — 1 (0)]*dx < L [ty (x) — up () [*dx — 0
8% Jsunps 3% JBr(0)
(3.21)
if A — Xg. Notice that
E¥ N Br(0) C (2 N Ds) UEs UGy,

From (3.19)-(3.21), as A — Xp and § — 0, we can easily get

L(Z¥ N BR(0)) — 0. (3.22)
Analogously, we obtain

L(E) N Bgr(0)) — 0. (3.23)

Combining (3.22), (3.23), (3.17) with (3.18), there exists ¢ > 0 such that for any A €
[Xo, Ao + &),

g—1

P
1o s el s ) =

[\®]
sl -

q p—1
||u||L‘Y0():;) “U ”LSO(E}\)) f

-8/~

q r—1
1l s 00 0 () <

N
QO

and
4 q—1
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where the constant C is the same as in Lemma 3.1. By the same arguments as above, we

can conclude that £} = ¥} = ¢J. Therefore, there exists ¢ > 0 such that u(x) < u;(x) and

v(x) < vy(x) on X, for any A € [Ag, Ag + €). This contradicts the definition of A, hence
we obtain u(x) = u,,(x) on Xy,.

Similarly, if v(x) # vy, (x) on X, which is also a contradiction. The proof is completed.

m}

3.2 Proof of Theorem 2.1

Clearly, we can also move the plane from +oo to left, and define
J=inf {A ] u(x) < up(x), 00 = 000, x € X0 p = 4]

where Z:o = {x e RN |x; > p}.

If Ao = A1 # 0, then both u and v are radially symmetric and decreasing about the plane
X1 = Ao, whichimplies u(x) = u;,(x) and v(x) = vy, (x) on X;,. Since |[x — y| < |x*0 — y|
and |y| > |y*[, we deduce from (3.9) that

) ()</ 1 ( 1 1 >< 1 1 ) gy -0
z2(x) — ), (x) < e — — — ——— v, dy < 0.
’ s 1K1\l =yl Jxbo —y|r J \Jyle |yroje ) "o

Therefore, we obtain that

1
0=u(x) —uy(x) = Ry (

- )z — z3)ul dy <0,
Ty X T yIN=2 |x*0 — y|N=2 0730

which is impossible. Hence, we get 1o = A1 = 0. Notice that the direction of x1 is arbitrary,
hence u, v are radially symmetric and decreasing about origin. O

3.3 Regularity

Since the integrability and the regularity play an essential role in estimating the decay rates
of u(x) if |x| — o0, it is necessary for us to discuss the integrability of solutions to system
(2.1) by applying the regularity lifting theorem (see in [9,Theorem 3.3.1]) to (2.1).

Lemma 3.4 Let X and Y be Banach spaces with norms || - ||x and || - ||y, respectively. The
subspace Z = X NY of X and Y, is endowed with a new norm by

I-llz= 015 +1-15, pell, oo].

Suppose that 7 is a contraction map from Banach space X into itself and from Banach space
Yinto itself. If f € X and there exists a function g € Z = X NY such that f = T f + g,
then f also belongs to Z.

For some constant A > 0, we define
ulx), ulx)> Aor|x|> A,

ua(x) = {

0, otherwise.

and up(x) = u(x) — us(x). Similarly, we can define v4 (x) and vp(x). Then we define the
functions

_ ul (y)m(y)
Fu(m) = Ry fRN oyl
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7MM:RN/ vOwG) ,

RV [x — y[N=2

-1
Wu(a)=/ ul™ (y)a(y) dy,
R

Nx|¥lx = y[#yle

-1
Guth) / IO
R

N x | = y|# ]
Suppose a, b € L*(RN), m € LK(RV), and h € L' (R"). We define the operator
Ty LRY) x LSRY) x LK@®RY) x L'(RY) — L'RY) x L*RY) x L*@®RY) x L'(R"),
Tala,bym, w) = (Fy,(m), Ty, (w), Gy, (b), Wy, (),

with the norm

||((1, b, m, w)”LS(RN)XL'V(RN)XLI‘(RN)XL’(RN)
= llallps@yy + 16l Ls@ny + lmll gk gyy + lwll gy -

Hence, we deduce that (u, v, z, h) satisfies the operator equation
W, v,z,h) = Ta(u,v,z,h) + (Fyu(2), Tyg (h), Gyg (v), Wyp ().

Next, we will obtain the main result of Theorem 2.2 by proving the following two lemmas.

Lemma 3.5 Assume thatp+q =2 - 2;# — lands, k, t satisfy

N
s > ,
N-2
2N
s > ,
ON + p(N —2) —2(N +2 — 20 — 1)
2N

ST ONFqIN—2)—2(N+2—2a—p)
IN > [p(N —2) — 4],
IN > [g(N —2) — 4ls,
I 1 gIN-2)—4

’

s k 2N
I 1 p(N-2)—4
st 2N '

Then for A sufficiently large, Ty is a contraction map from L*(RN) x L¥(RN) x LK(RN) x
L'(RN) to itself.

Proof Since s > %, 2N > [q(N —2) —4]s and % - % = %, by the Hardy—
Littlewood—Sobolev inequality and the Holder inequality, we have

q q
| Fug ey < Cliymll, e < Clluall]

2*(RN)||m”Lk(RN),
Similarly, from 2N > [p(N — 2) — 4]s and % — % = %, we get

4 P
ITor sy < CIVRwI e < Clloall o g, I sy,
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. : 2N 2N
In gddltlon, qotlce that s >IN PN D 2N 20 and. S > INTND-2NTZT a0
Using the weighted HLS inequality and the Holder inequality, we obtain

-1
Wy, (a <Clu%"a
IWar@lam < Clall o

q—1
=Clluy all

2Ns
L 2N+2(N+2—2a—p)—p(N=2)]s (RN)
=< C””Aan*(RN)”a|IL~"(RN)’
and

1G 0y Bk ey < CllvE "B

L N+(N— 20( 1k (RN)

<Clv b

2Ns
L 2N+2(N+2-20—pn)—q(N=2)]s (RN)

< Cllvall g, 181 -
2N
By virtue of u, v € L¥-2 (R"), we can choose A large enough such that

Cllual and Cllval?

1
L2* (RY) Z LZ* RN) 4
Thus, 4 is a contraction map from LS (RY) x LS RY) x LKRN) x L'(RV) toitself. O

Lemma 3.6 Supposethat3 <N<6 a>0,0<u<Nand N -2 <20+ u < N. Let
(u,v,z,h) € LN 2(RN) X LN 2(RN) x LK (RN) x L'0(RN) be a set of positive solutions
of system (3.1) with kg = WI;I(NZ) and ty = W, where p, q satisfying
W < p,q < min {ﬁ W] and p+q = 2'20,/1_1' Then (u, v, z, h) €
LS(RN) x LS (RN) x LK@®RN) x L'(RN) with

( N > ( 2N 2N )
sel——,400]), k€ ,
N-2’ 4—(@q—-2)(N—-2) 4—q(N—-2)

< 2N 2N )
andt € )
4—(p—2)(N—-2) 4—p(N-2)

Proof Firstly, under the assumption of Lemma 3.5, we claim that
(Fup (2), Tyg (h), Gy (v), Wiy @) € LS (RN) x LS ®RN) x L*®RY) x L'(R").

In fact, we know that |[up| < A and up = 0 for |x| > A. Following the same estimates as in
the proof of the above Lemma, we easily have

I Fy (Z)”LS(RN) = C||u (RN) = CHMIII;HLA](RN)”Z”L’\'O(RN)v
and
ITos (Wl s @y = Cllvghll ns &Y S < Cllvgll Las gy 11l Lo vy
where A = 2Nsq Ay = 2Nsp ke =

2N+H[2(N+2—-20—p)—p(N-=2)]s’ 2N+H2(N+2—-20—p)—q(N-2)]s’

W and o = W satisfy 2N + [2(N +2—2a— /,L) - p(N - 2)]S > 0,
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INHR2(N+2—20—pn)—g(N—=2)]s > 0,4—(g—1)(N—2) > Oand4—(p—1)(N—2) > 0.
MOI'GOVCI', we can get

—1
Wiy (u < Cluly u
| Wi ( )”L‘(IRN) =C| B ”LNHN]XiéOI*M)!(]RN)

-1
< Clluf " ull

2Ns
L 2NFRNT2=2a= 10— p(N-2)F5 (RN)

—1
< Cllug ||LA3(RN)||M”L2*(RN),

and
Gy Wl k@) < Cllvh vl we
B )= B L NFN—-2a=0F (RN
—1
< Clvg vl 2N
L2N+2(N+2-2a—1)—q(N=2)[s (RN)
p—1
= Cllvg llaglivllLos gy,
_ 2Ns(g—1) _ 2Ns(p—1)
where A3 = A4 = SN2 20— -G H -2k A we

) 2NA+[2(N+2-2a—p)—(p+D(N=2)]s’
require 2N + [2(N +2 =20 — ) — (p+ )(N — 2)]s > O and 2N + [2(N + 2 — 20 —
n) — (g + 1)(N —2)]s > 0. Hence, we have

(Fuy @), Ty (h), Gy (v), Wy ) € L*RY) x L*RY) x LK®RY) x L'(RY),

which implies .74 is also a contraction map from L7~-2 RNy x Lv2(RN) x Lko@RNYy x
L (RN) to itself. Write

X = LT3 RY) x L2 ®RY) x LO®RN) x Lo®RY)
and
Y = L*RY) x L*RY) x L*@®RY) x L'(RV).

Evidently, if s, k and 7 satisfy

N
s > s
N-2
2N
s > ,
ON + p(N —2) —2(N +2 — 20 — p)
2N

STONFqIN—2)—2(N+2—2a—p)

2N > [p(N —2) —4]s,

2N > [g(N —2) —4]s,

2N 4+ [2(N4+2 —20 —pn) — p(N —2)]s > 0,

2N 4+ [2(N4+2 20 —u) —g(N —2)]s > 0,

2N +[2(N+2=2a —pu) — (p+ D(N = 2)]s > 0,
2N+ R2(N+2—-2a—pn) —(@+ 1)(N —-2)]s >0,
I 1 gN-2)—4

(3.24)

sk 2N ’
I 1 p(N-2)—4
s o 2N ’
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we deduce that (i, v, z, h) € L°(RY) x LS(RY) x LX(RY) x L'(RV) by the regularity

lifting theorem. From (3.24), if% — % = % s % — } = %, then s, k, t should
satisfy
N - 2N
N—-2 7" 2N+p(N—-2)—2(N+2—2a—u)’
N - 2N
N—2 7" 2N+g(N—-2)—2(N+2—2a—u)’
p(N—=2)-4=<0,
g(N —-2)—-4<0,
2(IN+2—-20—pu)—p(N—=2)>0,
2(N+2—-20—pn)—qg(N —2) >0,
2IN+2-20—p)—(p+1(N=2) >0,
2IN+2—-2a—p)—(@+ DN -2)=>0.
More accurately, we deduce that if p,q satisfy W < p,g < min [ ﬁ,

N462008 ) then (u, v, 2, ) € L (RY) x L (RY) x L¥RY) x LIRV) with

( N, > . ( 2N 2N )
S U S R S R Y V) R Ry v

< 2N 2N )
andr € ) .
4—(p—2)(N—-2) 4—p(N-2)

The proof is now complete. O

3.4 Decay

In this part, we will show the decay rate of the solutions of the critical weighted Hartree
system (2.1).

3.5 Proof of Theorem 2.3

We first prove that |x|*h(x) € L®(RM). It is obvious that

|x|0th(x):/ ”q(Y)
R

N|x = y|H]y|*

Thus, for any » > 0, we obtain

q q
[1x]%R(x)] 5/ %dw/ %dy. (3.25)
B, (0) X — yI*|yl¥ RN, 0) |x — y[*ly|*

On the one hand, for x € RY — B»,(0), we have |x — y| > |y|, we have

lu(y)|? d lu(y)|?
ey = a4y
B, (0) 1X — y[*]|y|* B, (0) [y1*

< full? 4 ”
LE=T (B, (0)

< 00,
LK (B, (0))

1
ly|rte
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where 1 < k < min | 5=y, Ao} if N = gV = 2) > 0, while 1 < k < 20 if
N — g(N —2) <0.For x € B-(0), we have
q q q
/ lu(y)l dys/ |M(y1| dy+/ |M(y)|+ dy < co.
B,(0) [x — yI*|yl¥ B,(0) |yIHT By (x) |X — y[HF
Thus, we can obtain that
q
/ O, o, (3.26)
B,(0) |x — y|*[y|¥

On the other hand,

/' [u(y)| J
y
RN B, 0) |X — y[*]y|*

:/ [u(y)|? v / [u(y)|
(RN —B,(0)NB, (x) 1X — Y[*|y|* RN —B, (0)NRN —B,(x)) 1X — Y[*|y]¢

=01+ 0».
As in the preceding estimates, we have
lu(y)|? 1 lu(y)|?
o1 = / ﬁdy == 7#‘1)’
RN B, 0)NB, (x) X — YI*|¥] r% J@®N B, (0)NB,(x) X — VI
1 u(y)|4
L lu(y)] d
r Jp @y 1x — yl#
o, 1
= —llull” g e < 00,
LE=1 (8,00 N Y1 W Lk s, 0)

where | <k < min{%, %] if N —g(N—=2)>0,while ] <k < XifN—g(N -
2) <0.
We observe that

0)= f DLy <
(RN B, (0)NERN —B, (x)) |* — Y[*]y|* r Jry g o) yI*

()| 1 ()|

1
< —ul? ,

1
m gk Hia < 00,
r LE=T @®N—p, oy I Y]

LK(RN —B,(0))

where ¥ <k < %ifN—q(N—Z)>O,whilekz%ifN—q(N—2)§O.

Therefore, we get

/ _mOF (3.27)
R

N_B. ) X — y|*y|*
By (3.25), (3.26), (3.27), we can conclude that
Ix|“h(x) € L¥@RN). (3.28)

Secondly, we claim that v(x) € L% (RM). From (3.1) and (3.28), we have

oA P »
[v(x)] 5/ wdy < |||x|ah(x)||Loo(RN)/ wd})
RN R

[x — y[N =2yl N x — y|N 72|yl
(3.29)
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For any r > 0, we decompose as follows

[v(y)|? /' [v(y)I? /' [v(y)|?
O gy = — gy L
./]RN Ix — y[N=2|y|« B0 1x — y[N 72|yl RN _B,0) |x — yIN72|y|¥

(3.30)
On the one hand, for x € RY — B,,(0),
/ lv()I? dy < / [v(y)|? dy
B 1x — y[N 72|y B (0) |y|N 2t
< Jvll” ‘ : <0
< k — e ,
L1 0 HYIN T2 k.09

where 1 < k < min {5 M, N2 Vif N = p(V = 2) > 0, while 1 < k < -3 if

N — p(N —2) < 0. However, for x € By, (0),

[v(y)I? / [v(y)|? / [v(y)|?
———————dy < —=__dy + ———_dy < o0.
/B,(O) Ix — yIN 72|yl B, (0) |yIN 2+ By (x) |X — y|N e

Consequently, we have

P
/ _ POy < . (3.31)
B0 [x — ¥V 77yl
On the other hand,
v p
/ | (3’\])_|2 dy
RN, 0) |x — y[V=[y|*
[v(y)I?
_ LS (3.32)
ﬁRNfB,(O))ﬁB,(x) Ix — yIN=2|y|*
v P
+/ L - (i,)lz 7dy =P+ P
RN —B, 0)N@RY =B, (x)) X — Y[V =y
Clearly,
[v(y)|? 1 [v(y)|?
P — / I < = —_dy < o0, (333)
®RN—B, (0)NB, (x) X — yIN2|y|* r gy lx — yIN 72

In addition, we also have

[v(MIP
P2 = N=2|y|«
RN —B, (0)NRN =B, (x)) 1X — Y[V 7=|y]

P p
oo [,
RN—B,0) VI RN_B,(x) |X — Y
Since

[P
———dy < ||’
/RN—B,-(O) |y|N =2t LT @®¥_B,0))

< 00,
LF(RN —B,(0))

1
‘|y|N—2+a

where y-0 <k < gty IfN—p(N=2) > 0, whilek > 52 if N—p(N—-2) <0,

from which we conclude that

lv(”

Py — f _ WO (3.34)
(RN —B, 0)NRN —B, (x)) |x — yIN72|y|*
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Combining with (3.32)—(3.34), we obtain

P
/ %dy < 00. (3.35)
RVN—B,(0) |x — Y[V =|y]¢

Through (3.29), (3.30), (3.31), (3.35), we deduce that
v(x) € L2@RY).

Finally, we prove that u(x), v(x) € C*® (RN —{0}). For any x € RN —{0}, we decompose
v(x) as follows

v(x):/B MdH/R hOW'D) (o k+ Ko,

o () 1x — yIN2 N_By () lx — yIN 2

where r < l’z(—l It has been established in [27,Chapter 10] that for any § < 2,

h(y)v?(y)
K, = / %dy e CCRN — (o). (3.36)
By (x) 1X — VI
If we can obtain
h(y)v?
Ky = / ”715{)2@ € C¥®RY — {0},
RN By, (x) 1X — ¥l

then together with (3.36) we can conclude that v(x) € C3(RY —{0}). Thus, combining the
classical bootstrap technique [27,Chapter 10], we prove that v(x) € C (RN —{0}).
In the following we will show that

K, € C®@RY — {0}).
Define

h(y)v?(y)
Y (x) =/R WX{RN*BZV(X)}dy'

N |x —
We claim that
V() e C'RY — (0D
Indeed, for any small t < r,0 < 8 < 1 and if ¢; is the unit ith vector, then

Ytte) -y _ 1 h(y)v? (y) ey _ hP(y) ey d
t =t Jry | |x +te; _y|N—2 {RN — By, (x+1¢;)} |x_y|N—2 {RY — By, (x)} | 4Y

- C/ [ [P
- Jr

v Tx o Orer — y| V=T XY =By (xoren)4Y
h P h P
EC/ [RW)Iv(y)l dy—l—C/ [ v(y) dy
B R

0 |x—yN-! N_p - |x—yNT!
Since |x|*h(x), v(x) € L®(RY), it follows that
/ R [v() P
B lx—yN!

Clearly, we also see that

/ hWIvIP
R

N_B.(x)—B,0) X — YN

1 1
dy = 121 Bl oo iy 10117 o / ady <00. (3.37)
FN-1 Loo(RY) L% (RN) B, 1¥*

lv(»I”

RN _B,(x) |x — y|N 71+

< |||x|ah||L°°(]RN)/ %dy + |||X|ah||L°o(]RN)/
RN —B,0) Y] «
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Then by the regularity result we have

lvn1” p 1
/R Wdy = lvMII™ |y|N7_H_Q

< 00,
N_g,©) |y LT (RN —B,(0))

LKRN —B,(0))

where the parameters «, 1, k satisfy one of following four cases:

(1) if N = p(N =2) > 0, < 1, then {7 <k < y—iy=ay
. N .

2 1fN—p(N—2)>0,1<a<2,then1<k<m,

(3) if N—p(N=2) <0, < 1,thenk > y{=;

@) if N—p(N—-2)<0,1 <a <2,thenk > 1.

Therefore we can deduce that

lh(N )P

dy < o0.
/RN—B,(x)—B,(O) |x — y|N-1

(3.38)

Thus, from (3.37), (3.38) and the Lebesgue dominated convergence theorem, we can conclude
that ¥ (x) € C' (RN —{0}). Repeating the above process, we can deduce ¥ (x) € C (RN —
{0}), which implies K» € C®@RN — {0}), so that v(x) € C®RN — {0}). Similarly, we

have |x|%z(x) € L®(RY). Therefore, we can also obtain u(x) € L®(RY) and u
C®[RN —{0}).

(x) €

Write A = Ry fRN z(y)u?(y)dy. From Lemma 3.6, we have (u, v, z, h) € L*(RV) x

LS(RN) x LX(RN) x L'(RN), where s, k and 7 satisfy
| < N—2) | (4—q(N—2) 2N—q(N—2)>
-0, —— € ,

s N Tk 2N 2N
dlE 4—p(N—-2) 2N — p(N —2)
and — , .
t 2N 2N
We can take
1 N -2 £ 1 2N—q(N—-2)—¢ g 1
- =—+ —oand - = h that = + — =1,
s TN Tang ™k 2N such that o+ 7

where ¢ > 0 sufficiently small. Applying the Holder inequality, we have
A < Rylullfllzllx < oc.

For fixed R > 0,

|X|N_2

[V Pux) — A =RN/ (7_ - 1) 2()uf (y)dy
RN |X—y|N 2

|x|N72 g
=Ry = — L) zOuf(y)dy
B \|x — ¥l

|)C|N_2 .
+ Ry N2 L) z(y)u(y)dy
RV —Bg©0) \ X — |

=M + M>.

For large |x|, by the Lebesgue dominated convergence theorem and

|x|N72
M| < RN/ |——x= — llzOu?(ydy =< C/ z(u? (y)dy < oo,
B |x — I

Br(0)
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we can see that lim |M| = 0.
|x|—o00
Decompose M, into two parts by
| |N 2
Mz = Ry ﬁz()’)uq (ndy
RN~ BR() =By () lx =yl

and

| |N 2
My = Ry / Pt (.
B () X =

2
Since [x — y| > % when y € (RN — Bg(0)) — By (x), we have
2

My < C / ot (y)dy,
RN —B(0)
which implies My — 0 as R — 400

In the following, we estimate M»; as |x| — +oo. Clearly, from Theorem 2.1 we know

u, v, z, h are radially symmetric and decreasing about xo = 0. Then we can write

Ulr) =U(x]) =ulx), V()

and

= V(x]) = v(x),

Z(r) = Z(|x|) = z(x), H(r) = H(|x]) = h(x).
Notice that |§‘ <yl < % for y € By (x), we deduce that
2

w=u(z)=v(5). w=o(5)=v ().

and

2
X x| X [x|
Z(y)51<5)=z(7>, h(y)fh(§>=H<7>.
Therefore,
| x| | x| / dy
M»n <|x|N"?RyZ jaal _ay
2 < |x| ( 5 By 6 —yN-2

2
x| I\ (3 dr
<Clx|N 2z ua / 24 (3.39)
2 2 /) .
<cp¥z (B g (B
2 2

By choosing 1 = =2 +2Nq and { = W
q

s

with sufficiently small & > 0 such that
+ 1 > 1, together with the integrability results, we get (i, z) € L*(RY) x L¥(R")
Since u, z are decreasing about xo = 0, we have

|x] )
( lx|Y u®(y)dy < C,
Bl 0-5,(0)
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x|
zk <C,
( > x|V
from which we conclude that

U (%) <CixI°%, z (%) <Clx|"F. (3.40)

Inserting (3.40) into (3.39), as |x| — 400, we have

and

1
My < Clx|NI=5-0 = 0.
Therefore, we conclude that

lim x|V 2u(x) — A= lim (M) + M + M») =0,
|x|—o00

|x]—o00

which implies u(x) « % as |x| — 4-o00. Similarly, we have v(x) = IXI% as x| — 4o0.

|x
The proof is completed. O

4 Conclusions for the variational system (2.2)

In this section, we are going to study the nonlocal variational system (2.2). By using similar
arguments as for the system (2.1), we can also prove symmetry and regularity properties,
as well as the decay of the positive solutions to system (2.2). Furthermore, we establish the
nonexistence results under the subcritical condition.

4.1 Nonexistence results for the subcritical case

We first obtain the corresponding Pohozaev type identity for the subcritical case of system
(2.2).

Lemma41 AssumethazN >3 0<u<N, a>0and0 <20+ pu < N. Let (u,v)
€ Wloc (]RN) Wloc (]RN) be a pair of solutions of (2.2), then there holds

(N_z)/ |Vu|2dx + (N_z)/ |Vv|2dx

2N 200 — vP (x)u?(y)
————dxd
RN JRV [X]¥|x — y[#]y[

Proof We define a cut-off function ¢ € C{° RM) with0 < ¢ <1, satisfying ¢ = 1 in B (0)
and ¢ = 0 outside B1(0). For0 < A < coand x € R¥, we denote

Vi (¥) = pOu0)x - Vu(x) and 5. (x) = 9 (hx)x - Vo).

Multiplying the first and the second equation of (2.2) by ¥, (x) and ¥, ; (x) respectively,
and integrating by part, we get

1 P
/ VUV dx = / < / ”—(”dy) W1 @) (),
- p Jox Usw il =y
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and
1 q
/ VoV rdx = f/ (/ u—(y)dy) VP ()Y (X)dx.
RV q Jrv \JrnN [x|%|x — y[H]y|*
But
. N-2 )
lim VuVyy, dx = ——— |Vul|“dx, 4.1)
r—=0 JrN ! 2 RN
and
N -2
lim [ VoV, dx :—7/ |Vu|dx. (4.2)
r—=>0 JrN 2 RN
Next, we claim that
1. vP(y) -1
—1 _—d g d
p a0 /RN (/RN el — eyl ) 1 a0
I ul(y) -1
—1 _— P d 4.3
Tq xl’“o/uw (/R e = e ) U P de @
2N — 2« — q
= — ol (f u?(y) dy) v’ (x)dx.
rq RV [X|[x — y[H]y[*
Indeed, letting
i) = Y and w5 = 29
|x]4 x| P
we have
x - Vu(x) _ o _ x - Vo(x) _ o _
——F— =x-Vu(x)+ —u(x) and ——F— =x-Vo(x)+ —v(x).
|x|4 q |x]? p
Then we have
L S
- dy | v’ () a (X)dx
q Jev \Jrn [x|%|x — y|#|y| !
74
- < / “ () dy) 7 (x) @ (Ax)dx (4.4)
rq Jrv \Jr~ |x — y|*
1 74
+f/ </ u(y) dy> 571 (0)x - Vi) (x)dx,
q Jrv \Jrw~ |x — y[*
and
(L)
- dy | u?™ ()Y (x)dx
p Jry \Jrw [x[%x — y#]yl "
5P
¢ ( / ) dy> 79 () (hx)dx (4.5)
R

_pq RN N x — y|#

+l/ (/ vP(y) dy) 77 (x)x - Vii(x)p(x)dx.
p JrV \JRV [x — y|#

@ Springer



109  Page 26 of 38 M. Yang et al.

A direct calculation shows that

/ </ il (y) dy) 0P~ (0)x - Vi(x)e(hx)dx
RN RN |x —)’W

:/ </ () dy)x-V(ﬁp(x)><p(kx)dx
RV \JRN [X — y[* P

=_f (/ “o) )[Ax V() + NoOu)] o 4y
R p

N x =yt

ff(”q(”) L= 1060 2% dvay,
rY JrN \ X — y[# ) [x — y? p

We can also deduce that

f </ Mdy> 197 (x0)x - Vit(x)p(Ax)dx
RV \JRV |[x — y[*
:_/ (/ 7o, )[Ax V() + NpGn] g
RN RN |X —)’|“ 4

vP(y) 1 u?(x)
+ M/ (/ > 5% - (x — y)e(ix) dxdy 4.7
RN \JRN [x —y[* ) [x — | q

=_f (/ il ¢ )[Ax Vo(ix) + No(ix )]%d
R

N |x —y*

4 1 oP
f / ( ) ) 2y-(x—y)<p(>»y)v (x)dxdy-
RV JRV \|Xx — y|* /] |x — y] q

Combining (4.4) with (4.5) and adding (4.6) to (4.7), we conclude from the dominated
convergence Theorem that

1 P
D im / ( f U—(y)dy> W= (0 Y () dx
P =0 Jry \JRN [x|¥[x — y[H]y|*

D im ( / $dy> 0P () Py 5 (0)dx = 4.8)
R

(4.6)

q »—~0 JrN N x|* e — y[H]y|*

2N —2a — 4q
_2N-2e—p (/ “—Mdy> o (x)dx.
pq 'Y X[ — y|H]y[

Therefore, taking (4.1)—(4.3) into account, we infer that

N-2 N -2
7/ |w|2dx+—/ |Vv|2dx
2 Jry

2N —2a — vP (x)ul (y)
———dxd
RV JRY [x[¥]x — y|#]y|*

The proof is now complete. O

4.2 Proof of Theorem 2.4

We first multiply the first equation of (2.2) by u and multiply the second equation of (2.2) by
v, then it follows that

14 q
/ IVulPdx = ~ / / VU)o
RN RN JRN [X|*|x — y[H]y|*
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and

14 q
/ \VoPdx = — / / VU)o
RN RN JRV [x|*|x — y[H]y|*

Together with the identity in Lemma 4.1, we deduce

N—-2 2N-2a-— P (x)ud
( o )/ / vP (x)ul(y) _VP@UIG) g o,
2 RV JRV [x|%[x — y[#]y|*

22N —2a—p)
N-2

Ifp+q < , we get

The proof is complete. a

4.3 Qualitative properties for the critical case

Next we focus on the qualitative results of system (2.2) with critical condition p + g =

W = 2.2 . including symmetry, regularity and asymptotic behavior at infinity.

4.3.1 Symmetry

Analogously, we consider the following equivalent integral system in RV
’vp
z(x) = / %dy )
RN [X[¥[x = y[#]yl

q
h@)zf 44;LQL47@“
RV X[ |x — y[#]y[*

O 4.9)
wx) = RN/ z(y)ul (y)dy,
R

v k= yIN2

h(y)vP~(y)
= 7d
v(x) /N w2
For A € R, define
Yho={x=(@x1,...,x) | x1 <A}, x’X:(ZA—xl,...,xn),

w,(x) = u(xh), v )=o), @) =z(h), hax) =h(h),

and
i ={x e Ty lux) >u (0}, X ={xeX v >0},
=xeXz0) > )}, TP ={x e hx) > ).

We rewrite u(x) and u; (x) as

q-1 g1
u(x) :RN/E Mdy‘i‘RN/l% %d)}

[x — y|N=2 N_y, |x—Yy
z(Mud=(y) Z(MHud= (M)
=RN/ SASZLANNSS NIy VSN IS AR Sy
5, lx—yN=2 w, lx—y*N=2
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and

zZMud= () / zMud= ()
Ry [ W) R 2u? ),
() N/zk w2 TN L s, o2

z(Mui~l(y) z(yMu=(yh)
—Ry f AL PN Nl I i
)Y |x)L _y|N_2 Y |x)L _y)L|N_2

Since [x* — y*| = |x — y| and |x* — y| = |x — y*|, it follows that

1 1 _
— =R — g1 _ g-1 d R
u(x) — uy (x) 1\//EA (IX o y|N_2> (zu zui )dy
(4.10)

and

v(x) — v (x) = RN/ ( ! ! ) (hvP~1 — h;\vf_l)dy.
Za

= yIV2 - N2
4.11)
For the case p, ¢ > 2, we have the following property.

Lemma 4.2 Under the assumption of Theorem 2.5, for any . < O, there exists a constant
C > 0 such that
—2
lu —upllpsosyy < C||U||ixo(2;)||M||Zso(2i4)||u — upllzso(se
+ g gy 101 s 0y 10 = Wl o0 s (4.12)
L‘YO(Z;:) LA\'()():)LL') A L‘O(Ex’)v .
and

-2
lv—wallzsozyy = Cllulltzso(;b||U||IZso(2;)||v — Unllso(zy)
-1 -1
+Cl v”Z-“o (=) ”””150(2;') lu — usllLso (- (4.13)
Proof For any x € X, notice |x* —y| > |x—yl, using the mean value theorem, from (4.10)

and (4.11), we easily deduce

ul=Y(z —z;)
[x — y|N=2

i (u — uy)

7dy+RN/ dy,
g v —y[V72 b3

u(x) —u(x) < Ry(g — 1)

A
and

hvP=2 (v — vy) vP=V(h — hy)
7dy+RN/ vy
gy v —y[V2 g x—yIN2

In virtue of (u, v) € LO(RN) x L0(RY) with 5o = 75742, assume that z € LK(RY),
h e L'(RN), where k, t such that

1 q_1=N+2SOa 1 p—1=N+250

v(x) — v (x) < Ry(p—1)

- d- 4.14
S0 Nsg . t + S0 Nso ( )
Then we have
pNk gNt
= 50 and = 50.
N + (N —2a — n)k N+ (N — 20 — )t
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By applying the HLS inequality and the Holder inequality, we lead

llu — usllzso sy < Cllzuf™ 2 —w)l g + Clut™ 2=zl vy
L N+2s0 (Zu) L N+2s0 (E)ZL) (4 15)

—1
=< C”Z”Lk(E”) ”u”LSO(E”) ||Lt - u)\.”LSO (E;{) + C”Z - Z)n”Lk(Xi) ”u”%SO(Zﬁf)
Similarly, we obtain

lo = vallsoey) < CIAVP 2 — v~ +ClIvP = h)Il v
LN+2.\'0 (21) LN+2.\'0 (Ef) (4 16)

-2 —1
= Cllhlesp 101t 10 = vallzogsy + Clli = Bl 1015 (s

Combining with relations (3.10)—(3.13), we easily obtain (4.12) and (4.13). We complete the
proof. O

Forthecase p = ¢ = 2or p > 2 and g = 2, Lemma 4.2 can be replaced by the following
lemmas.

Lemma 4.3 Under the assumption of Theorem 2.5, if p = q = 2, for any X < 0, there exists
a constant C > 0 such that

lu —upllsosyy = Cllull oz lvllso ) lv — vallso ),
and
lv = vallso sy < Cllvllzsosy el zso ey lu — upllLso sy -

Lemma 4.4 Under the assumption of Theorem 2.5, if p > 2 and g = 2, for any A < 0, there
exists a constant C > 0 such that

~1
lu —urllzocsyy = Cllullon IVl ) lv = vallozy). 4.17)
and
lv—wvallzsozyy < C||M||L\o(); )||U||L»0(2v)||v — Uallso(zy)
+ C||U||Lso(>:i)||M||Lfo(2;)||u — Loz (4.18)

In the following, we provide the starting of the moving plane methods by using the L*°
estimates proved above.

Lemma 4.5 Under the assumption of Theorem 2.5, there exists M > 0 such that for any
A < —M, we have

ux) <uyp(x), vix) <v(x) VYx € %. (4.19)

Proof Since u, v are integrable, if . — —o0, we have
1

”v”p\o(zu)”u”LS(E uy = i’
1

u S v N =< A
” ” 0():)” ”LO(E) 2C

and
1

< b
)~ 4C

[ e seon
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where the constant C is the same as in Lemma 4.2. Hence, inserting those inequalities into
(4.12) and (4.13), as A — —o0, it follows

() = up (Ol sy =0, Nv(x) — vl zy) =0,

which shows that X} = X7 = ). Therefore, there exists M > 0 such that for any A < —M,
relation (4.19) holds. O

We now can move the plane 75 = {x € R¥|x; = 1} to the right as long as (4.19) is
satisfied. Setting

xo=sup A ux) <upx), v(x) <v,(x), x €Ty, p <A},

we observe that Ao < +o00.
Next, we deduce the following property.

Lemma 4.6 Under the assumption of Theorem 2.5, then for any Ao < 0, we have
u(x) = upy(x), v(x) = vy, (x) Vx € Xy,. (4.20)

Proof Suppose that at A9 < 0, there holds u(x) < u;,(x) and v(x) < v;,(x), but u(x) #
Uy, (x) or v(x) # vy, (x) on Xy,.

We claim that there exists ¢ > 0 such that u(x) < u; (x) and v(x) < vy (x) on X, for any
A€ [Ag, Ao + 8).

Actually, for any 1 > 0, there exists a suitable R > 0 large enough such that
n

p q—2 s
||U||L50(RN,BR(()))) ||u”LS (RN —Bg(0))) N 2’

=

q
”u”LSO(RN—BR(O))) ” ”LYO(RN—BR(O)) 2

and

_n
1202 o — om0 oy — oy = 4

For such R > 0 and A > )¢, we can verify that the measure of the set X, N Bg(0) goes to 0
as A — Ag.
By contradiction, we assume that

u(x) # u,(x) in Xy,

From (3.8), we obtain

h(x) — hj,(x) <0on X,..
Thus, by (4.11), we yield

v(x) — vy, (x) < 0on Xy,.
Combining with (3.9), it follows that

2(x) — 23 (x) < 0on X,
together with (4.10), we have

u(x) —uy,(x) <0on Xy,.

Therefore, we can apply a similar argument as in Lemma 3.3 to conclude that u(x) = u;,(x)
and v(x) = vy, (x) forany x € X,. ]
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4.4 Proof of Theorem 2.5

Similarly, we can move the plane from +oo to left, and define
a=inf {A ] u(x) < up(0), 00 = 000, x € X0 p = A
where 2:0 = {x eRV|x; > p}. If Xo = A1 # 0, then both u and v are radially symmetric

and decreasing about the plane x; = Ao, which implies u(x) = u;,(x) and v(x) = v;,(x)
on ¥;,. Since |x — y| < [x* — y| and [y| > |y*], it is easy to deduce from (3.9) that

1 1 1 1 1
2(x) — z3y(x) < / ( - ) (7 - )\7) vfody <0.
T 1Y N =yl xro =y X qy[™ o |yrol®

Therefore, we obtain that

| 1 .
0= - =R — — I=d 0,
Hx) = taox) = Ry fzm (Ix —yIN=2 fxro — yIN_2> (€7 iy, dy <

which is impossible. Hence, we get 1y = A1 = 0. Notice that the direction of x1 is arbitrary,
hence u, v are radially symmetric and decreasing about the origin. ad

4.4.1 Regularity

Taking similar derivations as Theorem 2.2, we need to define the functions

—1
F,(m) = RN/ W OImy)

RN |x — y[V2

-1
T, (w) = RN/ v Ow)

RN Jx — y|N72

~1
W, (a) = / B LIS
R

N x[* e =yl

-1
Gu(b) = / v (»)b(y)
R

o] = yH ]

dy,

Suppose a, b € L* (RM), m € LX(RY), and h € L'(RY), we also define the operator

Ty RY) x L°RY) x LK®Y) x L'RY) — L*RY) x L RY) x LK@®RY) x L'(RY),
yA(av b? m, w) = (FMA (m)7 TUA (w)a GUA (b)s WuA (a))'

Then (u, v, z, h) satisfies the operator equation
(M, v, Z, h) = '7A(u9 v, Z, h) + (FMB (Z)v TUB (h)» GUB (U), WuB (M))

In order to prove the main result of Theorem 2.6, we shall establish the following two lemmas.
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Lemma 4.7 Assume that p+q =2 - 23‘{’# and s, k, t satisfy

N
s > s
N -2
ON
> s
2N+ (p— DN —2) —2(N +2 —2a — )
2N

TN G-DIN—2)—2(N+2—-2a—p)’
IN > [(p— 1)(N —2) — 4ls,
2N > [(g — 1)(N —2) —4]s,

11 (g-D(N=2)—

sk 2N ’
1 1 (p —1D(N-2)—
st 2N

Then for A sufficiently large, T4 is a contraction map from L* (RN x LS (RV) x LE@®RNY x
L'(RN) to itself.

Lemma 4.8 Supposethat3 <N <6,0>00<pu<Nand N —2 <20+ pu < N. Let
(u,v,z,h) € LN 2(RN) x LN 1(RY) x LFo(RN) x L'0(RN) be a set of positive solutions
of system (4.9) with kg = % and ty = W, where p, q satisfying
pt+tqg=2- 20"# and 72(1\/};2_“27“) <p—-1,g—1=<min {ﬁ, —N+2+2(%t§72a7u) } Then
(u,v,z,h) € LRY) x LS®RN) x LK@®RN) x L'(RN) with

e( N ) ke( N N )
SE\N 2T 4—(q-3)(N—=2)4—(g-—1)(N -2

and

‘e ( 2N 2N )
4—(p=3)(N=-2)"4-(p-1HN=-2))"
4.4.2 Decay

The proof of this part is the same as the Theorem 2.3, here we omit for convenience.

5 Symmetry for the Hamiltonian system (2.3)

In this section, we shall prove the symmetry of (2.3) by discussing the following equivalent
integral system in RV

Up
mw=/ W,
ey X1 — [t [y

q
Mﬂ=/1 LAl
v 1 — vyl

1
u(x) = Ry / zZ(y)vP~ (y) dy,
R

No|x —y|N2

RN/ h(y)u?~ l(y)
R

N ojx—y |N2

5.1

v(x) =

@ Springer



Critical Stein-Weiss elliptic systems: symmetry, regularity... Page330f38 109

_ 2N—2u01—m
where p = 2(11 w= "N

For A € R, define

_ 2N—2ar—up

and 9= 2012 M2 T N-2

S={x =G, .. x)lx <A}, xP=Cr—x1,..., X)),
w () = u(x?), v =veh), wi@) =wE), g« =gkh),
and
={r € Tufu@) > w0}, TP ={x € Bvx) > va(x)},
D= (x e Diw) > w0}, Tf = {x € Tylg(x) > ga(x)}.

We easily get

—1 —1
u(xr) =Ry / z(MHvP(y) zZ(MHvP7 (y)
Py

———-dy+ Ry / ————=-dy
b RV-x, |x—y[N72

p—1 Ay, p—1
:RN/ zZ(y)v (y)dy+RN/ zZ(YMPT (y )d%
b Py

Ll —y V2 |x — y*N=2

and

z(vP () / Z(yMP iyt
=R ST v+ R 0T .
) N/EA o~y 2 YR | T @Y

Since [x* — y*| = |x — y| and |x* — y| = |x — y*|, then it follows that

u(x) — up (x) = RN/ < L L )(zvp—1 — 0/ Ndy. (5.2)
g \x —yIV=2 k- y|N=2 *
Similarly, we obtain
1 1 1 g—1
v(x) —vp(x) = Ry -/E-A <|x N T le*Z) (hu?™" — hyui Hdy. (5.3)

First, we consider the case where 2c1 + 1 # 4 and 2o 4 2 # 4. We have the following
property.

Lemma 5.1 Suppose that «; > 0,0 < u; < N, 20; + i <3 if N = 3 while 2a; + p; < 4
if N >4 (i =1,2). Forany » < 0, there exists a constant C > 0 such that

ot = 2ty = € (0170 g 0152y 4 0 IO ) I = 02 .
5.4

and

10 = Vil gty = € (100e gy I g+ Ml g 12 ) ) e = 2 2 -
(5.5)

Proof For any x € X, notice lx* =y > |x — ], using the mean value theorem, from (5.2)
we know that

0P 2 (v — vy) Pz —z;)
u@x) —u(x) <Ry(p—1 | ———x>-dy+ RN/ —— x5 4y
e o=yl ¢l =yl
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By applying the HLS inequality and the Holder inequality, we obtain
— . o P2y — p=l, _
I =l < Cllv 2@ = vl o, o+ ClOP ™ =2l
p—2 _ N
<Cllzv ”L ¥z (v —=v)llp2 (=)
+C|vP! -z
70 b g 16~ 56
= C”Z“LZMZ'IXMI (=4 Il LZ*(Z”)”U B v)‘”LZ*(Ex")
=l Il
Analogously, we also have
_ " qa=2¢, _ q-1
v = vrll gy < > =l g o Cllat™" =)l gy,
-2
= ClAt 21y = )
Cllu?™! h—h
+ m( vy ¢ ’\)”Lmzﬂlz (= 5.7
Hu”Lz*(E )” ”)L”LZ*(EK)
+ Cllh — hy, L2 - || ”LZ*(E)
From (3.8) and (3.9), we can deduce that
h—h <Clu?"(u—u
I A” e - ;s flu™( ol m(z"m}:ﬁ
< Clull g I = w2l . (5.8)
and
Iz =z <Clvtw—wdll v
L% 1+M1 (%) L2N=20=01 (230%Y)
= CIIvlle*(E o =il ). (5.9)
Additionally, using the weighted HLS inequality again, we have
< P . 1
12N g o S WP g = I (5.10)
and
h < Clluf < Cllu|l? » 5.11
N g o O g = Ol (5.11)

Inserting (5.8)—(5.11) to (5.6) and (5.7), we can obtain (5.4) and (5.5). The proof is completed.

m}

For the case 2o; + p; =4 (i = 1,2) or 201 + 1 = 4 and 2a + o # 4, by the same
derivation of the above, it is not difficult to find that the Lemma 5.1 would be replaced by

the following lemmas.
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Lemma 5.2 Suppose that N >4, «; > 0,0 < u; < N and20; + i = 4@ = 1, 2). For any
A < 0, there exists a constant C > O such that

ot = rll 2 gy = € (10l 2 gy 102 g ) 10 = vl 2
and

o = vall 2 gy <C (Il 2 o Il 2 ) ) e = 0l 2
Lemma 5.3 Suppose that N > 4, a; > 0,0 < pu;j < N, 201 + 1 = 4 and 200 + o < 4.
For any A < 0, there exists a constant C > 0 such that

[l — MA”LZ*(E‘A’) <C <||U||L2*(2;:)”U”LZ*():X)) lv — v ”Lz*(Ef)’

and
0 = Vil gy SC (e g 11927 ) + M0 N9 ) ) e = 020 2 -

The integral inequalities in Lemmas 5.1-5.3 can provide a beginning of the procedure of
moving plane methods in integral forms. Thus, we are going to prove that for sufficiently
small A, there holds u(x) < u; (x) and v(x) < v, (x) for any x € X, , which implies that we
can start to move the plane from —oo to the right.

Lemma 5.4 Supposethat N >3, «a; > 0,0 < puj < Nand0 < 2«a; + p; < min {4, N}. Let
2N 2N

(u,v) € LV=2 (RN) x L¥=2(RN) be a pair of positive solutions of system (5.1), then there

exists M > 0 such that for any A < —M, we have

ulx) <up(x), vix) <v(x) Vx € X. (5.12)

Proof Since u, v are integrable, letting A — —o0, we have

1
2o gy IOy + 00y I ) < 5 (5.13)
and
1
01 e e W12y B o D2 ) < 5 (5.14)

where the constant C is the same as in Lemma 5.1. Hence, as A — —o0 in (5.4) and (5.5),
we easily get

llu(x) — “A(X)HLZ*(EK) =0, [vx)— vk(x)”LZ*(z;i) =0,

which shows that £} = X7 = ). Therefore, there exists M > 0 such that for any A < —M,
relation (5.12) holds. O

Consequently, we now move the plane 7, = {x € R¥[x; = 1} to the right as long as
(5.12) is satisfied. We can certainly define

Ao = sup {A | u(x) < up(x), v(x) < v,(x),x € Ty, p < A},

hence A¢g < +o0. This can be seen by applying a similar argument as in the above lemmas
from A near +o0.
Next, we deduce that u, v are symmetric about the critical plane x| = Ag in the x| direction.
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Lemma 5.5 Under the assumption of Lemma 5.4, for any Ao < 0, we have
u(x) = upy(x), v(x) = vy, (x) Vx € Xy,. (5.15)

Proof Suppose on the contrary that at Ay < 0, there hold u(x) < u;,(x) and v(x) < vy, (x),
but u(x) # uy,(x) or v(x) # vy, (x) on Xy,. It is sufficient to claim that there exists an
& > 0 such that u(x) < u; (x) and v(x) < vy (x) on X, for any A € [Ag, Ao + €).

Indeed, for any n > 0, we can choose suitable R > 0 large enough such that

lvll? + ll? vll?

L2*<RN Broyy =
(5.16)

”U”LZ*GRN Br (0))| LQ*(RN Br(0)) Lz*(RN BR(O)))l

and

el fle + lulf el

LZ*GRN Broy) =T
(5.17)

L% (RN —Bg(0))) LZ*(RN Br(0))) L2*<RN Bg(0)))

For such R > 0 and A > Ao, we can also show that the measures of the sets £ N Br(0) and
27N Br(0) goto0as A — Ap.
By contradiction, we assume that

u(x) # uyy(x) on Xy,.
From (3.8) and (3.9), we obtain
h(x) —hpo(x) <0, z(x) —z;,(x) <0.
Thus, by (5.2) and (5.3), we yield

v(x) — vy, (x) < 0on Xy,

u(x) —uy,(x) <0on Xy,.
Naturally, take the same derivations as in Lemma 3.3, we obtain that
L(ZY N Br(0)) — 0, (5.18)
and
L(XE) N Bgr(0)) — 0, (5.19)

where L is the Lebesgue measure.
Combining (5.16)—(5.19), there exists an ¢ > 0 such that for any A € [Xg, Ao + €),

lloll? +loll? loll? (5.20)

<
Lz*(zu ”v”Lz*(Eu Lz*(E”) LZ*(XU) — 2C

and

laell lael + lul (5:21)

LY (%)) LZ*(E ) L2*(>:” lu ||L2*(z Yol 2C°

where the constant C is the same as in Lemma 5.1. By the same arguments as above, we can
conclude that ¥} = X} = @. Therefore, there exists an & > 0 such that u(x) < u;(x) and
v(x) < vy (x) on X, for any A € [Ag, Lo + €). This contradicts the definition of Ag, then we
have u(x) = u;,(x) on Xy,.

Similarly, if v(x) # vy, on X;,, we obtain a contradiction. The proof is completed. O
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5.1 Proof of Theorem 2.8

Similarly, we can also move the plane from +-oc0 to left, and define
a=inf {A 1) < up(0), v = 0,0, x €5 pz )

where Z;) ={x e RV|x; > p}.
If Ao = A1 # 0, then both u# and v are radially symmetric and decreasing about the plane
X1 = Ag, which implies u(x) = u;,(x) and v(x) = v;,(x) on X,,. Thus, we also get

2(x) —z3y(x) <0 and h(x) —h;,(x) <O,

from which we can deduce that

1 1 —1
0=u(x) —uy,(x) :RN/ ( - )(Z—ZA i dy
’ 2, \x =y V72 o — y V=2 v

ERN/
b

This contradiction shows that Lo = A1 = 0. Since the direction of x is arbitrary, we conclude
that u and v are radially symmetric and decreasing about the origin. O

-1
—— (2 — 2y, Y’ dy < 0.
o ¥ yINTR T
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