MULTIPLICITY OF CONCENTRATING SOLUTIONS FOR
(p, q)-SCHRODINGER EQUATIONS WITH LACK OF COMPACTNESS

VINCENZO AMBROSIO AND VICENTIU D. RADULESCU *

ABsTrACT. We study the multiplicity of concentrating solutions for the following class of (p, q)-
Laplacian problems:
—Apu—Aqu+ V(ex) (WP +ud™") = f(u) +yud ! in RN,
we WPRMNWHIRN), u > 0in RN,
Ng

where ¢ > 0 is a small parameter, y € {0,1}, 1 <p < q <N, q" = N is the critical Sobolev

exponent, Aqu = div(|Vul*"?Vu), with s € {p, q}, is the s-Laplacian operator, V : RN — R is a
positive continuous potential such that infaa V > infs V for some bounded open set A ¢ RY, and
f: R — R is a continuous nonlinearity with subcritical growth. The main results are obtained by
combining minimax theorems, penalization technique and Ljusternik-Schnirelmann category theory.
We also provide a multiplicity result for a supercritical version of the above problem by combining
a truncation argument with a Moser-type iteration. As far as we know, all these results are new.

1. INTRODUCTION

In this paper we investigate the multiplicity and concentration phenomenon of positive solutions
for the following (p, q)-Laplacian problem:

—Apu— Aqu+ V(ex) (WP +ud™1) = f(u) +yud ! in RN (1.1)
ue WHP (RN nWHI(RN), u > 0 in RV, '

where ¢ > 0 is a small parameter, vy € {0,1}, 1 <p < g < N, q" = NNiqu is the critical Sobolev

exponent, Aqu = div(|[Vul*~2Vu), with s € {p, q}, is the s-Laplacian operator, the potential V :
RN — R and the nonlinearity f : R — R are continuous functions.

The problem (1.1) is related to the study of stationary solutions of reaction diffusion systems of
the form

w =div[D(W)Vul + c(x,u), D(u) = |VulP2 + [Vuli2. (1.2)

This equation has a wide range of applications in physical and related sciences, e.g. in biophysics,
plasma physics, and chemical reaction design; see [14]. In such applications, the function u in (1.2)
describes a concentration, div[D(u)Vu] corresponds to the diffusion with a diffusion coefficient
D(u), and the reaction term c(x,u) relates to source and loss processes. Tipically, in chemical
and biological applications, the reaction term c(x,u) has a polynomial form with respect to the
concentration u. We refer to [6, 19,24, 25,27, 34-37] for some existence and multiplicity results for
(p, q)-Laplacian problems in bounded or unbounded domains. For completeness, we also observe
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that the functional associated to the (p, q)-Laplacian operator falls in the realm of the following
double-phase functional

Prq(; Q) = J IVulP? + a(x)|[Vu|? dx
Q

where Q C RN is an open set and a(x) > 0, introduced by Zhikov [45] to provide models for strongly
anisotropic materials in the context of homogenization phenomena. We refer to [10, 16, 30-32] for
some remarkable regularity results for functionals with non-standard growth of (p, q)-type.
Note that, if p = q = 2, after rescaling, equation (1.1) reduces to the classical nonlinear
Schrodinger equation
— 2 Au+ V(x)u = f(u) + ylu =% in RV, (1.3)

for which several existence, multiplicity and concentration results of positive solutions have been
established by different authors, under suitable conditions on the potential V and the nonlinearity
f. In [39] Rabinowitz proved via a mountain pass argument, the existence of positive solutions of
(1.3) for small ¢ > 0 whenever

liminf V(x) > inf V(x). (1.4)

x| —00 x€RN

These solutions concentrate around the global minimum points of V when ¢ — 0, as it was shown
by Wang [43]. Later, del Pino and Felmer [17], by introducing a penalization approach, proved a
localized version of the result of Rabinowitz and Wang. They assumed that V is a positive locally
Holder-continuous function and that there exists a bounded open set Q C RN such that

inf V < inf V. (1.5)
Q Q)

In [3], the authors studied the existence and the concentration behavior of positive bound-state
solutions to (1.3) with vy = 1 and assuming that V satisfies (1.5). Cingolani and Lazzo [15], under
the assumption (1.4), used Ljusternik-Schnirelmann theory to relate the multiplicity of solutions
for (1.3) with v =0, f(u) = [ulP?u and p € (2, %), to the richness of the set of minimum points
of V. On the other hand, when p = q > 1 in (1.1), then we obtain the following class of p-Laplacian
equations:

—eP Apu+ V) uP~2u = f(u) + yulP ~2u in RN, (1.6)

which has been extensively considered in literature; see for instance [4,5,18,21]. In particular,
inspired by [15], Alves and Figueiredo [5] proved a multiplicity result for (1.6) whenever y = 0,
assuming that V satisfies (1.4) and that f is a C'-subcritical nonlinearity. Later, in [4] the authors
extended this result by assuming del Pino-Felmer type assumptions on V. These results have been
generalized in the critical case in [18,21]. Concerning the (p, q)-case, wheny = 0 and f € C' in (1.1),
the authors in [6] (see also [2]) generalized the multiplicity result in [5] under the assumption (1.4)
on V, while in [1] the authors dealt with a class of quasilinear problems including the (p, q)-case
under the condition (1.5) on V. More recently, the multiplicity result in [6] has been improved in [9]
by considering continuous nonlinearities. We also mention [8] in which a multiplicity result for a
class of subcritical fractional (p, q)-Laplacian problems is proved. We emphasize that in [1,2,6,8,9]
the authors focused only on the subcritical case (that is y = 0).

Particularly motivated by [1,2,4-6,8,9,18,21], in the first part of this paper we are interested
in the multiplicity and concentration behavior as ¢ — 0 of positive solutions to (1.1), when we
assume a local condition on the potential V, f is merely continuous and vy € {0, 1}. More precisely,
we suppose that V € C(RN, R) satisfies the following conditions:
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(V1) there exists Vy > 0 such that Vy = inf, .z~ V(x);
(V;) there exists an open bounded set A C RN such that

V0<IIa1;i\nV and 0eM={xeA:V(x) =Vl

Concerning the nonlinearity f, we require that f € C(R,R) fulfills the following hypotheses:

(fl) 11Inltl—>0 mp =0;
(f2) when y = 0, there exists v € (q, q*) such that limy_,, ‘g@‘] =0;
(f5) when y =1, there exist 01,0, € (q,q*) and A > 1 such that

f(t) > A" Vt>0, lm F(t) =0;

[tl—o0 [£]027]
(f3) there exists ¥ € (q,q*) such that 0 < 9F(t 19[0 T) dt < tf(t) for all t > 0;
(f2) o
Due to the fact that we look for positive solutions to (1.1), we assume that f(t) =0 for t < 0.

In order to make a precise statement let us recall that, for any closed subset Y of a topological
space X, the Ljusternik-Schnirelmann category of Y in X, catx(Y), stands for the least number of

closed and contractible sets in X which cover Y; see [44].
The main result of this work is stated in the following multiplicity and concentration property.

Theorem 1.1. Assume that 1 <p < q < N and that V satisfies (V1)-(V2). Let
M; = {x € RN : dist(x, M) < 5}.

e When v =0, we suppose that f satisfies (1), (f2), (f3), (f4). Then, for any & > 0 such
that Ms C A, there exists e5 > 0 such that, for any ¢ € (0,¢5), problem (1.1) has at
least caty, (M) positive solutions.

e When vy =1, we suppose that f satisfies (f1), (f3), (f3), (f4). Then there exists N* > 1
such that, for any A > A* and for any & > 0 such that My C A, there ezists s > 0
such that, for any € € (0,¢5,), problem (1.1) has at least caty, (M) positive solutions.

Moreover, if u. denotes one of these solutions and x. € RN is a global mazimum point of u,,
then
lim V(ex.) =V,

e—0

and there exist C1,C, > 0 such that

e (x) < Cre Gl yx e RN,

The proof of Theorem 1.1 will be obtained by combining suitable variational and topological
arguments inspired by [1,6,8,9,17,22]. Concerning our variational approach, as in [17], we modify
in a convenient way the nonlinearity outside of the set A and we consider an auxiliary problem.
The main feature of the corresponding modified energy functional 7, is that it satisfies all the
assumptions of the mountain-pass theorem [7]. Note that in the critical case, we assume A sufficiently
large in order to obtain an upper bound for the mountain-pass level c.. Indeed, differently from the
critical problems considered in [12,18,21], we can not use cut-off functions of the extremal functions
for the best constant in the Sobolev inequality, because the lack of homogenity of the (p,q)-
Laplacian operator does not permit to use this trick. To circumvent this obstacle, we use a different
strategy inspired by [19]; see Lemma 2.3. The estimate for ¢, combined with the concentration-
compactness principle of Lions [28,29] will play a fundamental role in proving a local Palais-Smale
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condition for J;; see Lemma 2.5. To obtain multiple solutions for the modified problem, we use
a technique due to Benci and Cerami [11] based on precise comparisons between the category of
some sublevel sets of 7. and the category of the set M. We emphasize that f is merely continuous,
so standard C'-Nehari manifold arguments as in [1,2,4-6] do not work in our setting because the
Nehari manifold associated with 7; is non-differentiable. For this reason, motivated by [8,9,22], we
use some variants of critical point theorems established in [41]. Clearly, the lack of homogeneity
caused by the (p, q)-Laplacian operators combined with the presence of the critical exponent make
our analysis more delicate and intriguing with respect to the above mentioned works, and some
refined estimates will be carried out to implement our variational machinery. Finally, we need to
show that, for ¢ > 0 small enough, the solutions of the modified problem are indeed solutions of the
original one. Since we deal with a general class of quasilinear operators, a standard Moser iteration
procedure [33] as in [3-6, 18] does not work well, and then we use an appropriate De Giorgi iteration
argument inspired by [1,2,23,26]. We also verify that our solutions decay exponentially at infinity
by means of a comparison argument.

In the second part of this paper, we consider a supercritical version of problem (1.1). In this
case, we deal with the sum of two homogeneous nonlinearities and add a new positive parameter
1. More precisely, we consider the following problem:

{ —Apu— Aqu+V{ex) W +ui ) = w4t in RY, (1.7)

uwe WHPRN) nWH(RN), u > 0in RN,

where e, >0and 1 <p < q < s < q* < 7. Our multiplicity result for the supercritical case can
be stated as follows.

Theorem 1.2. Assume that (V7)-(V2) hold. Then there exists pg > 0 such that, for any for
any u € (0,pp) and for any & > 0 satisfying M C A, there exists €5, > 0 such that, for any
e € (0,e5,), problem (1.7) has at least catym, (M) positive solutions. Moreover, if u, denotes
one of these solutions and x, € RN is a global mazimum point of u., then

limV(ex:) = V.
e—0
The main difficulty in the study of (1.7) is due to the fact that T > q* is supercritical, and we

cannot directly use variational techniques because the corresponding functional is not well-defined
on the space W'P(RN) N WH4(RN). In order to overcome this obstacle, we use some arguments
inspired by [13,20,38] which can be summarized as follows. We first truncate in a suitable way the
nonlinearity on the right hand side of (1.7), so we deal with a new problem but with subcritical
growth. In the light of Theorem 1.1, we know that a multiplicity result for this truncated problem
is available. Then we deduce a priori bound (independent of 1) for these solutions and by using an
appropriate Moser iteration technique [33], we show that, for u > 0 sufficiently small, the solutions
of the truncated problem also solve the original one. We would like to point out that, since the
hypotheses on V and f are different from [1,2,4-6], our arguments are totally distinct, and improve
the previous results for the (p, q)-case because here we obtain multiplicity results for subcritical,
critical and supercritical (p, q)-problems involving continuous nonlinearities and imposing a local
condition on the potential V. Moreover, we believe that the ideas contained here can be applied
in other situations to study problems driven by more general quasilinear operators, under local
conditions on the potential V and the non-differentiability of the nonlinearity f.
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An outline of the paper is as follows. In Section 2, we study the modified problem. In Section 3
we analyze the limiting problem associated with (1.1) and we introduce some tools needed to obtain
a multiplicity result for the auxiliary problem. The Section 4 is devoted to the proof of Theorem
1.1. In the last section we deal with the supercritical problem (1.7).

Notations: Let p € [1,00] and A C RN be a measurable set. We will use | - lip(a) for the norm
in [P(A), and |- |, when A = RN. By S, = S.(N,q) > 0 we will denote the best constant in the
Sobolev inequality related to the continuous embedding D"9(RN) «— LI"(RN).

2. THE MODIFIED PROBLEM

We use a del Pino-Felmer penalization type approach [17] to deal with problem (1.1). Take
K > % > 1 and a > 0 such that f(a) +yad ' = %aqq. We define

flo) = f(t)+y(H)a=—" ift<a,
T Yt if t > aq,

and
glx,t) = XA () (F(1) + Y[ + (1 —xa(x)F(t)  for (x,t) € RN x R.

where x A denotes the characteristic function of A ¢ RN. By (f;)-(f4), we deduce that g : RN xR — R

is a Carathéodory function and it fulfills the following assumptions:

(g1) limi_ %gﬁﬁ) = 0 uniformly with respect to x € RV,

(g2) g(x,t) < f(t) +yt? ! for all x € RN and t > 0,
(g3) (1) 0 <dG(x,t) < g(x,t)t forall x € A and t > 0,
(i1) 0 < qG(x,t) < g(x,t)t < Y219 for all x € A® and t > 0,
g(xt)

(g4) for each x € RN the function t — Sq-1 1s increasing in (0, co).

Let us introduce the following auxiliary problem:

(2.1)

—Apu—Aqu—i—V(sx)(u"*] +ud ") =g(ex,u) in RN,
ue WP RN nWH(RN) u > 0in RN,

We observe that if u, is a solution to (2.1) such that u.(x) < a for all x € A, where A, = {x €
RN : ex € A}, then u, is also a solution to (1.1). Then we consider the functional 7; : X, — R
associated to (2.1), that is

1 1
= —[u/? — 4 — G d
T = Tl + LY~ [ Glexuan
where the space
X, = {u e WHP (RN n WHa(RN) J V(ex) (JulP + ul9) dx < oo}
RN
is endowed with the norm

lulle = llvep + lllve,qs

and
,

v = (19l | Viewatax) " e oo
R
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For t € {p, q}, we set

(W, @)y, t = J IVu/'?Vu - Ve dx + J V(iex)uuedx Vu,@ € Yv,.
RN R

N

Clearly, J. € C'(X,,R) and it holds

(T, 0) = (@ + (1 @hvig = | glexul i
for any u, @ € X.. We denote by N; the Nehari manifold associated with 7., namely
Ne = {ue X\ {0}: <j5/(u)>u> = 0},

and we set ¢, = infycn, Je(u). Let X7 ={u € X, : [supp(u™) NA¢| > 0} and S} =S, N X!, where
Se = {u € X¢ : |[u/|x, = 1}. Note that S} is an incomplete C»'-manifold of codimension one. Hence,
Xe =TuST @ Ru for all u € S, where

TSy ={v e Xe: (W,V)v, p + (W, V)v, q =0}
The next lemma shows that 7, possesses a mountain pass geometry [7].

Lemma 2.1. The functional J. has the following properties:
(1) There exist o, p > 0 such that J.(u) > « for ||u|lx, = p.
(il) There exists e € X, with |e|x, > p and Jc.(e) <O0.

Proof. (i) Fix ¢ € (0, V). Using (g2), (f1), (f2) and (f}), we can find C; > 0 such that

1g(x, )] < QP71 4+ Celtl9" V(x,t) € RN x R. (2.2)
Consequently,
1 1 C Ce, \q* 1 Ce, (g
Je(u) > EHuHsﬁ,p + aHuH&,q - I;|11|B - §|u|g* > Crllullf, , + aHuH@&,q - ?Mg*-
Choosing |[ullx, = p € (0,1) and using 1 < p < g, we have ||uf|v,, < 1 and thus Hu”{’,e,p > HuHQ,&p.

Recalling that a' +b' > Ci(a + b)! for all a,b > 0 and t > 1, and using the Sobolev embedding
WHT(RN) — L5(RN) for k € [r,1*], we find

C * *
Je(w) > Calfufl$ — qf§|u|;k > Callullg. — Cslfullf .

Then there exists o« > 0 such that J.(u) > « for |ju||x, = p.
(il) Fix @ € C®(RN) such that @ > 0, @ # 0 and supp(@) C A.. By (f3) we deduce that
F(t) > At? — B for all t > 0. Then, for all t > 0, we have

tr £
Te(te) < ;II(PHQ/E,p + EII(PII{Z,q — At{’J (¢)” dx + Blsupp(@) N Ag| = —c0  ast — oo
A

£

thanks to 9 > q > p. Then we take e = t@ with t > 0 sufficiently large. O

The next two results are very useful since they allow us to overcome the non-differentiability of
N and the incompleteness of S .

Lemma 2.2. The following properties hold:
(i) For each u € X}, let hy : Rt — R be defined by hy(t) = J:(tu). Then, there is a unique
ty > 0 such that h{ (t) >0 for all t € (0,t,) and h! (t) <0 for all t € (ty,00).
(il) There exists T > 0 independent of u such that t, > T for any u € S}. Moreover, for each

compact set K C ST, there is a positive constant Ck such that t, < Cx for any u € K.
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(iii) The map M, : X — N, given by M.(u) = tyu s continuous and m, = 1’T\1.5|S£+ 5 a
homeomorphism between ST and N.. Moreover, mj (u) = Tl -
(iv) If there is a sequence {untneny C ST such that dist(un,dS7) — 0 then ||me(un)|x, — oo

and J(m¢(un)) — 0.

Proof. (i) From the proof of Lemma 2.1, we see that h,(0) = 0, hy(t) > 0 for t > 0 small enough
and hy(t) < 0 for t > 0 sufficiently large. Then there exists a global maximum point t,, > 0 for hy,
in [0, 00) such that h/(t,) = 0 and t,u € N,. We claim that t,, > 0 is unique. Let t;,t, > 0 be
such that h/(t;) = h/(t2) = 0. Consequently,

1 glex,tin)  glex,tw)\
— - d
(tg—v tz—v> ol =J, (e~ o) v
which combined with (g4) and q > p yields t; = t;.
(i) Let w € S7. Using (i), we can find t,, > 0 such that h/(t,) = 0, that is

0l + Y, = | e

Fix & > 0. By (g2), (f1), (f2), (f5) and the Sobolev embedding W (RN) — LX(RN) for k € [r,1*],
we have

1 —1 —1 *_ ] *
0l < [ gt wde < £l + Cetd Ml

Taking & > 0 sufficiently small and recalling that 1 = |[ul|x, > [[ulv,,q, we find
1 —1 *—1 * *—1
Cti Y, , +td lully, o < CHE Ty, o < Ctl

Now, if ty < 1, then t4~' < t}', and using the facts that 1 = lullx, > [[ullv.p and q > p imply
that [u/|}, p 2 ||u||v p» We can see that
1 1 1 1 *—1
Cta ! = Ctd uld, < 8 (ClwlS,, + S, ) < 1 (Clulf,, + ) < Cta

Thanks to q* > q, we can find T > 0, independent of u, such that t, > .
When t, > 1, then t§ ' > t} ', and noting that 1 = |jux, > lullv.p and q > p imply
||u||V£ p = ||u||v£ p» We obtain

1 1 1 1 *—1
Cth ! = Cb fulld, < N (CHulld,, + Il o) < T (CHl,, + Tl ) < Cy

Since q* > q > P, there exists T > 0, independent of u, such that t,, > .
Now, let K C Sf be a compact set, and assume by contradiction that there exists a sequence
{unhen C K such that t, = t,,, — co. Then there exists u € K such that u, — uin X;. From (ii)
of Lemma 2.1, we have that

Je (thun) — —oo. (2.3)
On the other hand, if v € N, by (J/(v),v) =0 and (g3), we have that

1 -
Tev) = Jelv) = (T ) v) = CAMIY, , + VIV, q)-

Taking v, = ty, Un € N, in the above inequality, we find
Te(tattn) > C( (vall¥, , + vally, -

Since |[vn|[x. = tn — 00 and |[vnlx. = [[Vallv.,p + [Vnllve,q» We can use (2.3) to get a contradiction.
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(iii) Let us observe that ., m. and mg] are well defined. Indeed, by (i), for each u € X}
there is a unique M.(u) € M. On the other hand, if u € N; then u € X!. Otherwise, we have
|supp(u®) N A¢| =0, and by (g3)-(ii) we deduce that

Rl lg = | glexwude=] glexu)utax
RN

Ag

1 1
< X JAg V(ex)u9dx < E||u||3/mq, (2.4)
which is impossible since K > 1 and u # 0. Therefore, m_'(u) = —%— € S is well defined and

€ [ €
continuous. From u € S
_ _ tyu u
mE 1 (mﬁ(u)) = ms ] (tuu) = Ht 1:LHX = Hu”x =u
u € €

we infer that m,. is a bijection. To prove that M, : XI — A is continuous, let {untheny C X7
and u € X/ such that w,, — u in X,. Since M(tu) = M(u) for all t > 0, we may assume that
lunllx. = |Jullx, = 1 for all n € N. By (ii), there exists ty > 0 such that t, = t,,, — to. Using
thun € N, that is

Bl + el g = | 9l tuate) tan

and passing to the limit as n — oo we obtain

tollully, , +tgllully, o = Jox glex, tou) tou dx,

which means that tyu € N;. From (i), t, = to and this means that M. (u,) — M (u) in X7. Thus,
. and m, are continuous maps.

(iv) Let {unlmen C ST be a sequence such that dist(i,,dS;) — 0. Then for each v € 39S} and
n € N, we have u! < |u, —v| a.e. in A.. Therefore, by (V;), (V2) and Sobolev embedding, we can
see that for each r € [p, q*] there exists C, > 0 such that

wilira) < inf Jup —Vlra,) < G oinf fun —v|jx, VneN.
vedSy veasy

By virtue of (g,), (f1), (f2), (f5), (g3)-(ii), and q > p, we get, for all t > 0,

J G(ex,tun)dx:J G(ex,tun)dx—l—J G(ex,tuy) dx
RN

A¢ .
Vo [ yap Y (e
< — | tYup9dx+ Fltun) + — (tuy) dx
Kq Jae . q
tq [ * *
< — | Viex)|unl? dX+C]th (wh)Pdx + Cytd J (wh)9 dx
Kp JRN /\& €
< p V(ex)lun|® dx + CptPdist (un, 0S7)P + Cyt9 dist(un, 9S7)9 .
JrN

Therefore,

q
J G(ax,tun)dxgtJ V(e x)lunl® dx + on(1). (2.5)
RN Kp Jrn
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Now, we note that K > % > 1, and that T = |Jun|[x. > [[unl|v,,p implies that ||un||]\[’/Sp > HunH‘\],Ep.
Then, for all t > 1, we obtain that

tP t4 td
g = s | Ve ax
= iHunlﬂé + ﬂIVunlq + 14 (] - ]) J V(e x)un|¥ dx
P P q a q Kp/ e~
2 C]UDHuan/up + CthHuan/E,q (2.6)

> Ot funlld,, + Cat9unld,
> Ot funlld, , + Cat? unlld,
> CtP([[unllvep + lunllve,q)? = CatP.
Bearing in mind the definition of m,(u,) and using (2.5), (2.6), we find
liminf J: (me(un)) > liminf J; (tun) > C3t?  Vt > 1,
n—oo n—oo

which yields
.. 1 1 ..
1ﬂg}f{p\|ms(un)\\]\3/g,p + qus(un)Hs/e,q} > iminf 7 (me (un)) > Cat? vt > 1.

By sending t — oo, we get |m,(un)||x, — o0 and J¢(me(un)) — oo as n — oo. This completes the
proof of the lemma. O

Remark 2.1. There ezists k > 0, independent of €, such that |u|x, > « for allu € N;. Indeed,
if u e N, we can use (g2), (f1), (f2), (f;) and the Sobolev embeddings to see that

* C *
Y, + [l 4 = JRN glex, wwdx < Culf+ Ceulgs < gl + CE, -

1
Choosing ¢ € (0, Vo) we find |[ullv, q > x = (C;) 979 which implies that |u|x, > [[ullv. q > k.

Now we define the maps . : X — R and 1, : S} — R given by by P (u) = J.(fe(u)) and
P, = 1T)e|sj» respectively. From Lemma 2.2 and arguing as in the proofs of Proposition ¢ and
Corollary 10 in [41], we may obtain the following result.

Proposition 2.1. The following properties hold:
(a) P € C'(XH,R) and

ﬂ(ﬂ!(ﬁlg(u)),w vu e X, W e X..

(b) ¥e € C'(Sf,R) and
(WL (w),v) = [me(w)|x (T (Mme(w)),v) W € T, ST

(¢) If {untnen 2s a (PS). sequence for V., then {m.(un)en s a (PS). sequence for [J.. If
{Unlnen C N: is a bounded (PS). sequence for J., then {m; ! (un)lhen 15 a (PS). sequence
for ..

(d) u s a critical point of Ve if, and only if, m.(u) s a critical point for J.. Moreover, the
corresponding critical values coincide and

inf Pe(u) = inf J:(u).

uest ueNe
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Remark 2.2. As in [41], we have the following variational characterization of the infimum

of J. over N;:

ce = inf J:(u) = inf maxJ(tu) = inf max 7, (tu) > 0.
ueN: uexy t>0 ueSt t>0
Moreover, if ¢/ = inf,er, maxco 1) Je(v(t)), where T = {y € C([0,1],X,) : y(0) = 0 and
Je(v(1)) < 0}, then we can argue as in [17, 39, 44] to verify that c. = c/.

Next we prove a very useful upper bound for the minimax level ¢, for the case y = 1.

N
Lemma 2.3. Lety = 1. Then it holds 0 < c; < SJ.

Proof. The proof is inspired by an argument found in the proof of Lemma 2.2 in [19]. For simplicity,
we take ¢ = 1 and we use the notations /1 =7, X1 =X, A1 =A,¢c; =c, 1 =T. Let e € X be the
function given in Lemma 2.1-(ii). Note that supp(e) C A, e > 0 and e # 0 in RN. Accordingly,
(J'(tre), tre) =0, that is

thllelly, , + tillelly, o = L\ f(tae)tae dx + ty lell,. A (2.7)

Vi,p )

which combined with (f;) yields t [[e][y, , + tille[ly, ; > tg*lelg;w. Since p < q < q*, we can

infer that t) is bounded and that there exists a sequence A, — oo such that t5, — to > 0. Let us
observe that if ty > 0 then we have

) llelly, , + 8 llelly, g = L € (0,00),

and

J f(ta, e)ta, e dX+t§;|e|E;*(,\) > 7\nJ
A

()7 dx t el ) = 0o,

which gives a contradiction in view of (2.7). Therefore, ty = 0. Let us now define y(t) = te with
t € [0,1]. Then, vy € I and we get

_ PllollP CITPSTE:
0<c< tlg[g)}]c]j(te) = J(tae) < tyllelly, , +t7\||e”v1,q- (2.8)

Taking A sufficiently large, we obtain that

N

] N
el + el o < 5

N
hence 0 < ¢ < %S*“. Moreover, since ty — 0 as A — oo, it follows from (2.8) that ¢ — 0 as
A — o0. O

The main feature of the modified functional is that it satisfies a compactness condition. We start
by proving the boundedness of Palais-Smale sequences.

Lemma 2.4. Let {uphen C X be a (PS). sequence for J. at the level c. Then {unjhen s
bounded in X;.
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Proof. From (g3) and & > q > p, we have that
1
0
1 1 1 q 1
= E -3 ) v TLHVE,p a ) Hun”Vg,q + 9 Ac (glex, un)un —9G(ex,un)) dx

+1J (9(e %, un)un — DG e X, n) dx

<u7g,(un)>un>

T+ [[unlle) = Te(un) —

O

! 11\ 1
> (5 5) (g unlla) = (5= 5) & [, Vie et a

1T 1 1
> (= 5) (1= ) tunll 4 Tunl®, ) = Cllun  + il o)

where C > 0 since K > 1.

Now, we assume by contradiction that [[un|x, — oo and consider the following cases.
Case 1 [[un|v,p — oo and |[un|v.,q — oo. Then, for n large, we have HunHvz > 1, that is
HunHve,q > [[un |y, V.,q- Therefore,

Co(1 + Jlunllx,) = Clllunlly, , + lunl}, o) = Crlllunllvep + unlivi,g)” = Crllunlk,

that is an absurd.
Case 2 ||unllv,,p — oo and [[uq]|v,,q is bounded. We have

Co(1+ lunllvep + llunllve,q) = Co(T + [[unllx.) ||un||v€,p

and consequently

1 1 u ~
CO S + — + ” Tl”Vg,q 2 C
||un||v£,p HunH{)/up ||un||v‘E P
Since p > 1 and passing to the limit as n — oo, we obtain 0 < C < 0 which is impossible.

Case 3 |[unllv,,q — oo and |[uy|v,p is bounded. This is similar to the case 2, so we omit the
details. Consequently, {u,nen is bounded in X;. O

Remark 2.3. We may always assume that any (PS) sequence {un nen of J: is nonnegative. In
fact, by using (J!(un),un) = on(1), where u,, = min{un, 0}, and g(x,t) =0 for t < 0, we have
that (Un, Uy )ep + (Un, Uy )e,q = On(1) from which |lu,[]}, bt ||u.r_1||€',mq = on(1), that s u; — 0
in X.. Moreover, {ul} s bounded in X¢. Clearly, ||un||V5,t = [wlllv.,t +on(1) for t € {p,q}.
Thus, we can easily check that J.(un) = J:(Wh) + on(1) and J/(un) = J/ (W) + on(1), so we
get J.(w) — ¢ and J/(u}) = on(1).

Lemma 2.5. J. satisfies the Palais-Smale condition at any level c € R 1f y =0, and at any
N
level ¢ < §SJ ify=1.

Proof. Let {unlheny C X be a (PS), sequence for J;. In view of Lemma 2.4, we may assume that

u, — uin X; and u, — uwin L{OC(]RN) for all v € [1,q*). It is standard to verify that the weak
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limit u is a critical point of ;. Indeed, taking into account that for all ¢ € CX(RN)

IVun|" 2V, - Vi dx — J Vul*?Vu - Vo dx, Vte{p,ql,
JRN RN
Ve X2 dx — j Viexul2ud dx, 'Vt e {p, gl

JRN RN

glex,un)dp dx — J glex,u)¢ dx,

JRN RN

and that (J/(un),d) = on(1), we can deduce that (7/(u),$) = 0 for any ¢ € CX(RN). By the
density of C2°(RN) in X, we obtain that w is a critical point of J;. In particular, (7. (u),u) = 0.

Now, we show that for any 1 > 0 there exists R = R(11) > 0 such that

lim supj (IVunlP + [Vun|9 + V(e x) (JunlP + lunl9)) dx <.
B (0)

n—oo

(2.9)

For R > 0, let g € C®(RN) be such that 0 < Pgr < 1, Yg = 0 in B%(O), Pr = 1 in Bg(0), and
Vgl < %, for some constant C > 0 independent of R. Since {{)run nen is bounded in X, it follows

that <\7£/(u’n))ﬂr’Run> = on(1), namely

J Vun|Px|)Rdx+J |Vun|q¢Rdx+J V(sx)|un|Px|)Rdx+J V(e X)unl g dx
RN RN RN RN

=on(1) + J 9(5 X, Un ) PrUn dX — J |vun|pizvun - Viruy dx — J

RN RN R

Take R > 0 such that A, C Br(0). From the definition of {g and (g3)-(ii), we see that
2

1

J [Vu, P dx +J [Vun|9 dx + <1 - > J V(ex)(lunlP + un|9) dx
B%(0) B (0) K/ JBe(o)

1

< J VunPx dx+j Vg dx + (1 - > j Ve x)(funl? + funl¥) g dx
RN RN K RN

< on(1)— J IV P2 Vg - VPrit, dx — J IVl |92V Uy - Vigruy dx.
RN RN

. IVn 972 Vuy - Vg, dx.

(2.10)

Now, using the Holder inequality and the boundedness of {un ey in X, we have, for t € {p, q},

C - C
< SV gl < =

J N |Vu’n|t_zvun : Vll)Run dx
R

which combined with (2.10) implies that

1

J [V, P dx —i—J [Vu, |9 dx + <1 — ) J Viex)(JunlP + [un|9) dx
B (0) B (0) K/ Jeg(0)

1
< J Vi P dx+j Vg dx + (1 - ) J V(e (P + funl¥ g dx
RN RN K RN
C
On“) + E

IN

Consequently,

K

n—oo

(2.11)

1 C
lim sup J VP dx+J Vil dx + (1 _ ) j Viex)(unl + fun¥ dx | < S <
B5(0) B5(0) 5(0) R
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provided that R = R(1)) > % This proves the assertion (2.9). Next we show that (2.9) is useful to

infer that u, — u in L"(RN) for any r € [p, q*). Fixed n > 0 we can find R = R(n) > 0 such that
(2.9) holds true. Using the compact embedding W'P(RN) € LP (RN), we deduce that

loc
. P . P P
11T11n sup [u, — u,lp = 1171111 supllun, — uILp(BR(O)) + Jun — u|Lp(B§(O))]

— 15 _14|P P
_nhm [un ulLp B (0)) —i—llrrtn_)soléplun u|Lp(B%(O))

< 2P 'lim sup(lunlLp Be(0)) T |u|Lp BE(0 o))

n—oo
20T
< —— limsup J (IVunlP + V(e x)[u,P) dx —i—J (IVUulP + V(ex)uwP) dx
Vo n—oo €(0) % (0)
2P
< Von = KT].

The arbitrariness of 1 implies the strong convergence in [P-norm. By interpolation, we can see that
un — uin L"(RN) for any r € [p, q*).

Now, in order to prove the strong convergence in X, we distinguish two cases. First, we assume
that v = 0. Then, from (f;), (f2) and (g,), we have that

J glex,un)un dx — J glex,u)udx. (2.12)
RN RN

On the other hand, using (J. (un), un) = on(1) and (7, (u),u) =0, we have
HunHVEp'i‘ Huan/Eyq :J glex,un)un dx +on(1) and ||u||V5p + ||u||€[/€,q = J glex,Wudx.
RN RN

Putting together the above relations with (2.12), we find
Funllf,, + anlld, o = Ral, + IRl + on(1).
Since the Brezis-Lieb lemma gives
un —ully, , = lunlly, , — ully, , +on()  and  Jlun —ully 4 = [unlly, = IulV, 4 +on(1),

we can infer that [un —ully, , + [[un —u[y, , = on(1). This fact implies that uy — u in X, as
n — 00.

Second, we consider the case Yy = 1. The main difference with respect to the previous case, is
that we cannot directly prove that (2.12) holds due to the presence of the critical exponent. For
this reason, a more accurate analysis is needed.

Note that the Sobolev inequality, 0 < Pr < 1, [Vig| < %, (2.11) and the boundedness of {un hen
in LI(RN) yield

‘U—n|qq* c < Junrlde < ClV(unrllg < C [Vun | dx + [wn |V R|? dx
La* (B (0)) q 4 RN RN

c C
< on(1 —
<on(l)+ %+ o
Consequently,
lim limsup Iunl =0. (2.13)

R—00 n—ooo " (BR(0))
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Clearly, the strong convergence in L"(RN) for all r € [p, q*) gives
lim lim sup [un|f+pe =0. 2.14
1 1n Sup [unlp (BS(0)) ( )

Then, using the growth assumption on g, (2.13) and (2.14), for all n > 0 there exists R =R(n) >0
such that

lim supJ glex, un)uy dx < Clim supJ (P + [unl + [un|9) dx < Cn. (2.15)
n—oo JBg(0) n—oo  JB{(0)
On the other hand, choosing R > 0 large enough, we may assume that
J glex,ujudx <. (2.16)
2(0)

Then, (2.15) and (2.16) yield

lim sup J g(ax,un)undx—J glex,u)udx| < Cn vn >0,
n—oo | JBR(0) = (0)
which implies that
lim J glex, un)uy dx :J glex,u)udx. (2.17)
7790 JB¢g (0) BS(0)

Using the definition of g it follows that
« Vi
glex,un)un < flup)un +a% + ?O|un|q vx € RN \ Ae.

Since Br(0)N(RN\A,) is bounded, we can use the above estimate, (f;), (f5), the compact embedding
whr(RN) e Lf (RN) for k € [1,7%), and the dominated convergence theorem to infer that

lim J glex, un)uy dx :J glex,u)udx. (2.18)
o0 JBR(0)N(RN\A) Br(0)N(RN\A)
At this point, we aim to show that
lim J (W9 dx = J (uh)9" dx. (2.19)
n—oo AE .

Indeed, if we assume that (2.19) is true, from (gy), (f1), (f5), the compact Sobolev embedding
WIT(RN) e L{‘OC(RN) for k € [1,1*), and the dominated convergence theorem, we deduce that

lim J glex,un)u, dx = J glex,wudx. (2.20)
M= JA.NBg(0) AeNBg(0)

Putting together (2.17), (2.18) and (2.20) we conclude that (2.12) holds. It remains to prove that
(2.19) holds true. Firstly, we may suppose that

Vun|f =y [ug9 — v (2.21)

weakly in the sense of measures. Using the concentration-compactness principle of Lions [28,29],
we have an at most countable index set I, sequences {x;}ici C RN, {uilicr, {Vilier in (0, 00) such that

9
> [vuld + Z Hidy,, v =Iul? + Zviéw S*viq* <w Viel (2.22)
iel iel
It is enough to prove that {xi}ic; N A = (). Suppose, by contradiction, that x; € A, for some i € I.
For p > 0, define (y(x) = C(X_—p"i) where ( € C°(RN) is such that 0 < ¢ <1, =1inB;(0), (=01in
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B5(0) and |V (| < 2. We suppose that p is chosen in such way that the support of (, is contained
in A.. Since {Cpunen is bounded, (7! (un), unlp) = on(1) and we get

J IVun|9¢, dx SJ Vun[P o dx—i—J Vun|9¢, dx+J V(ex)unlPCp dx—i—J V(ex)lunl9¢, dx
RN RN RN RN RN
= on(1) — J IVun P2V - VEpun dx — J IVun )92V, - VEpun dx
RN RN

+ J flun)Coun dx + J
]RN

. fun|?" ¢, dx. (2.23)

Due to the fact that f has subcritical growth and (, has compact support, we have

lim lim J Cof(un)un dx = limJ Cof(uw)udx = 0. (2.24)
p—0N—00 JpN p—0 JrN
Now, we verify that, for t € {p, q}, we have
lim lim J V|2V, - Vioun dx = 0. (2.25)
p—)o n—oo RN

In fact, applying the Holder inequality, we get

< [Vunk (J a1V, dx)
Bp(xi)

Using again the Holder inequality, we see that

=

1
SCJ VGl dx )
Bp(xi)

J N IVt 2V, - Vioun dx
R

lim sup
n—oo

1
T .
<C (J [tV |t dx> < §|u|t*|Bp(xi)|tw‘ < CpN 50
Bp(xi]

|| P29 Ve ax
R

as p — 0. Therefore, (2.25) holds. Putting together (2.23), (2.24), (2.25), and using (2.21), we find
N
wi < vi. This fact combined with the last statement in (2.22) yield v; > S,. Then, by (g3), and

recalling that q > p, we obtain

c =T (un) — ;(jel(un))un> +on(1)

1T 1 1
= () ol [, (Gotemunhin=Glenun)) ax

1 1 1 "
_ _ q
+J 5 (qf(un)un F(un)) dx + <q q*> J/\g [un |9 dx + on(1)

] * ] *
> NJ et on(1) > NJ unl®” ¢y dx + on(1).

€

Taking the limit and using (2.22), we deduce that

1 1 1
CZN Z Cp(xi)\’i:ﬁ Z ViZNS*

{ielixi €A} {ielxieAe}

alz

N
which is an absurd because ¢ < %S*“ . O

Corollary 2.1. The functional . satisfies the Palais-Smale condition on ST at any level
N

ceR ify=0 and at any levelc<%$f ify=1.
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Proof. Let {untheny C S be a Palais-Smale sequence for 1, at the level c. Then {,(un) — ¢ and
P/ (un) — 0in (T, ST)’. By Proposition 2.1-(c), we see that {m.(uy)men C X, is a Palais-Smale
sequence for J; at the level c. Then, by Lemma 2.5, we deduce that 7. satisfies the (PS). condition
in X, and thus there exists u € S} such that, up to a subsequence, m¢(u,) — m¢(u) in X,. By
Lemma 2.2-(iii), we obtain that u,, —» uin S;. O

We end this section by proving an existence result for (2.1).

Theorem 2.1. Suppose that (V1)-(V2) and (f1)-(f4) hold. Then, for any ¢ > 0, (2.1) has a
positive ground state solution.

Proof. In view of Lemma 2.1, Remark 2.2 and Lemma 2.5, we can apply the mountain pass theorem
[7] to deduce that, for all ¢ > 0, there exists a nontrivial critical point u, € X, for .. Since
(J!(ue),u;) = 0, where u; = minf{u,,0}, g(e-,t) = 0 for t < 0, we can see that Hu;H{’,ﬁP +
Hu;H@e’ = 0 which implies that u; =0, that is u, > 0 in RN. By the regularity results in [24], we
have that u. € L°(RN) N CH*(RN) and u,(x) — 0 as [x| — co. Using the Harnack inequality [42],

loc

we deduce that u, > 0 in RV, O

3. THE AUTONOMOUS PROBLEM

Since we are interested in giving a multiplicity result for the auxiliary problem (2.1), it is impor-
tant to analyze the limiting problem associated with (1.1), namely

—Apu— Aqu+ Vo(uP T +ud71) = f(u) +yud " in RN
ue WPRNMNWH(RN), u>0in RN,

whose energy functional Ly, : Yy, — R is given by

(3.1)

1 1 0%
Ly, (w) = —|[ulf, .+ —|Jul| —J F(u) + ~(uh)9) dx,
v, (W) - ¥, + p Vg q o (w) + q*(u ) x
and Yy, = WHP(RN) n WH4(RN) is equipped with the norm vy, = llulvo,p + [1tllve,q, where

1
[ulv,e = (IVuli + Volulg)t - vt € {p, q}
For t € {p, q}, we set

(U @)vot = J

R
Standard arguments show that Ly, € C'(Yy,,R) and that

. IVult2Vu - Ve dx + JRN Volu" 2u g dx Y, @ € Yy,.

(E(/O (u)> (P> = <LL, (p>V0,p + <LL, (p>V0,q - JRN (f(u) +Y(u+)q*_] )(P dx

for any u,¢ € Yy,. We also consider the Nehari manifold My, associated with Ly, that is
My, = {u € Yy, \ {0} : (Ly, (uw),u) = 0}, and we set dy, = infuemy, Lv,(u). Now we define
Yy, = {u € Yy, : [supp(u®)| > 0}, and Sy, = Sy, N Yy, where Sy, is the unit sphere of Yy,. As
in section 2, SJ\;O is an incomplete C''-manifold of codimension one and contained in Y%‘ Thus,
Yy, = TuS\J;O @ Ru for each u € S¢O, where

TuS% ={v e Yy 1 (U, V)vop + (W, V)vp,q =0}

In the sequel we state without proofs the following results which can be obtained arguing as in
section 2.
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Lemma 3.1. The following properties hold:
(i) For each u € Y{r,o, let h: RT — R be defined by hy(t) = Ly, (tu). Then, there is a unique
ty > 0 such that h! (t) >0 for all t € (0,t,) and h! (t) <0 for all t € (ty,00).
(ii) There exists T > 0 independent of u such that t, > T for any u € S\to. Moreover, for each
compact set K C S\J;O there is a positive constant Ck such that t, < Ck for any u € K.
(ili) The map My, :Y\J;O — My, gwen by My, (u) = tyu is continuous and my, = ﬁiVO|S\+/O s a

— u
T
Ty,

(iv) If there is a sequence {Un neny C S\J;O such that dist(u,, aS%) — 0 then ||my, (un)|ly,, — oo
and Ly, (my, (u,)) — oco.

homeomorphism between SJ\;O and My,. Moreover m(/; (u)

Let us consider the maps 1]\)\/0 : Y{r,o — R and Yy, : S% — R given by by IT)VO (u) = Ly, (M, (u))

and Py, = 11’V0|§\+,0, respectively.

Proposition 3.1. The following properties hold:
(a) IT)VO € C1(Y¢O,R) and

o Wl

(Py, (W), v) = (Ly, (i, (W), v) Yue YJ\;O, W € Yy,.

il
(b) Py, € Cl(S\to,]R) and

<1p\//o (LL), V> = HmVo (u) ”YVO <£\//o (mVO (u))> V) Vv e TuST/O .

(c) If {unlnen s a (PS)q sequence for \y,, then {my,(un)en s a (PS)q sequence for Ly,. If
{Unnen C My, s a bounded (PS)q sequence for Ly, then {m;; (Un)nen s a (PS)q sequence
for Yy, .

(d) u s a critical point of Py, if, and only if, my,(u) is a nontrivial critical point for Ly,.
Moreover, the corresponding critical values coincide and

inf u) = inf Ly, (u).
s Yy, (u) g v, ()

Remark 3.1. As in section 2, we have the following characterization of the infimum of Ly,

over My, :

O<dy,= mf Ly (u)= inf max/Lly, (tu) = inf max Ly, (tu).
Vo e v, (1) W T v, (tu) s v, (tu)

N
Moreover, wheny =1, we can argue as win the proof of Lemma 2.3 to see that 0 < dy, < %S*“ .

The next lemma allows us to assume that the weak limit of a (PS)q4 , sequence of Ly, is nontrivial.

V,
Lemma 3.2. Let {uyjneny C Yy, be a (PS)q

(a) etither u, — 0 1n Yy, or
(b) there is a sequence {Ynjnen C RN and constants R, > 0 such that

v, sequence for Ly, such that un — 0 wn Yy,. Then,

limian lun | dx > B.
Br(yn)

n—oo

Proof. Assume that (b) does not true. Since {unjnen is bounded in Yy,, we can apply Lions
Lemma [28] to see that u, — 0 in L"(RN) for all r € (p,q*). In particular, by (f1)-(f;), we have
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that [pn F(un) dx = [pn f(un)un dx = on(1) as n — oo. Recalling that (Ly, (wn)y un) = on(1), we
have

onlfp + Il = | i -+ YIS = 00 (1) + ¥hefI-

When y = 0, we have |[unly,, — 0 asn — oo and the item (a) holds true. Now we consider the
case Y = 1. Then, up to a subsequence, there exists { > 0 such that ||U.n||1\)/0 »t Hun||'\1,O q ¢ and

Iuilgi — (. Assume by contradiction that £ > 0. Since Ly,(un) — dy,, (/J(/O (un),un) = 0 and
q > p, we deduce that

dv, + on(1) = Ly, (1tn) — ;w’vo (tn), tn)

1 1 1 1 .
R p o +19
= <p q> [unllVyp +0n(1) + <q q*> uplgs =

which implies that dy, > %B. Using the Sobolev inequality, we see that

{+on(1),

Z|—

* 9
HunH]{)/mp + ||U~n||(\q/0’q > S*|U~n|g* > S*(|u;’{|g*)q*

|z

N
and taking the limit as n — oo we get { > S*(’,qi* that is £ > S,. Consequently, dy, > %B > %S*“
and this contradicts Remark 3.1.

O

Remark 3.2. As it has been mentioned earlier, if u is the weak limit of a (PS)dv0 sequence
for Ly,, then we can assume u # 0. Otherwise, u, — 0 and, 1f un - 0 in Yy,, we conclude
from the Lemma 3.2 that there are {ynlheny C RN and R, > 0 such that

limian lun |9 dx > B.
N0 Br(yn)

Set vn(x) = un(x +yn). Then, using the invariance of RN by translation, we see that (Vi jnen
1s a bounded (F’S)dvO sequence for Ly, such that v, — v 1 Yy, with v # 0.

In the next result we obtain a positive ground state solution for the autonomous problem (3.1).
Theorem 3.1. Problem (3.1) admits a positive ground state solution.

Proof. Using a variant of the mountain-pass theorem without (PS)-condition (see [44]), there exists
a Palais-Smale sequence {unjneny C Yy, for Ly, at the level dy,. Proceeding as in the proof of
Lemma 2.5, we can prove that {un}ncy is bounded in Yy, so, going if necessary to a subsequence,
we may assume that u,, — uin Yy, and u,, — uin L{OC(RN) for all v € [1,q*). Standard arguments

(see proof of Lemma 2.5) show that E{,O (u) = 0. From Remark 3.2, we may assume that u # 0. On
the other hand, by Fatou’s lemma and (f3), we can see that

n—oo

£v,fu) = 2 (L4 (0, w) < limint (zvo () = (L1, (un),un>> ~ ay,

which yields dy, = Ly, (u). Finally, arguing as at the end of the proof of Theorem 2.1, we can prove
that u, > 0 in RN. O

The next lemma is a compactness result on autonomous problem which we will use later.

Lemma 3.3. Let {unjnen C My, be a sequence such that Ly, (un) — dv,. Then, {unjnen has a
convergent subsequence in Yy, .
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Proof. Since {unlneny C My, and Ly, (un) — dy,, it follows from Lemma 3.1-(iii), Proposition
3.1-(d) and the definition of dy, that v, = m\j(] (up) = — € S\to for all n € N, and Py, (vn) =
0

= lunllyy,
Lv,(un) — dy, = inf\,es\+/O Py, (v). Let us define G : S% — RU{oo} as G(u) = Py, (u) if u e S%,
and G(u) = 0 if u € as%. Note that (g\to,évo), where v, (u,v) = |[u—Vlly,,, is a complete
metric space, G € C(g\to,R U{oo}) (by Lemma 3.1-(iv)), G is bounded below (by Proposition 3.1-
(d)). Hence, applying the Ekeland variational principle to G, there exists {Vnnen C ST/O such that
{Pnthen is a (PS)de sequence for )y, at the level dy, and ||0n—vnHyvo = 0,(1). Now the remainder

of the proof follows from Proposition 3.1, Theorem 3.1, and arguing as in the proof of Corollary
2.1. O

We conclude this section by showing the following useful relation between the minimax levels c,
and dy,.

Lemma 3.4. It holds lim;_,oce = dy,.

Proof. Let w¢(x) = P:(x)w(x), where w is a positive ground state of (3.1) which is given by
Theorem 3.1, and VP (x) = W(ex) with P € CX(RN) such that 0 < < 1, P(x) = 1 if [x] < r and
P(x) = 0 if |x| > 2r. For simplicity, we assume that supp(\) C By C A for some r > 0. Using the
dominated convergence theorem we see that

we—=w inW and Ly, (we) = Ly, (w) = dy, (3.2)

as ¢ — 0. Now, for each ¢ > 0 there exists t. > 0 such that 7, (t;w.) = maxi>o J:(tw,). Therefore,
(J!(tewe), we) =0 and this implies that

tEngH{)/hp + tgngHs/S’q = JRN (f(tswe)tewg +Y(tgwa)q*> dx.

If t. — oo then

fltewe) + Y(tsws)q*i]
(tews)q_]

el + el g = | w dx, (33)

and using (3.2), p < q and (f3), we obtain that ||(UH€/O q = o0 which gives a contradiction. Then
te = to € [0,00). If to =0, using (fy), (f2) and (f}), we see that for ¢ € (0, Vp), it holds

C - . *
(1 = v ) el + Pl < CatdPllwcly,

which yields Hwa/om = 0 and this is an absurd. Hence, t. — typ > 0. Taking the limit as ¢ — 0 in
(3.3) we get

wd dx

_ f(tow) +y(tow) !
P—q P g

which together with (f;) and w € My, implies that to = 1. On the other hand, we can note that

tF td
ce <max J(twe) = Je(tewe) :L:Vo(tews)“’sj (VE(X)_VO)CUE dX-i—EJ (VE(X)_VO)U)? dx.
>0 P JrN q JrN

Since V(e -) is bounded on the support of w,, we use the dominated convergence theorem, (3.2) and
the above inequality to obtain that lim sup, _,yce < dy,. By (V1) we deduce that liminf, ,oc. > dy,

and thus lim,_,oc, = dy,. This ends the proof of the lemma. O
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4. MULTIPLICITY OF SOLUTIONS TO (2.1)

In this section we collect some technical results which will be used to implement the barycenter
machinery below. Let & > 0 be such that

M; = {x € RN : dist(x, M) < §} C A, (4.1)

and w € Yy, be a positive ground state solution to the autonomous problem (3.1) which exists by
virtue of Theorem 3.1. Let 1 € C*([0, 00), [0, 1]) be a non increasing function satisfying n(t) = 1 if
0<t< %, n(t)=01if t > 6 and n’(t)| < c for some ¢ > 0. For any y € M, we define

Wy =nllex—yhw (7Y,

and @, : M — N given by ®,(y) = t.V¢, where t, > 0 satisfies maxi>o Je (tWey) = Je(teWey).
By construction, ®@(y) has compact support for any y € M.

Lemma 4.1. The functional ®. verifies the following limat:

linz.) Te(De(y)) = dv, uniformly iny e M.
£—

Proof. Suppose that the thesis of the lemma is false. Then we can find 6y > 0, {yntheny € M and
en — 0 such that

|\.7£n((Dan (yn)) - dVo| Z 60- (4-2)
Now, for each n € N and for all z € B s (0), we have ¢, z € Bs(0), and thus e,z + yn € Bs(yn) C
M; C A. Taking the change of variable z = “*-—" and using the fact that G(x,t) = F(x,t) + ;/—*tq*
for (x,t) € A x [0,00), we can write

t? td

Ton@en yn)) = W¥ensn I+ = Wi Y, 0~ JRN Glen X, te ey, ) dx

)
- (IV(n(I en )W) +J Vienz+yn)(n(l enzl)w(z))? dz)
P R

q
+12 (19len A+ [ Vienz +yanl en i) oc)

- [ (Fttanlienzime) + 2 teanllenzhiwta) ) 2 (43)
R
We claim that t,, — 1 as ¢, — 0. We start by proving that t,, — to € [0,00). Since

(T (@c, (yn)), @¢, (yn)) =0 and g = f on A x R, we have

1
tgi—p Hlyélnyyn ||p5n,p + Hlyﬁnyyn ”;:I/gn,q
n

_ J (f(tennmnznw(z)) +y(te,n(] en 2Jw(z))0
RN

o enzw(z))i )(n(lenzl)w(z))q dz. (4.4)

Observing that n(|x|) = 1 for x € B%(O) and B%(O) C B s (0) for all n large enough, the identity
(4.4) yields h

(f(tgnw(zn +y(te,w(z))d !
(0)

— P q
NN R T A | o

) (w(z))? dz,

Njon
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which combined with (f4) gives

[ N S Y ((M) (w(2) +vt§,’;q(w(2nq*) Bs(0)), (45)

where W(Z) = min (0y W(z) > 0 (we remark that w is continuous and positive in RN). If t., — oo,

2€B s
2

using the fact that q > p and that the dominated convergence theorem yields

Wenynllven,r = IWllvo,r € (0,00)  Vr € {p, g} (4.6)

we find

N Wenynl V. o+ Wenun Ve, g = WV, o- (4.7)
On the other hand, by (f3), we get

(e, w(2)

B T w(@ T 2)

Gathering (4.5), (4.7), (4.8) and using q* > q, we achieve a contradiction. Consequently, {te, Inen
is bounded and we may suppose that t., — to for some ty > 0. From (4.4), (4.6), (f1)-(f2), we can
see that tp > 0. Now we claim that ty = 1. Passing to the limit as n — oo in (4.4), and using (4.6)
and the dominated convergence theorem, we have that

f(tow) + y(tow)d !
(tow)a-!

89wl + [l =JRN Wi dx.

Recalling that w € My, we obtain

_ f(tow) f(w) . .
P—q _ q 9 —q q
(t ||WHv0,p JRN ((to JaT e widx +v(t, Dwlgs.

Using assumption (fs), we conclude that ty = 1. Therefore, letting n — oo in (4.3), we deduce that
limp o0 Jen (e yn) = Ly, (W) = dy,, which contradicts (4.2). O

For any & > 0 given by (4.1), let p = p(8) > 0 be such that My C B,(0). Define Y : RN — RN
by setting Y(x) = x if [x| < p and Y (x) = % if [x| > p. Let us consider the barycenter map
Be : M. — RN given by

Jrn Y(ex) (lu(x)P + [u(x)|9) dx
Jrn ()P 4+ Tu(x)]9) dx

Be(u) =

Since M C B,(0), by the definition of ¥V and applying the dominated convergence theorem, we
conclude that

lim B.(®(y)) =y uniformly in y € M. (4.9)

e—0

The next compactness result plays an important role to verify that the solutions of the modified
problem are also solutions of the original one.

Lemma 4.2. Let e, — 0 and {Unjneny C N, be such that T, (un) — dv,. Then there exists
{Tnneny C RN such that vi(x) = un(x + Un) has a convergent subsequence in Yv,. Moreover,
up to a subsequence, {ynhmen = {en Unhen s such that yn, — yo € M.



22 V. AMBROSIO AND V.D. RADULESCU

Proof. Proceeding as in the proof of Lemma 2.4, it is easy to see that {u,}ney is bounded in
Yv,. Clearly, |[un|x,, - O since dy, > 0. Consequently, we can argue as in the proof of
Lemma 3.2 and Remark 3.2, to obtain a sequence {{jnhen C RN and constants R, > 0 such
that liminf, o J‘Bk(gn) lun|9dx > B. Set vn(x) = un(x + Un). Then, {vnlnen is bounded in Yy,
and, going if necessary to a subsequence, we may suppose that v, — v # 0 in Yy,. Take t, > 0

such that ¥, = tavq, € My, and set y, = en Jn. Using u, € N;, and (g;), we have

—J (F(vnwy*(mq*) dx
RN q

th t]
< Ml + 2l g - JRN Glen X, trttn) dx

- jen(tnun) < jsn(un) - dVo + On“))
which implies that
‘CV() ({’n) — dVo and {{)Tl}TIEN C MV()' (410)

Moreover, {Vnjnen is bounded in Yy, and thus ¥, — ¥ in Yy,. We may assume that t, — to > 0.
From the uniqueness of the weak limit, we have V = tyv # 0. By Lemma 3.3, we have V;, — Vin Yy,
and so v, — v in Yy,. Moreover, Ly, (V) = dy, and <£\’,O (¥),V) = 0. Next we show that {ynlnen
admits a bounded subsequence. Indeed, suppose by contradiction that there is a subsequence of
{Yntnen, still denoted by itself, such that [yn| — co. Choose R > 0 such that A C Bg(0). Then, for
n large enough, [yn| > 2R, and for each x € Bg/,, (0) we have |eq X +yn| > [yn| —|en x| > R. Hence,
using v, — v in Yy, the definition of g, and the dominated convergence theorem, we obtain
IVl + il < | 0en -+ ymy v
<J f(vn)vn dx+J (f(vn)vn%—v(v:{)q*) dx
Br/en (0) c (0)

R/ en

1
< j Vo(lvnl? + [val®) dx + on(1)
K JBg, e (0)

which implies that (1— ) (vall¥yp + 1VnllY,.q) < on(1). Since vp — v # 0 in Yy, and K > 1, we
get a contradiction. Hence, {yn}nen is bounded in RN and, up to a subsequence, we can assume
that y, — yo. If yo & A, we can proceed as above to get v, — 0 in Yv,. Then we have y € A. Now,
assume by contradiction that V(yo) > V. Using ¥, — ¥ in Yy, Fatou’s lemma and the invariance
of RN by translations, we have

.. 1 _. 1 _. 1. 1.
dvy = £v,(5) < Hminf - 1V5l3 + L 1VIl3 + | Vienx+yn) (|vnp+|vn|q) ax
n—eo \ p q RN p q

—J <F(\")n) + Y*(\”):{)q*> dx) <liminf J;, (thun) < liminf 7, (un) = dy,
RN q n—oo n—oo

which leads to a contradiction. Therefore, V(yo) = Vp and yo € M. The assumption (V,) shows
that yo ¢ OM and thus yo € M. O
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Let us define N = {ue N, : J.(u) < dv, +7t(e)}, where m(e) = supyem |Te(@e(y)) — dv,l. By
Lemma 4.1, we know that 7t(¢) — 0 as ¢ — 0. By the definition of 7t(¢), we have that, forally e M
and ¢ > 0, D, (y) € N, and thus N, # (). We present below an interesting relation between N, and
the barycenter map.

Lemma 4.3. For any & > 0, there holds that
lim sup dist(pB.(u), Ms) = 0.

e—0 uE/\~/5

Proof. Let ¢, — 0 as n — oo. Then we can find {un}heny C ./\N/]En such that
dist(Be, (un), Ms) = sup dist(Be, (u), Ms) + on(1).
‘LI.GNsn

Then, it suffices to find {ynjnen C M such that limp o0 [Be, (Un) — Yynl = 0. From Ly, (tun) <
Jen (tun) and {untneny C N, C N, we obtain dy, < ¢, < Je, (un) < dy, + h(en) which leads to
Jen (Un) — dy,. By invoking Lemma 4.2, we can find {{jn} C RN such that y, = €, n € M; for n
large enough. Hence,
yn + jRN (Y(enz+yYn) —yn) (un(z + Gn)lP + [un(z + Gn)l) dz

" ‘[RN“un(Z'f'gan + un(z + Gn)l9) dz
Taking into account that u,(- 4+ {n) strongly converges in Yy, and enz +yn — y € M; for all
z € RN, we can see that B¢, (Uun) = yn + 0on(1). The proof of the lemma is now complete. O

Be, (Un) =

We finalize the section by presenting a relation between the topology of M and the number of
solutions of the modified problem (2.1). Since S7 is not a complete metric space, we cannot use
directly an abstract result as in [4-6]. However, we can invoke the abstract category result in [41]
to achieve our purpose.

Theorem 4.1. Assume that (V7)-(V2) and (f1)-(f4) are in force. Then, for any given b > 0
such that Ms C A, there exists €5 > 0 such that, for any ¢ € (0,€5), problem (2.1) has at least
catm, (M) positive solutions.

Proof. For each ¢ > 0, we define the map &, : M — S} by setting a(y) = m; ' (®c(y)). From
Lemma 4.1 we see that

lim (e (y)) = lim J (P¢(y)) = dy, uniformly in y € M. (4.11)
e—0 e—0

Hence, there is a number € > 0 such that the set gj ={w e S 1 P:(w) < dy, +mo(e)} is nonempty
for all € € (0,¢), since Y(M) C S;. Here mp(e) = supyeMlll)e(oce(y)) —dy,| » 0as e — 0. From
the above considerations, and taking into account Lemma 4.1, Lemma 2.2-(iii), Lemma 4.3 and
(4.9), we can find € = g5 > 0 such that the following diagram is well defined for any ¢ € (0, €):

—1
Mo, M) ™S & (M)™ (M) ES M.

From (4.9), we can choose a function 0(e,y) with [0(e,y)| < % uniformly in y € M and for all

e € (0,¢€), such that B:(DP.(y)) =y+0(e,y) for all y € M. Define H(t,y) =y+ (1—1t)0(e,y), with
(tyy) € [0,1] x M. Then H: [0,1] x M — Mj is continuous. Obviously, H(0,y) = B:(DP¢(y)) and
H(1,y) =y for all y € M. That is H(t,y) is a homotopy between B. o0 @, = (B om,) o (m:' o ®,)
and the inclusion map id : M — M;. This fact implies that

caty, (vyoe(M) > catm, (M). (4.12)
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It follows from Corollary 2.1, Lemma 3.4, and Theorem 27 in [41], with ¢ = ¢, < dv,+mp(e) = d and

K = & (M), that . has at least cat, m)x:(M) critical points on S;. Therefore, by Proposition
2.1-(d) and (4.12), we conclude that 7, admits at least cata, (M) critical points in N.. O

5. Proor orF THEOREM 1.1

This section is devoted to the proof of Theorem 1.1. We start with the following lemma which
plays a fundamental role in the study of behavior of the maximum points of solutions to (1.1).

Lemma 5.1. Let ¢, —» 0 and u, € /\7En be a solution to (2.1). Then J;,(un) — dv,, and there
exists {{nen C RN such that vip = un(- + Un) € L®°(RN) and for some C > 0 it holds

[Vnleo < C  for allmn € N.
Moreover,
vn(x) — 0 as |x| — oo uniformly in n € N. (5.1)

Proof. Observing that J;, (u,) < dy, + 7m(en) with m(e,) — 0 as 1 — oo, we can repeat the
same arguments used in the proof of Lemma 4.3 to show that 7, (un) — dy,. Then, applying
Lemma 4.2, there exists {jnjneny € RN such that v, = un(- + {jn) strongly converges in Yy, and
€nYn — Yo € M.

In what follows, we obtain a suitable L*°-estimate by using some arguments found in [2, 23, 26].
Let xo e RN, Ry >1,0<t<s < 1<Rgand & € C®(RN) be such that 0 < £ < 1, supp & C Bs(x),
& =1o0n Bi(xg), IV < é For ( > 1, set An¢p =1{x € Bp(xo) : vn(x) > ¢} and

Qn = J (IVVnlP + |[Vvn|9) £9 dx.
A

n,G,s

Note that v, satisfies

J IVVnP 2V - Vi dx + J IV |972Vvy, - Vi dx
RN RN

+ J Vi () (VB 438 dx = J g (%, v dx,
RN RN

for all n € X,. Using nn = £9(vq — (). as test function, we obtain

d
An,(,s
+a
A
|
A

which combined with (V;) yields

Qn<CJ

An,é‘s

£97 (v — )4 [VvnP2Vvy - VE dx + J £9/Vv, P dx

An,i,s

97 (v — )4 [Vvnl9 2V, - VE dx + J £9[Vn 9 dx
An,(,s

n,G,s

Vi (P! v E (wy — O) dx — J G (s V) E9 (v — 0)- dx,
An,C,s

n,Gs

£ (vn — Q4 VE] (|70 +[9val") dx

_ j VoEd (v — 04 (8T + 8 T) dx +J Gn (6, V) E9 (v — ) dx.
An‘C,s An,(,s
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By (2.2), choosing (¢ > 0 sufficiently small, we find

QnSCJ

AH»C‘S

&1 (vn — Q4 VE] (Il + 9wl ") dx+ J vl & (v — Q) dx.

An,C‘s
Proceeding similarly to Lemma 3.4 in [2], we obtain

Vn—C
<
Qn.<C (Lw p—

Exploiting the definition of & we can infer

*

q

dx+ (% + 1)|An,c,s|> :

r

J [Vvn|9dx < C
An,t JAn¢s

where C > 0 does not depend on ( and { > (o > 1, for some constant (.

Fix Ry > 0 and define oj = 8L (1+ %), & = J(0j+0j41), § = $(1—54r), and Qjn =

((vn — Cj)Jr)q* dx. Then, arguing as in Step 1 in Lemma 3.5 in [2], we can see that for each

vn—C
s—t

dx + (¢9 + 1)|An,c,s|> ,

fA“»%’v"i
neN,
Qi1 < CATQJIT  forall j € NU{0},

where C, T > 0 are independent of n and A > 1. Since v, — v in Yy, we have

q*
lim sup <1im sup Qo,n> = lim sup (| lim supj <<vn — CO) ) dx | =0.
Co—00 n—o0 Co—0o0 n—=00 JAn ¢4,00 4 +

,
Hence, there exists ng € N and (; > 0 such that Qp,, < C %A_Tz for n > ng and p > (5. Exploiting
Lemma 4.7 in [26], limj_, Qjn = 0 for n > noy. On the other hand,

Co @
0 & ((vn—2>+> dx.

LS e

Co @
Vn — = dx =0 for all n > ny,
An 0 Ry 2/,

Ui s

lim Qj, = lim J (Vo — G)4)9 dx = J
An,(,]',()'j

j—o0 j—o0 A

Then,

and so vp(x) < %0 for a.e. x € By, (x0) and for all n > ny. From the arbitrariness of xo € RN,
2

we deduce that v, (x) < % for a.e. x € RN and for all n > ny, that is [vn|eo < %0 for all n > ny.
Setting C = max {%0, Vilooy « -« Ivno,lloo}, we get [vnloo < C for all n € N. Then, combining this

estimate with the regularity results in [24], we obtain that {vyheny C C{(’)‘é‘(]RN). Finally, we show
that vi,(x) — 0 as |x| — oo uniformly in n € N. Arguing as before, we can see that for each 6 > 0

we have that

s\ \
lim sup <lim sup Qo,n> = limsup | lim supJ <<vn — ) ) dx | =0.
[xol—o0 \ 00 xol—oo \ M—00 AL (oo 4]
Therefore, applying lemma Lemma 4.7 in [26], there exist R, > 0 and ny € N such that lim; o, Qjn =
0 if |xo| > R4 and for n > ny, which yields v, (x) < % for x € By, (x0) and [xo| > Ry, for all n > ny.

2
Now, increasing R, if necessary, it holds vn(x) < 2 for |x| > R, and for all n € N, and this completes
the proof of lemma. O
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5.1. Proof of Theorem 1.1. Take & > 0 such that My C A. We first show that there exists €5 > 0
such that for any ¢ € (0, &) and any solution u, € N, of (2.1), it holds

|u£|]_oo(/\g) < a. (52)

In order to prove the claim we argue by contradiction. Suppose that for some sequence ¢, — 0 we
can obtain un = ue, € N, such that 7/ (u.,) =0 and

IunILoo(,\gn) 2 a. (53)

As in Lemma 4.2, we have that J;, (un) — dy, and therefore we can apply Lemma 4.2 to obtain a
sequence {{nlneny C RN such that v, = un(- +n) — v in Yv, and en Gjn — Yo € M.

Choosing r > 0 such that B;(yo) C Bax(yo) C A, we have B%(‘g—:) C Ag,. Moreover, for any
y € B_r (§n), it holds A

_ Yo

n

1 2
< —(r4+on(1) < il for n sufficiently large.

<D .
<N —=Tnl+ [In e e

Yo
-

€n
For these values of n, we have A{ C B% ({n). By using (5.1), there exists R > 0 such that

vn(x) < a for any |x| > R and n € N, and thus Un(x) < a for any x € B4({jn) and n € N. On the
other hand, there exists v € N such that for any n > v it holds A C B% ({n) C Bg({n). Hence,

un(x) < a for any x € A and n > v, which is in contrast with (5.3).

Let €5 > 0 be given by Theorem 4.1 and set ¢5 = min{&;s, e5}. Take € € (0,¢5). By Theorem 4.1
we get at least caty, (M) positive solutions to (2.1). If u. is one of these solutions, we have that
ue € N,, and we can use (5.2) and the definition of g to deduce that g(ex,u) = f(ue) —|—yu§*_].
This means that u, is also a solution of (1.1). Consequently, (1.1) admits at least caty, (M) positive
solutions. Now we consider ¢, — 0 and take a sequence {unhen C X, of solutions to (2.1) as
above. In order to study the behavior of the maximum points of w,, we first note that, by the
definition of g and (g;), there exists o € (0, a) sufficiently small such that

V,
glex, )t < ?"(tp +19) V(x,t) € RN x [0, 0] (5.4)
As before, we can take R > 0 such that
[Un s (Bg (5)) < O (5.5)
Up to a subsequence, we may also assume that

Unlies (Bg (gn)) = O (5.6)

Otherwise, if this is not the case, we have [u,|o < 0. Then, using (J. (un),un) =0 and (5.4), we
find

Vo
Pl i < [ 9o xsunian @< 32 [l )
RN RN

which leads to a contradiction. Therefore, (5.6) is satisfied. In view of (5.5) and (5.6), we can
deduce that if p, is a global maximum point of w,, then p, = §n + qn for some q, € Bgr(0).
Since en Un — Yo € M and {qnen C Br(0), we obtain that ¢, pn — yo which together with the
continuity of V yields lim,, oo V(eén pn) = V(yo) = Vp. Finally, we prove the decay estimate for u,.
Since vy (x) — 0 as |[x| — oo uniformly in n € N, and using (g7), we can find R > 0 such that

gul, e (x)) < 20810 4§ () Vel 2 R,
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Then, by using (V;), we obtain

Vo, . _ \% _ _
—Apvn — Agvn + ?O(V?l T v = gu(x,vn) — <Vn—20) (Vb +va
(5.7)
V,
< gn(X)\’n) - 70( ﬁil +Vﬂ7]) <0 Vx| >R.

Let ¢(x) = Me ™ with ¢, M > 0 such that cP(p—1) < %, cl(g—1) < % and Me R > v, (x) for
all |x| = R. We can see that

Ay~ Agh+ (@ )

cp‘> + ! <\;O —ci(q—1)+

x|

x|

= P <\;0—Cp(p—1)+ cq‘> >0 Vx| >R.

(5.8)

Usingn = (v — ¢)t € Wg)’q(]RN \ Br) as test function in (5.7) and (5.8), we find

0> J ((VvaP2Vvn = [VOP V) - V1 + ([Vval*2Tv, = VO[T 2V ) - V)
(=R {vn >}

PR (R = o - o) n) dx.

Recalling that for t > 1 it holds (|x[*?x — [y[*2y) - (x —y) > 0 for all x,y € RN (see formula
(2.10) in [40]), and that ¢, v, are continuous in RN, we deduce that v,(x) < ¢(x) for all [x| > R.
Recalling that {vn}nen is uniformly bounded in L (RN) and that u,(x) = vn(x — §n), We obtain
that 1, (x) < Cre~ 2Pl for all x € RN, This completes the proof of Theorem 1.1. O

6. THE SUPERCRITICAL CASE

In this last section we focus our attention on (1.7). Firstly, we truncate the nonlinearity ¢(u) =
uw$ '+ pu™ ' in a suitable way. Let K > 0 be a real number, whose value will be fixed later, and set

0 ift<o,
Gu(t) =t 4 put™! if 0 <t <K,
(14 pK™=$)ts1 if t > K.
Clearly, ¢, verifies the assumptions (f1)-(f4) ((f3) with & =s > q). Moreover,
du(t) < (14 K=t vt > 0. (6.1)
Now, we can introduce the following truncated problem

[ A Ve ) - gyl i (62

ue WPRNMNWH(RN), u>0in RN,

It is easy to check that weak solutions of (6.2) are critical points of the energy functional J;  :
X¢ — R defined by

1 1
Teu(u) = 5||u||1\j/€,p + aHuH&,q - JRN Dy (u) dx,
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where O, fo ¢u(s)ds. We also consider the autonomous functional
1
Toulu || o + 5l - JRN Dy (1) dx.

Using Theorem 1.1, we know that for any pw > 0 and § > 0, there exists €(8, u) > 0 such that, for
any ¢ € (0,€(,)), problem (6.2) admits at least caty, (M) positive solutions u, ,. Now, we prove
that it is possible to estimate the W' 9-norm of these solutions uniformly with respect to p. More
precisely:

Lemma 6.1. There exists C > 0 such that e ullve,q < C for any £ > 0 sufficiently small and
uniformly in .

Proof. A simple inspection of the proof of Theorem 1.1 shows that any solution u, , of (6.2) satisfies
the following inequality J¢ . (u,u) < coy + hu(e), where o, is the mountain pass level related to
the functional Jo ., and hy(e) — 0 as ¢ — 0. Then, decreasing £(9, i) if necessary, we may suppose
that J u(ueyn) < cop + 1 for any e € (0,€(5,n)). Using the fact that co, < cop for any p > 0, we
can deduce that

js,u(us,u) < €0,0 +1 (6'3)

for any ¢ € (0,€(d,u)). On the other hand,

1
uﬂ,p(ue,u) = uﬂ,u(ugu) - g<jgl,u(ue,p)>ue,p>

1 1 1 1 1
— (p — S> Il £’u||vhp + (CI - S> ||u£,u||(\1/€’q + JRN (Sd)“(uﬁau)umi — q)u(us,u)) dx

1 1 1 1
2 (p - ) [ e,u”ve,p + <q - s) ||U'e,u”3/£,q> (6.4)
where in the last inequality we have used assumption (f3). Putting together (6.3) and (6.4), we can
1
infer that [[u. .[lv.q < ((—‘%) (co0 + 1)> — C for any ¢ € (0,€(65, ). O

Now, our plan is to prove that u., is a solution of the original problem (1.7) for u sufficiently
small. To this end, we will show that we can find Ky > 0 such that for any K > Kj, there exists
o = Ho(K) > 0 such that

e uloo < K Vi € [0, pol. (6.5)

In order to achieve our goal, we develop a suitable Moser iteration technique [33]. For simplicity,

we set u = ug . For any L > 0, we define u; = min{u, L} > 0, where § > 1 will be chosen later,

1AB=1)
ur

and let w = uuL . Taking z1 = u in (6.2), we see that

J (IVuP 4 [Vua)ude- dx—i—J q(B — NuIBD(|VulP 4 [Vul9) dx
RN {u<L}

—I-J V(ex)(uP —I—uq)ug(ﬁ_” dx = J ci)u(u)uuL([3 Y dx. (6.6)
RN R

N

Putting together (6.6), (6.1) and (V;), we get

JRN IVquuE(B_” dx < Cux JRN usug (B=1) dx, (6.7)
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where C,x = 14 pK™*. On the other hand, by the Sobolev inequality, (a 4 b)9 < 297 (a9 + b9)
for all a,b >0, and > 1, we have

—1
wilg <5 |

LIVl dx = S, J V(P9 dx
R

RN

< §;12a ! <J (B— 1)quﬁ(ﬁ_”|Vu|q dx —i—J uE(B_I)IVuLIq dx>
RN RN

<S;297((B—1)7+ 1)J w1 7y ax

RN
_ q
<52 ((P50) o) [ e
R
< Cyp¢ JRN w7y ax, (6.8)

with C; = 29S;' > 0. Taking into account (6.7) and (6.8), and using the Hélder inequality, we
deduce that

—1 _ o
welg- < € Cu,KB“J wu® Vax = aq«sqj w i dx < CBICuly il (6.9)
R R

o*)
where of = q*f&*_q). In view of Lemma 6.1, the embedding WH9(RN) < L9 (RN) and (6.9), we
see that
wilg. < C2BICkIwilg-, (6.10)
s—q

where C; = C;S, 9 C59 is independent of ¢ and . Now, we observe that if uf e L% (RN), it
follows from the definition of wy, that uy < u, and (6.10), that it holds

wilg. < CquCu,K|ulgﬁ* < 0. (6.11)
Letting L — oo in (6.11), the Fatou Lemma yields
a1
[ulgep < (C2Cux) 98 BFlulpq (6.12)

whenever ub* e L'(RN). Now, we set p = 2—: > 1, and observe that, since u € L9"(RN), the above
inequality holds for this choice of 3. Then, using the fact that f?«* = q*B, it follows that (6.12)
holds with B replaced by 2. Consequently,

a2 1<1+¢2) 142
[ulgpz < (C2Cpk) a8 B~ [ulgzpe < (C2Cpi) INF B2/ BF 6% fufgye.

Iterating this process and recalling that fo* = q*, we infer that, for every m € N,
m L M osp—i
[ulgepm < (CZCH’K)ZJ'Q a BBy (6.13)
Sending m — oo in (6.13) and using Lemma 6.1, we obtain

oo < (C2CuK)"BY2Cs, (6.14)

1 .
where C3 =S, 9C, y; = %Z;’; é < 00, and y; = Z;’; é < 0o. Next, we will find some suitable

values of K and p such that the following inequality holds (C,C, k)" 3¥2C3 < K, or equivalently,

5 IR S
T+uK™* <GB 1 (KC)r.
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a1 Y2
Take K > 0 such that (KCg])ﬂ > Czﬁvf, and fix yy > 0 satisfying

1
(KC3 1) 1
Y2 1 KT*S'
Copp

< Ho <

Then, in view of (6.14), we see that (6.5) is satisfied, that is u = ., is a solution of (1.7). This
completes the proof of Theorem 1.2.
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