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Abstract. We study the multiplicity of concentrating solutions for the following class of (p, q)-
Laplacian problems:{

−∆pu − ∆qu + V(ε x)(up−1 + uq−1) = f(u) + γuq∗−1 in RN,

u ∈W1,p(RN) ∩W1,q(RN), u > 0 in RN,

where ε > 0 is a small parameter, γ ∈ {0, 1}, 1 < p < q < N, q∗ = Nq
N−q

is the critical Sobolev
exponent, ∆su = div(|∇u|s−2∇u), with s ∈ {p, q}, is the s-Laplacian operator, V : RN → R is a
positive continuous potential such that inf∂Λ V > infΛ V for some bounded open set Λ ⊂ RN, and
f : R → R is a continuous nonlinearity with subcritical growth. The main results are obtained by
combining minimax theorems, penalization technique and Ljusternik-Schnirelmann category theory.
We also provide a multiplicity result for a supercritical version of the above problem by combining
a truncation argument with a Moser-type iteration. As far as we know, all these results are new.

1. Introduction

In this paper we investigate the multiplicity and concentration phenomenon of positive solutions
for the following (p, q)-Laplacian problem:{

−∆pu− ∆qu+ V(ε x)(up−1 + uq−1) = f(u) + γuq
∗−1 in RN,

u ∈W1,p(RN) ∩W1,q(RN), u > 0 in RN,
(1.1)

where ε > 0 is a small parameter, γ ∈ {0, 1}, 1 < p < q < N, q∗ = Nq
N−q is the critical Sobolev

exponent, ∆su = div(|∇u|s−2∇u), with s ∈ {p, q}, is the s-Laplacian operator, the potential V :

RN → R and the nonlinearity f : R → R are continuous functions.
The problem (1.1) is related to the study of stationary solutions of reaction diffusion systems of

the form

ut = div[D(u)∇u] + c(x, u), D(u) = |∇u|p−2 + |∇u|q−2. (1.2)

This equation has a wide range of applications in physical and related sciences, e.g. in biophysics,
plasma physics, and chemical reaction design; see [14]. In such applications, the function u in (1.2)
describes a concentration, div[D(u)∇u] corresponds to the diffusion with a diffusion coefficient
D(u), and the reaction term c(x, u) relates to source and loss processes. Tipically, in chemical
and biological applications, the reaction term c(x, u) has a polynomial form with respect to the
concentration u. We refer to [6, 19, 24, 25, 27, 34–37] for some existence and multiplicity results for
(p, q)-Laplacian problems in bounded or unbounded domains. For completeness, we also observe
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that the functional associated to the (p, q)-Laplacian operator falls in the realm of the following
double-phase functional

Pp,q(u;Ω) =

∫
Ω

|∇u|p + a(x)|∇u|q dx

whereΩ ⊂ RN is an open set and a(x) ≥ 0, introduced by Zhikov [45] to provide models for strongly
anisotropic materials in the context of homogenization phenomena. We refer to [10, 16, 30–32] for
some remarkable regularity results for functionals with non-standard growth of (p, q)-type.

Note that, if p = q = 2, after rescaling, equation (1.1) reduces to the classical nonlinear
Schrödinger equation

− ε2∆u+ V(x)u = f(u) + γ|u|2
∗−2 in RN, (1.3)

for which several existence, multiplicity and concentration results of positive solutions have been
established by different authors, under suitable conditions on the potential V and the nonlinearity
f. In [39] Rabinowitz proved via a mountain pass argument, the existence of positive solutions of
(1.3) for small ε > 0 whenever

lim inf
|x|→∞ V(x) > inf

x∈RN
V(x). (1.4)

These solutions concentrate around the global minimum points of V when ε→ 0, as it was shown
by Wang [43]. Later, del Pino and Felmer [17], by introducing a penalization approach, proved a
localized version of the result of Rabinowitz and Wang. They assumed that V is a positive locally
Hölder-continuous function and that there exists a bounded open set Ω ⊂ RN such that

inf
Ω
V < inf

∂Ω
V. (1.5)

In [3], the authors studied the existence and the concentration behavior of positive bound-state
solutions to (1.3) with γ = 1 and assuming that V satisfies (1.5). Cingolani and Lazzo [15], under
the assumption (1.4), used Ljusternik-Schnirelmann theory to relate the multiplicity of solutions
for (1.3) with γ = 0, f(u) = |u|p−2u and p ∈ (2, 2NN−2), to the richness of the set of minimum points
of V. On the other hand, when p = q > 1 in (1.1), then we obtain the following class of p-Laplacian
equations:

− εp∆pu+ V(x)|u|p−2u = f(u) + γ|u|p
∗−2u in RN, (1.6)

which has been extensively considered in literature; see for instance [4, 5, 18, 21]. In particular,
inspired by [15], Alves and Figueiredo [5] proved a multiplicity result for (1.6) whenever γ = 0,
assuming that V satisfies (1.4) and that f is a C1-subcritical nonlinearity. Later, in [4] the authors
extended this result by assuming del Pino-Felmer type assumptions on V. These results have been
generalized in the critical case in [18,21]. Concerning the (p, q)-case, when γ = 0 and f ∈ C1 in (1.1),
the authors in [6] (see also [2]) generalized the multiplicity result in [5] under the assumption (1.4)
on V, while in [1] the authors dealt with a class of quasilinear problems including the (p, q)-case
under the condition (1.5) on V. More recently, the multiplicity result in [6] has been improved in [9]
by considering continuous nonlinearities. We also mention [8] in which a multiplicity result for a
class of subcritical fractional (p, q)-Laplacian problems is proved. We emphasize that in [1,2,6,8,9]
the authors focused only on the subcritical case (that is γ = 0).

Particularly motivated by [1, 2, 4–6, 8, 9, 18, 21], in the first part of this paper we are interested
in the multiplicity and concentration behavior as ε → 0 of positive solutions to (1.1), when we
assume a local condition on the potential V, f is merely continuous and γ ∈ {0, 1}. More precisely,
we suppose that V ∈ C(RN,R) satisfies the following conditions:
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(V1) there exists V0 > 0 such that V0 = infx∈RN V(x);
(V2) there exists an open bounded set Λ ⊂ RN such that

V0 < min
∂Λ
V and 0 ∈M = {x ∈ Λ : V(x) = V0}.

Concerning the nonlinearity f, we require that f ∈ C(R,R) fulfills the following hypotheses:
(f1) lim|t|→0 |f(t)|

|t|p−1 = 0;

(f2) when γ = 0, there exists ν ∈ (q, q∗) such that lim|t|→∞ |f(t)|
|t|ν−1 = 0;

(f ′2) when γ = 1, there exist σ1, σ2 ∈ (q, q∗) and λ > 1 such that

f(t) ≥ λtσ1−1 ∀t > 0, lim
|t|→∞

|f(t)|

|t|σ2−1
= 0;

(f3) there exists ϑ ∈ (q, q∗) such that 0 < ϑF(t) = ϑ
∫t
0 f(τ)dτ ≤ tf(t) for all t > 0;

(f4) the map t 7→ f(t)
tq−1 is increasing for t > 0.

Due to the fact that we look for positive solutions to (1.1), we assume that f(t) = 0 for t ≤ 0.
In order to make a precise statement let us recall that, for any closed subset Y of a topological

space X, the Ljusternik-Schnirelmann category of Y in X, catX(Y), stands for the least number of
closed and contractible sets in X which cover Y; see [44].

The main result of this work is stated in the following multiplicity and concentration property.

Theorem 1.1. Assume that 1 < p < q < N and that V satisfies (V1)-(V2). Let

Mδ = {x ∈ RN : dist(x,M) ≤ δ}.

• When γ = 0, we suppose that f satisfies (f1), (f2), (f3), (f4). Then, for any δ > 0 such
that Mδ ⊂ Λ, there exists εδ > 0 such that, for any ε ∈ (0, εδ), problem (1.1) has at
least catMδ

(M) positive solutions.
• When γ = 1, we suppose that f satisfies (f1), (f ′2), (f3), (f4). Then there exists λ∗ > 1

such that, for any λ ≥ λ∗ and for any δ > 0 such that Mδ ⊂ Λ, there exists εδ,λ > 0
such that, for any ε ∈ (0, εδ,λ), problem (1.1) has at least catMδ

(M) positive solutions.

Moreover, if uε denotes one of these solutions and xε ∈ RN is a global maximum point of uε,
then

lim
ε→0V(ε xε) = V0,

and there exist C1, C2 > 0 such that

uε(x) ≤ C1e−C2|x−xε| ∀x ∈ RN.

The proof of Theorem 1.1 will be obtained by combining suitable variational and topological
arguments inspired by [1,6, 8, 9, 17,22]. Concerning our variational approach, as in [17], we modify
in a convenient way the nonlinearity outside of the set Λ and we consider an auxiliary problem.
The main feature of the corresponding modified energy functional Jε is that it satisfies all the
assumptions of the mountain-pass theorem [7]. Note that in the critical case, we assume λ sufficiently
large in order to obtain an upper bound for the mountain-pass level cε. Indeed, differently from the
critical problems considered in [12,18,21], we can not use cut-off functions of the extremal functions
for the best constant in the Sobolev inequality, because the lack of homogenity of the (p, q)-
Laplacian operator does not permit to use this trick. To circumvent this obstacle, we use a different
strategy inspired by [19]; see Lemma 2.3. The estimate for cε combined with the concentration-
compactness principle of Lions [28,29] will play a fundamental role in proving a local Palais-Smale
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condition for Jε; see Lemma 2.5. To obtain multiple solutions for the modified problem, we use
a technique due to Benci and Cerami [11] based on precise comparisons between the category of
some sublevel sets of Jε and the category of the set M. We emphasize that f is merely continuous,
so standard C1-Nehari manifold arguments as in [1, 2, 4–6] do not work in our setting because the
Nehari manifold associated with Jε is non-differentiable. For this reason, motivated by [8,9,22], we
use some variants of critical point theorems established in [41]. Clearly, the lack of homogeneity
caused by the (p, q)-Laplacian operators combined with the presence of the critical exponent make
our analysis more delicate and intriguing with respect to the above mentioned works, and some
refined estimates will be carried out to implement our variational machinery. Finally, we need to
show that, for ε > 0 small enough, the solutions of the modified problem are indeed solutions of the
original one. Since we deal with a general class of quasilinear operators, a standard Moser iteration
procedure [33] as in [3–6,18] does not work well, and then we use an appropriate De Giorgi iteration
argument inspired by [1,2,23,26]. We also verify that our solutions decay exponentially at infinity
by means of a comparison argument.

In the second part of this paper, we consider a supercritical version of problem (1.1). In this
case, we deal with the sum of two homogeneous nonlinearities and add a new positive parameter
µ. More precisely, we consider the following problem:{

−∆pu− ∆qu+ V(ε x)(up−1 + uq−1) = us−1 + µuτ−1 in RN,
u ∈W1,p(RN) ∩W1,q(RN), u > 0 in RN,

(1.7)

where ε, µ > 0 and 1 < p < q < s < q∗ < τ. Our multiplicity result for the supercritical case can
be stated as follows.

Theorem 1.2. Assume that (V1)-(V2) hold. Then there exists µ0 > 0 such that, for any for
any µ ∈ (0, µ0) and for any δ > 0 satisfying Mδ ⊂ Λ, there exists εδ,µ > 0 such that, for any
ε ∈ (0, εδ,µ), problem (1.7) has at least catMδ

(M) positive solutions. Moreover, if uε denotes
one of these solutions and xε ∈ RN is a global maximum point of uε, then

lim
ε→0V(ε xε) = V0.

The main difficulty in the study of (1.7) is due to the fact that τ > q∗ is supercritical, and we
cannot directly use variational techniques because the corresponding functional is not well-defined
on the space W1,p(RN) ∩W1,q(RN). In order to overcome this obstacle, we use some arguments
inspired by [13,20,38] which can be summarized as follows. We first truncate in a suitable way the
nonlinearity on the right hand side of (1.7), so we deal with a new problem but with subcritical
growth. In the light of Theorem 1.1, we know that a multiplicity result for this truncated problem
is available. Then we deduce a priori bound (independent of µ) for these solutions and by using an
appropriate Moser iteration technique [33], we show that, for µ > 0 sufficiently small, the solutions
of the truncated problem also solve the original one. We would like to point out that, since the
hypotheses on V and f are different from [1,2,4–6], our arguments are totally distinct, and improve
the previous results for the (p, q)-case because here we obtain multiplicity results for subcritical,
critical and supercritical (p, q)-problems involving continuous nonlinearities and imposing a local
condition on the potential V. Moreover, we believe that the ideas contained here can be applied
in other situations to study problems driven by more general quasilinear operators, under local
conditions on the potential V and the non-differentiability of the nonlinearity f.
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An outline of the paper is as follows. In Section 2, we study the modified problem. In Section 3
we analyze the limiting problem associated with (1.1) and we introduce some tools needed to obtain
a multiplicity result for the auxiliary problem. The Section 4 is devoted to the proof of Theorem
1.1. In the last section we deal with the supercritical problem (1.7).

Notations: Let p ∈ [1,∞] and A ⊂ RN be a measurable set. We will use | · |Lp(A) for the norm
in Lp(A), and | · |p when A = RN. By S∗ = S∗(N,q) > 0 we will denote the best constant in the
Sobolev inequality related to the continuous embedding D1,q(RN) ↪→ Lq

∗
(RN).

2. The modified problem

We use a del Pino-Felmer penalization type approach [17] to deal with problem (1.1). Take
K > q

p > 1 and a > 0 such that f(a) + γaq
∗−1 = V0

K a
q−1. We define

f̃(t) =

{
f(t) + γ(t+)q

∗−1 if t ≤ a,
V0
K t

q−1 if t > a,

and
g(x, t) = χΛ(x)(f(t) + γ(t

+)q
∗−1) + (1− χΛ(x))f̃(t) for (x, t) ∈ RN × R.

where χA denotes the characteristic function ofA ⊂ RN. By (f1)-(f4), we deduce that g : RN×R → R
is a Carathéodory function and it fulfills the following assumptions:
(g1) limt→0 g(x,t)tp−1 = 0 uniformly with respect to x ∈ RN,
(g2) g(x, t) ≤ f(t) + γtq

∗−1 for all x ∈ RN and t > 0,
(g3) (i) 0 < ϑG(x, t) ≤ g(x, t)t for all x ∈ Λ and t > 0,

(ii) 0 < qG(x, t) ≤ g(x, t)t ≤ V0
K t

q for all x ∈ Λc and t > 0,
(g4) for each x ∈ RN the function t 7→ g(x,t)

tq−1 is increasing in (0,∞).
Let us introduce the following auxiliary problem:{

−∆pu− ∆qu+ V(ε x)(up−1 + uq−1) = g(ε x, u) in RN,
u ∈W1,p(RN) ∩W1,q(RN), u > 0 in RN.

(2.1)

We observe that if uε is a solution to (2.1) such that uε(x) ≤ a for all x ∈ Λcε, where Λε = {x ∈
RN : ε x ∈ Λ}, then uε is also a solution to (1.1). Then we consider the functional Jε : Xε → R
associated to (2.1), that is

Jε(u) =
1

p
∥u∥pVε,p +

1

q
∥u∥qVε,q −

∫
RN

G(ε x, u)dx,

where the space

Xε =
{
u ∈W1,p(RN) ∩W1,q(RN) :

∫
RN

V(ε x) (|u|p + |u|q) dx <∞}
is endowed with the norm

∥u∥Xε = ∥u∥Vε,p + ∥u∥Vε,q,

and

∥u∥Vε,t =
(
|∇u|tt +

∫
RN

V(ε x)|u|t dx

) 1
t

∀t ∈ {p, q}.



6 V. AMBROSIO AND V.D. RĂDULESCU

For t ∈ {p, q}, we set

⟨u,φ⟩Vε,t =
∫
RN

|∇u|t−2∇u · ∇φdx+
∫
RN

V(ε x)|u|t−2uφdx ∀u,φ ∈ YV0 .

Clearly, Jε ∈ C1(Xε,R) and it holds

⟨J ′
ε (u), φ⟩ = ⟨u,φ⟩Vε,p + ⟨u,φ⟩Vε,q −

∫
RN

g(ε x, u)φdx

for any u,φ ∈ Xε. We denote by Nε the Nehari manifold associated with Jε, namely

Nε = {u ∈ Xε \ {0} : ⟨J ′
ε (u), u⟩ = 0},

and we set cε = infu∈Nε Jε(u). Let X+
ε = {u ∈ Xε : |supp(u+) ∩ Λε| > 0} and S+ε = Sε ∩ X+

ε , where
Sε = {u ∈ Xε : ∥u∥Xε = 1}. Note that S+ε is an incomplete C1,1-manifold of codimension one. Hence,
Xε = TuS+ε ⊕ Ru for all u ∈ S+ε , where

TuS+ε = {v ∈ Xε : ⟨u, v⟩Vε,p + ⟨u, v⟩Vε,q = 0} .

The next lemma shows that Jε possesses a mountain pass geometry [7].

Lemma 2.1. The functional Jε has the following properties:
(i) There exist α, ρ > 0 such that Jε(u) ≥ α for ∥u∥Xε = ρ.
(ii) There exists e ∈ Xε with ∥e∥Xε > ρ and Jε(e) < 0.

Proof. (i) Fix ζ ∈ (0, V0). Using (g2), (f1), (f2) and (f ′2), we can find Cζ > 0 such that

|g(x, t)| ≤ ζ|t|p−1 + Cζ|t|q
∗−1 ∀(x, t) ∈ RN × R. (2.2)

Consequently,

Jε(u) ≥
1

p
∥u∥pVε,p +

1

q
∥u∥qVε,q −

ζ

p
|u|pp −

Cζ
q∗

|u|
q∗

q∗ ≥ C1∥u∥pVε,p +
1

q
∥u∥qVε,q −

Cζ
q∗

|u|
q∗

q∗ .

Choosing ∥u∥Xε = ρ ∈ (0, 1) and using 1 < p < q, we have ∥u∥Vε,p < 1 and thus ∥u∥pVε,p ≥ ∥u∥qVε,p.
Recalling that at + bt ≥ Ct(a + b)t for all a, b ≥ 0 and t > 1, and using the Sobolev embedding
W1,r(RN) ↪→ Lκ(RN) for κ ∈ [r, r∗], we find

Jε(u) ≥ C2∥u∥qXε
−
Cζ
q∗

|u|
q∗

q∗ ≥ C2∥u∥qXε
− C3∥u∥q

∗

Xε
.

Then there exists α > 0 such that Jε(u) ≥ α for ∥u∥Xε = ρ.
(ii) Fix φ ∈ C∞

c (RN) such that φ ≥ 0, φ ̸≡ 0 and supp(φ) ⊂ Λε. By (f3) we deduce that
F(t) ≥ Atϑ − B for all t > 0. Then, for all t > 0, we have

Jε(tφ) ≤
tp

p
∥φ∥pVε,p +

tq

q
∥φ∥qVε,q −At

ϑ

∫
Λε

(φ)ϑ dx+ B|supp(φ) ∩Λε| → −∞ as t→ ∞
thanks to ϑ > q > p. Then we take e = tφ with t > 0 sufficiently large. □

The next two results are very useful since they allow us to overcome the non-differentiability of
Nε and the incompleteness of S+ε .

Lemma 2.2. The following properties hold:
(i) For each u ∈ X+

ε , let hu : R+ → R be defined by hu(t) = Jε(tu). Then, there is a unique
tu > 0 such that h ′

u(t) > 0 for all t ∈ (0, tu) and h ′
u(t) < 0 for all t ∈ (tu,∞).

(ii) There exists τ > 0 independent of u such that tu ≥ τ for any u ∈ S+ε . Moreover, for each
compact set K ⊂ S+ε , there is a positive constant CK such that tu ≤ CK for any u ∈ K.



NONLINEAR (p, q)-SCHRÖDINGER EQUATIONS WITH LACK OF COMPACTNESS 7

(iii) The map m̂ε : X+
ε → Nε given by m̂ε(u) = tuu is continuous and mε = m̂ε|S+ε is a

homeomorphism between S+ε and Nε. Moreover, m−1
ε (u) = u

∥u∥Xε
.

(iv) If there is a sequence {un}n∈N ⊂ S+ε such that dist(un, ∂S+ε ) → 0 then ∥mε(un)∥Xε → ∞
and Jε(mε(un)) → ∞.

Proof. (i) From the proof of Lemma 2.1, we see that hu(0) = 0, hu(t) > 0 for t > 0 small enough
and hu(t) < 0 for t > 0 sufficiently large. Then there exists a global maximum point tu > 0 for hu
in [0,∞) such that h ′

u(tu) = 0 and tuu ∈ Nε. We claim that tu > 0 is unique. Let t1, t2 > 0 be
such that h ′

u(t1) = h
′
u(t2) = 0. Consequently,(
1

t
q−p
1

−
1

t
q−p
2

)
∥u∥pVε,p =

∫
RN

(
g(ε x, t1u)

(t1u)q−1
−
g(ε x, t2u)

(t2u)q−1

)
uqdx,

which combined with (g4) and q > p yields t1 = t2.
(ii) Let u ∈ S+ε . Using (i), we can find tu > 0 such that h ′

u(tu) = 0, that is

tp−1u ∥u∥pVε,p + t
q−1
u ∥u∥qVε,q =

∫
RN

g(ε x, tuu)udx.

Fix ξ > 0. By (g2), (f1), (f2), (f ′2) and the Sobolev embedding W1,r(RN) ↪→ Lκ(RN) for κ ∈ [r, r∗],
we have

tp−1u ∥u∥pVε,p + t
q−1
u ∥u∥qVε,q ≤

∫
R3

g(ε x, tuu)udx ≤ ξtp−1u ∥u∥pVε,p + Cξt
q∗−1
u ∥u∥q

∗

Vε,q
.

Taking ξ > 0 sufficiently small and recalling that 1 = ∥u∥Xε ≥ ∥u∥Vε,q, we find

Ctp−1u ∥u∥pVε,p + t
q−1
u ∥u∥qVε,q ≤ Ctq∗−1u ∥u∥q

∗

Vε,q
≤ Ctq∗−1u .

Now, if tu ≤ 1, then tq−1u ≤ t
p−1
u , and using the facts that 1 = ∥u∥Xε ≥ ∥u∥Vε,p and q > p imply

that ∥u∥pVε,p ≥ ∥u∥qVε,p, we can see that

Ctq−1u = Ctq−1u ∥u∥qXε
≤ tq−1u (C∥u∥qVε,p + ∥u∥qVε,q) ≤ t

q−1
u (C∥u∥pVε,p + ∥u∥qVε,q) ≤ Ct

q∗−1
u .

Thanks to q∗ > q, we can find τ > 0, independent of u, such that tu ≥ τ.
When tu > 1, then t

q−1
u > t

p−1
u , and noting that 1 = ∥u∥Xε ≥ ∥u∥Vε,p and q > p imply

∥u∥pVε,p ≥ ∥u∥qVε,p, we obtain

Ctp−1u = Ctp−1u ∥u∥qXε
≤ tp−1u (C∥u∥qVε,p + ∥u∥qVε,q) ≤ t

p−1
u (C∥u∥pVε,p + ∥u∥qVε,q) ≤ Ct

q∗−1
u .

Since q∗ > q > p, there exists τ > 0, independent of u, such that tu ≥ τ.
Now, let K ⊂ S+ε be a compact set, and assume by contradiction that there exists a sequence
{un}n∈N ⊂ K such that tn = tun → ∞. Then there exists u ∈ K such that un → u in Xε. From (ii)

of Lemma 2.1, we have that
Jε(tnun) → −∞. (2.3)

On the other hand, if v ∈ Nε, by ⟨J ′
ε (v), v⟩ = 0 and (g3), we have that

Jε(v) = Jε(v) −
1

ϑ
⟨J ′
ε (v), v⟩ ≥ C̃(∥v∥

p
Vε,p

+ ∥v∥qVε,q).

Taking vn = tunun ∈ Nε in the above inequality, we find

Jε(tnun) ≥ C̃(∥vn∥pVε,p + ∥vn∥qVε,q).

Since ∥vn∥Xε = tn → ∞ and ∥vn∥Xε = ∥vn∥Vε,p + ∥vn∥Vε,q, we can use (2.3) to get a contradiction.
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(iii) Let us observe that m̂ε, mε and m−1
ε are well defined. Indeed, by (i), for each u ∈ X+

ε

there is a unique m̂ε(u) ∈ Nε. On the other hand, if u ∈ Nε then u ∈ X+
ε . Otherwise, we have

| supp(u+) ∩Λε| = 0, and by (g3)-(ii) we deduce that

∥u∥pVε,p + ∥u∥qVε,q =

∫
RN

g(ε x, u)udx =

∫
Λc

ε

g(ε x, u+)u+ dx

≤ 1

K

∫
Λc

ε

V(ε x)|u|q dx ≤ 1

K
∥u∥qVε,q, (2.4)

which is impossible since K > 1 and u ̸= 0. Therefore, m−1
ε (u) = u

∥u∥Xε
∈ S+ε is well defined and

continuous. From u ∈ S+ε

m−1
ε (mε(u)) = m

−1
ε (tuu) =

tuu

∥tuu∥Xε

=
u

∥u∥Xε

= u

we infer that mε is a bijection. To prove that m̂ε : X+
ε → Nε is continuous, let {un}n∈N ⊂ X+

ε

and u ∈ X+
ε such that un → u in Xε. Since m̂(tu) = m̂(u) for all t > 0, we may assume that

∥un∥Xε = ∥u∥Xε = 1 for all n ∈ N. By (ii), there exists t0 > 0 such that tn = tun → t0. Using
tnun ∈ Nε, that is

tpn∥un∥
p
Vε,p

+ tqn∥un∥
q
Vε,q

=

∫
RN

g(ε x, tnun) tnun dx,

and passing to the limit as n→ ∞ we obtain

t
p
0∥u∥

p
Vε,p

+ tq0∥u∥
q
Vε,q

=

∫
RN

g(ε x, t0u) t0udx,

which means that t0u ∈ Nε. From (i), tu = t0 and this means that m̂ε(un) → m̂ε(u) in X+
ε . Thus,

m̂ε and mε are continuous maps.
(iv) Let {un}n∈N ⊂ S+ε be a sequence such that dist(un, ∂S+ε ) → 0. Then for each v ∈ ∂S+ε and
n ∈ N, we have u+n ≤ |un − v| a.e. in Λε. Therefore, by (V1), (V2) and Sobolev embedding, we can
see that for each r ∈ [p, q∗] there exists Cr > 0 such that

|u+n |Lr(Λε) ≤ inf
v∈∂S+ε

|un − v|Lr(Λε) ≤ Cr inf
v∈∂S+ε

∥un − v∥Xε ∀n ∈ N.

By virtue of (g2), (f1), (f2), (f ′2), (g3)-(ii), and q > p, we get, for all t > 0,∫
RN

G(ε x, tun)dx =

∫
Λc

ε

G(ε x, tun)dx+

∫
Λε

G(ε x, tun)dx

≤ V0
Kq

∫
Λc

ε

tq|un|
q dx+

∫
Λε

(
F(tun) +

γ

q∗
(tu+n)

q∗
)
dx

≤ tq

Kp

∫
RN

V(ε x)|un|
q dx+ C1t

p

∫
Λε

(u+n)
pdx+ C2t

q∗
∫
Λε

(u+n)
q∗dx

≤ tq

Kp

∫
RN

V(ε x)|un|
q dx+ C ′

pt
pdist(un, ∂S+ε )p + C ′

νt
q∗dist(un, ∂S+ε )q

∗
.

Therefore, ∫
RN

G(ε x, tun)dx ≤
tq

Kp

∫
RN

V(ε x)|un|
q dx+ on(1). (2.5)
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Now, we note that K > q
p > 1, and that 1 = ∥un∥Xε ≥ ∥un∥Vε,p implies that ∥un∥pVε,p ≥ ∥un∥qVε,p.

Then, for all t > 1, we obtain that
tp

p
∥un∥pVε,p +

tq

q
∥un∥qVε,q −

tq

Kp

∫
RN

V(ε x)|un|
q dx

=
tp

p
∥un∥pVε,p +

tq

q
|∇un|qq + tq

(
1

q
−
1

Kp

) ∫
RN

V(ε x)|un|
q dx

≥ C1tp∥un∥pVε,p + C2t
q∥un∥qVε,q

≥ C1tp∥un∥qVε,p + C2t
q∥un∥qVε,q

≥ C1tp∥un∥qVε,p + C2t
p∥un∥qVε,q

≥ C3tp(∥un∥Vε,p + ∥un∥Vε,q)q = C3t
p.

(2.6)

Bearing in mind the definition of mε(un) and using (2.5), (2.6), we find

lim inf
n→∞ Jε(mε(un)) ≥ lim inf

n→∞ Jε(tun) ≥ C3tp ∀t > 1,

which yields

lim inf
n→∞

{
1

p
∥mε(un)∥pVε,p +

1

q
∥mε(un)∥qVε,q

}
≥ lim inf

n→∞ Jε(mε(un)) ≥ C3tp ∀t > 1.

By sending t→ ∞, we get ∥mε(un)∥Xε → ∞ and Jε(mε(un)) → ∞ as n→ ∞. This completes the
proof of the lemma. □

Remark 2.1. There exists κ > 0, independent of ε, such that ∥u∥Xε ≥ κ for all u ∈ Nε. Indeed,
if u ∈ Nε, we can use (g2), (f1), (f2), (f ′2) and the Sobolev embeddings to see that

∥u∥pVε,p + ∥u∥qVε,q =

∫
RN

g(ε x, u)udx ≤ ζ|u|pp + Cζ|u|
q∗

q∗ ≤ ζ

V0
∥u∥pVε,p + C

′
ζ∥u∥

q∗

Vε,q
.

Choosing ζ ∈ (0, V0) we find ∥u∥Vε,q ≥ κ = (C ′
ζ)

− 1
q∗−q which implies that ∥u∥Xε ≥ ∥u∥Vε,q ≥ κ.

Now we define the maps ψ̂ε : X+
ε → R and ψε : S+ε → R given by by ψ̂ε(u) = Jε(m̂ε(u)) and

ψε = ψ̂ε|S+ε , respectively. From Lemma 2.2 and arguing as in the proofs of Proposition 9 and
Corollary 10 in [41], we may obtain the following result.

Proposition 2.1. The following properties hold:
(a) ψ̂ε ∈ C1(X+

ε ,R) and

⟨ψ̂ ′
ε(u), v⟩ =

∥m̂ε(u)∥Xε

∥u∥Xε

⟨J ′
ε (m̂ε(u)), v⟩ ∀u ∈ X+

ε , ∀v ∈ Xε.

(b) ψε ∈ C1(S+ε ,R) and

⟨ψ ′
ε(u), v⟩ = ∥mε(u)∥Xε⟨J ′

ε (mε(u)), v⟩ ∀v ∈ TuS+ε .

(c) If {un}n∈N is a (PS)c sequence for ψε, then {mε(un)}n∈N is a (PS)c sequence for Jε. If
{un}n∈N ⊂ Nε is a bounded (PS)c sequence for Jε, then {m−1

ε (un)}n∈N is a (PS)c sequence
for ψε.

(d) u is a critical point of ψε if, and only if, mε(u) is a critical point for Jε. Moreover, the
corresponding critical values coincide and

inf
u∈S+ε

ψε(u) = inf
u∈Nε

Jε(u).
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Remark 2.2. As in [41], we have the following variational characterization of the infimum
of Jε over Nε:

cε = inf
u∈Nε

Jε(u) = inf
u∈X+

ε

max
t>0

Jε(tu) = inf
u∈S+ε

max
t>0

Jε(tu) > 0.

Moreover, if c ′ε = infγ∈Γε maxt∈[0,1] Jε(γ(t)), where Γε = {γ ∈ C([0, 1],Xε) : γ(0) = 0 and
Jε(γ(1)) < 0}, then we can argue as in [17,39,44] to verify that cε = c ′ε.

Next we prove a very useful upper bound for the minimax level cε for the case γ = 1.

Lemma 2.3. Let γ = 1. Then it holds 0 < cε < 1
NS

N
q
∗ .

Proof. The proof is inspired by an argument found in the proof of Lemma 2.2 in [19]. For simplicity,
we take ε = 1 and we use the notations J1 = J , X1 = X, Λ1 = Λ, c1 = c, Γ1 = Γ . Let e ∈ X be the
function given in Lemma 2.1-(ii). Note that supp(e) ⊂ Λ, e ≥ 0 and e ̸≡ 0 in RN. Accordingly,
⟨J ′(tλe), tλe⟩ = 0, that is

t
p
λ∥e∥

p
V1,p

+ tqλ∥e∥
q
V1,q

=

∫
Λ

f(tλe)tλe dx+ t
q∗

λ |e|
q∗

Lq
∗
(Λ)

(2.7)

which combined with (f ′2) yields tpλ∥e∥
p
V1,p

+ tqλ∥e∥
q
V1,q

≥ t
q∗

λ |e|
q∗

Lq
∗
(Λ)

. Since p < q < q∗, we can
infer that tλ is bounded and that there exists a sequence λn → ∞ such that tλn → t0 ≥ 0. Let us
observe that if t0 > 0 then we have

t
p
λn
∥e∥pV1,p + t

q
λn
∥e∥qV1,q → L ∈ (0,∞),

and ∫
Λ

f(tλne)tλne dx+ t
q∗

λn
|e|
q∗

Lq
∗
(Λ)

≥ λn
∫
Λ

(tλne)
σ1 dx+ tq

∗

λn
|e|
q∗

Lq
∗
(Λ)

→ ∞,
which gives a contradiction in view of (2.7). Therefore, t0 = 0. Let us now define γ(t) = te with
t ∈ [0, 1]. Then, γ ∈ Γ and we get

0 < c ≤ max
t∈[0,1]

J (te) = J (tλe) ≤ tpλ∥e∥
p
V1,p

+ tqλ∥e∥
q
V1,q

. (2.8)

Taking λ sufficiently large, we obtain that

t
p
λ∥e∥

p
V1,p

+ tqλ∥e∥
q
V1,q

<
1

N
S

N
q
∗ ,

hence 0 < c < 1
NS

N
q
∗ . Moreover, since tλ → 0 as λ → ∞, it follows from (2.8) that c → 0 as

λ→ ∞. □

The main feature of the modified functional is that it satisfies a compactness condition. We start
by proving the boundedness of Palais-Smale sequences.

Lemma 2.4. Let {un}n∈N ⊂ Xε be a (PS)c sequence for Jε at the level c. Then {un}n∈N is
bounded in Xε.
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Proof. From (g3) and ϑ > q > p, we have that

C(1+ ∥un∥ε) ≥ Jε(un) −
1

ϑ
⟨J ′
ε (un), un⟩

=

(
1

p
−
1

ϑ

)
∥un∥pVε,p +

(
1

q
−
1

ϑ

)
∥un∥qVε,q +

1

ϑ

∫
Λc

ε

(g(ε x, un)un − ϑG(ε x, un)) dx

+
1

ϑ

∫
Λε

(g(ε x, un)un − ϑG(ε x, un)) dx

≥
(
1

q
−
1

ϑ

)(
∥un∥pVε,p + ∥un∥qVε,q

)
−

(
1

q
−
1

ϑ

)
1

K

∫
Λc

ε

V(ε x)(|un|
p + |un|

q)dx

≥
(
1

q
−
1

ϑ

)(
1−

1

K

)
(∥un∥pVε,p + ∥un∥qVε,q) = C̃(∥un∥

p
Vε,p

+ ∥un∥qVε,q),

where C̃ > 0 since K > 1.
Now, we assume by contradiction that ∥un∥Xε → ∞ and consider the following cases.

Case 1 ∥un∥Vε,p → ∞ and ∥un∥Vε,q → ∞. Then, for n large, we have ∥un∥q−pVε,q
≥ 1, that is

∥un∥qVε,q ≥ ∥un∥pVε,q. Therefore,

C0(1+ ∥un∥Xε) ≥ C̃(∥un∥
p
Vε,p

+ ∥un∥pVε,q) ≥ C1(∥un∥Vε,p + ∥un∥Vε,q)p = C1∥un∥
p
Xε

that is an absurd.
Case 2 ∥un∥Vε,p → ∞ and ∥un∥Vε,q is bounded. We have

C0(1+ ∥un∥Vε,p + ∥un∥Vε,q) = C0(1+ ∥un∥Xε) ≥ C̃∥un∥
p
Vε,p

and consequently

C0

(
1

∥un∥pVε,p
+

1

∥un∥p−1Vε,p

+
∥un∥Vε,q
∥un∥pVε,p

)
≥ C̃.

Since p > 1 and passing to the limit as n→ ∞, we obtain 0 < C̃ ≤ 0 which is impossible.
Case 3 ∥un∥Vε,q → ∞ and ∥un∥Vε,p is bounded. This is similar to the case 2, so we omit the
details. Consequently, {un}n∈N is bounded in Xε. □

Remark 2.3. We may always assume that any (PS) sequence {un}n∈N of Jε is nonnegative. In
fact, by using ⟨J ′

ε (un), un⟩ = on(1), where u−n = min{un, 0}, and g(x, t) = 0 for t ≤ 0, we have
that ⟨un, u−n⟩ε,p + ⟨un, u−n⟩ε,q = on(1) from which ∥u−n∥

p
Vε,p

+ ∥u−n∥
q
Vε,q

= on(1), that is u−n → 0

in Xε. Moreover, {u+n } is bounded in Xε. Clearly, ∥un∥Vε,t = ∥u+n∥Vε,t + on(1) for t ∈ {p, q}.
Thus, we can easily check that Jε(un) = Jε(u+n) + on(1) and J ′

ε (un) = J ′
ε (u

+
n) + on(1), so we

get Jε(u+n) → c and J ′
ε (u

+
n) = on(1).

Lemma 2.5. Jε satisfies the Palais-Smale condition at any level c ∈ R if γ = 0, and at any

level c < 1
NS

N
q
∗ if γ = 1.

Proof. Let {un}n∈N ⊂ Xε be a (PS)c sequence for Jε. In view of Lemma 2.4, we may assume that
un ⇀ u in Xε and un → u in Lrloc(RN) for all r ∈ [1, q∗). It is standard to verify that the weak
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limit u is a critical point of Jε. Indeed, taking into account that for all ϕ ∈ C∞
c (RN)∫

RN

|∇un|t−2∇un · ∇ϕdx→ ∫
RN

|∇u|t−2∇u · ∇ϕdx, ∀t ∈ {p, q},∫
RN

V(ε x)|un|
t−2unϕdx→ ∫

RN

V(ε x)|u|t−2uϕdx, ∀t ∈ {p, q},∫
RN

g(ε x, un)ϕdx→ ∫
RN

g(ε x, u)ϕdx,

and that ⟨J ′
ε (un), ϕ⟩ = on(1), we can deduce that ⟨J ′

ε (u), ϕ⟩ = 0 for any ϕ ∈ C∞
c (RN). By the

density of C∞
c (RN) in Xε, we obtain that u is a critical point of Jε. In particular, ⟨J ′

ε (u), u⟩ = 0.
Now, we show that for any η > 0 there exists R = R(η) > 0 such that

lim sup
n→∞

∫
BcR(0)

(|∇un|p + |∇un|q + V(ε x)(|un|p + |un|
q)) dx < η. (2.9)

For R > 0, let ψR ∈ C∞(RN) be such that 0 ≤ ψR ≤ 1, ψR = 0 in BR
2
(0), ψR = 1 in BcR(0), and

|∇ψR| ≤ C
R , for some constant C > 0 independent of R. Since {ψRun}n∈N is bounded in Xε, it follows

that ⟨J ′
ε (un), ψRun⟩ = on(1), namely∫

RN

|∇un|pψR dx+
∫
RN

|∇un|qψR dx+
∫
RN

V(ε x)|un|
pψR dx+

∫
RN

V(ε x)|un|
qψR dx

= on(1) +

∫
RN

g(ε x, un)ψRun dx−

∫
RN

|∇un|p−2∇un · ∇ψRun dx−
∫
RN

|∇un|q−2∇un · ∇ψRun dx.

Take R > 0 such that Λε ⊂ BR
2
(0). From the definition of ψR and (g3)-(ii), we see that∫

BcR(0)
|∇un|p dx+

∫
BcR(0)

|∇un|q dx+
(
1−

1

K

) ∫
BcR(0)

V(ε x)(|un|
p + |un|

q)dx

≤
∫
RN

|∇un|pψR dx+
∫
RN

|∇un|qψR dx+
(
1−

1

K

) ∫
RN

V(ε x)(|un|
p + |un|

q)ψR dx

≤ on(1) −
∫
RN

|∇un|p−2∇un · ∇ψRun dx−
∫
RN

|∇un|q−2∇un · ∇ψRun dx.

(2.10)

Now, using the Hölder inequality and the boundedness of {un}n∈N in Xε, we have, for t ∈ {p, q},∣∣∣∣∫
RN

|∇un|t−2∇un · ∇ψRun dx
∣∣∣∣ ≤ C

R
|∇un|t−1t |un|t ≤

C

R
.

which combined with (2.10) implies that∫
BcR(0)

|∇un|p dx+
∫
BcR(0)

|∇un|q dx+
(
1−

1

K

) ∫
BcR(0)

V(ε x)(|un|
p + |un|

q)dx

≤
∫
RN

|∇un|pψR dx+
∫
RN

|∇un|qψR dx+
(
1−

1

K

) ∫
RN

V(ε x)(|un|
p + |un|

q)ψR dx (2.11)

≤ on(1) +
C

R
.

Consequently,

lim sup
n→∞

(∫
BcR(0)

|∇un|p dx+
∫
BcR(0)

|∇un|q dx+
(
1−

1

K

) ∫
BcR(0)

V(ε x)(|un|
p + |un|

q)dx

)
≤ C

R
< η
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provided that R = R(η) > C
η . This proves the assertion (2.9). Next we show that (2.9) is useful to

infer that un → u in Lr(RN) for any r ∈ [p, q∗). Fixed η > 0 we can find R = R(η) > 0 such that
(2.9) holds true. Using the compact embedding W1,p(RN) ⋐ Lploc(R

N), we deduce that

lim sup
n→∞ |un − u|

p
p = lim sup

n→∞ [|un − u|
p
Lp(BR(0))

+ |un − u|
p
Lp(BcR(0))

]

= lim
n→∞ |un − u|

p
Lp(BR(0))

+ lim sup
n→∞ |un − u|

p
Lp(BcR(0))

≤ 2p−1 lim sup
n→∞ (|un|

p
Lp(BcR(0))

+ |u|
p
Lp(BcR(0))

)

≤ 2p−1

V0
lim sup
n→∞

(∫
BcR(0)

(|∇un|p + V(ε x)|un|p) dx+
∫
BcR(0)

(|∇u|p + V(ε x)|u|p) dx

)

<
2p

V0
η = κη.

The arbitrariness of η implies the strong convergence in Lp-norm. By interpolation, we can see that
un → u in Lr(RN) for any r ∈ [p, q∗).
Now, in order to prove the strong convergence in Xε, we distinguish two cases. First, we assume
that γ = 0. Then, from (f1), (f2) and (g2), we have that∫

RN

g(ε x, un)un dx→ ∫
RN

g(ε x, u)udx. (2.12)

On the other hand, using ⟨J ′
ε (un), un⟩ = on(1) and ⟨J ′

ε (u), u⟩ = 0, we have

∥un∥pVε,p + ∥un∥qVε,q =

∫
RN

g(ε x, un)un dx+ on(1) and ∥u∥pVε,p + ∥u∥qVε,q =

∫
RN

g(ε x, u)udx.

Putting together the above relations with (2.12), we find

∥un∥pVε,p + ∥un∥qVε,q = ∥u∥pVε,p + ∥u∥qVε,q + on(1).

Since the Brezis-Lieb lemma gives

∥un − u∥pVε,p = ∥un∥pVε,p − ∥u∥pVε,p + on(1) and ∥un − u∥qVε,q = ∥un∥qVε,q − ∥u∥qVε,q + on(1),

we can infer that ∥un − u∥pVε,p + ∥un − u∥qVε,q = on(1). This fact implies that un → u in Xε as
n→ ∞.

Second, we consider the case γ = 1. The main difference with respect to the previous case, is
that we cannot directly prove that (2.12) holds due to the presence of the critical exponent. For
this reason, a more accurate analysis is needed.

Note that the Sobolev inequality, 0 ≤ ψR ≤ 1, |∇ψR| ≤ C
R , (2.11) and the boundedness of {un}n∈N

in Lq(RN) yield

|un|
q

Lq
∗
(BcR(0))

≤ |unψR|
q
q∗ ≤ C|∇(unψR)|

q
q ≤ C

(∫
RN

|∇un|qψR dx+
∫
RN

|un|
q|∇ψR|q dx

)
≤ on(1) +

C

R
+
C

Rq
.

Consequently,

lim
R→∞ lim sup

n→∞ |un|
q

Lq
∗
(BcR(0))

= 0. (2.13)
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Clearly, the strong convergence in Lr(RN) for all r ∈ [p, q∗) gives

lim
R→∞ lim sup

n→∞ |un|
r
Lr(BcR(0))

= 0. (2.14)

Then, using the growth assumption on g, (2.13) and (2.14), for all η > 0 there exists R = R(η) > 0

such that

lim sup
n→∞

∫
BcR(0)

g(ε x, un)un dx ≤ C lim sup
n→∞

∫
BcR(0)

(|un|
p + |un|

σ2 + |un|
q∗)dx ≤ Cη. (2.15)

On the other hand, choosing R > 0 large enough, we may assume that∫
BcR(0)

g(ε x, u)udx < η. (2.16)

Then, (2.15) and (2.16) yield

lim sup
n→∞

∣∣∣∣∣
∫
BcR(0)

g(ε x, un)un dx−

∫
BcR(0)

g(ε x, u)udx

∣∣∣∣∣ < Cη ∀η > 0,

which implies that

lim
n→∞

∫
BcR(0)

g(ε x, un)un dx =

∫
BcR(0)

g(ε x, u)udx. (2.17)

Using the definition of g it follows that

g(ε x, un)un ≤ f(un)un + aq
∗
+
V0
K
|un|

q ∀x ∈ RN \Λε.

Since BR(0)∩(RN\Λε) is bounded, we can use the above estimate, (f1), (f ′2), the compact embedding
W1,r(RN) ⋐ Lκloc(RN) for κ ∈ [1, r∗), and the dominated convergence theorem to infer that

lim
n→∞

∫
BR(0)∩(RN\Λε)

g(ε x, un)un dx =

∫
BR(0)∩(RN\Λε)

g(ε x, u)udx. (2.18)

At this point, we aim to show that

lim
n→∞

∫
Λε

(u+n)
q∗ dx =

∫
Λε

(u+)q
∗
dx. (2.19)

Indeed, if we assume that (2.19) is true, from (g2), (f1), (f ′2), the compact Sobolev embedding
W1,r(RN) ⋐ Lκloc(RN) for κ ∈ [1, r∗), and the dominated convergence theorem, we deduce that

lim
n→∞

∫
Λε∩BR(0)

g(ε x, un)un dx =

∫
Λε∩BR(0)

g(ε x, u)udx. (2.20)

Putting together (2.17), (2.18) and (2.20) we conclude that (2.12) holds. It remains to prove that
(2.19) holds true. Firstly, we may suppose that

|∇un|q ⇀ µ, |un|
q∗ ⇀ ν (2.21)

weakly in the sense of measures. Using the concentration-compactness principle of Lions [28, 29],
we have an at most countable index set I, sequences {xi}i∈I ⊂ RN, {µi}i∈I, {νi}i∈I in (0,∞) such that

µ ≥ |∇u|q +
∑
i∈I
µiδxi , ν = |u|q

∗
+
∑
i∈I
νiδxi , S∗ν

q
q∗
i ≤ µi ∀i ∈ I. (2.22)

It is enough to prove that {xi}i∈I ∩Λε = ∅. Suppose, by contradiction, that xi ∈ Λε for some i ∈ I.
For ρ > 0, define ζρ(x) = ζ(x−xiρ ) where ζ ∈ C∞

c (RN) is such that 0 ≤ ζ ≤ 1, ζ = 1 in B1(0), ζ = 0 in
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Bc2(0) and |∇ζ|∞ ≤ 2. We suppose that ρ is chosen in such way that the support of ζρ is contained
in Λε. Since {ζρun}n∈N is bounded, ⟨J ′

ε (un), unζρ⟩ = on(1) and we get∫
RN

|∇un|qζρ dx ≤
∫
RN

|∇un|pζρ dx+
∫
RN

|∇un|qζρ dx+
∫
RN

V(ε x)|un|
pζρ dx+

∫
RN

V(ε x)|un|
qζρ dx

= on(1) −

∫
RN

|∇un|p−2∇un · ∇ζρun dx−
∫
RN

|∇un|q−2∇un · ∇ζρun dx

+

∫
RN

f(un)ζρun dx+

∫
RN

|un|
q∗ζρ dx. (2.23)

Due to the fact that f has subcritical growth and ζρ has compact support, we have

lim
ρ→0 lim

n→∞
∫
RN

ζρf(un)un dx = lim
ρ→0

∫
RN

ζρf(u)udx = 0. (2.24)

Now, we verify that, for t ∈ {p, q}, we have

lim
ρ→0 lim

n→∞
∫
RN

|∇un|t−2∇un · ∇ζρun dx = 0. (2.25)

In fact, applying the Hölder inequality, we get∣∣∣∣∫
RN

|∇un|t−2∇un · ∇ζρun dx
∣∣∣∣ ≤ |∇un|t

(∫
Bρ(xi)

|un|
t|∇ζρ|t dx

) 1
t

≤ C

(∫
Bρ(xi)

|un|
t|∇ζρ|t dx

) 1
t

.

Using again the Hölder inequality, we see that

lim sup
n→∞

∣∣∣∣∫
RN

|∇un|t−2∇un · ∇ζρun dx
∣∣∣∣ ≤ C

(∫
Bρ(xi)

|u|t|∇ζρ|t dx

) 1
t

≤ C

ρ
|u|t∗ |Bρ(xi)|

t∗−t
tt∗ ≤ Cρ

1
N → 0

as ρ→ 0. Therefore, (2.25) holds. Putting together (2.23), (2.24), (2.25), and using (2.21), we find

µi ≤ νi. This fact combined with the last statement in (2.22) yield νi ≥ S
N
q
∗ . Then, by (g3), and

recalling that q > p, we obtain

c = Jε(un) −
1

q
⟨J ′
ε (un), un⟩+ on(1)

=

(
1

p
−
1

q

)
∥un∥pVε,p +

∫
RN\Λε

(
1

q
g(ε x, un)un −G(ε x, un)

)
dx

+

∫
Λε

(
1

q
f(un)un − F(un)

)
dx+

(
1

q
−
1

q∗

) ∫
Λε

|un|
q∗ dx+ on(1)

≥ 1

N

∫
Λε

|un|
q∗ dx+ on(1) ≥

1

N

∫
Λε

|un|
q∗ζρ dx+ on(1).

Taking the limit and using (2.22), we deduce that

c ≥ 1

N

∑
{i∈I:xi∈Λε}

ζρ(xi)νi =
1

N

∑
{i∈I:xi∈Λε}

νi ≥
1

N
S

N
q
∗

which is an absurd because c < 1
NS

N
q
∗ . □

Corollary 2.1. The functional ψε satisfies the Palais-Smale condition on S+ε at any level

c ∈ R if γ = 0 and at any level c < 1
NS

N
q
∗ if γ = 1.
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Proof. Let {un}n∈N ⊂ S+ε be a Palais-Smale sequence for ψε at the level c. Then ψε(un) → c and
ψ ′
ε(un) → 0 in (TunS+ε ) ′. By Proposition 2.1-(c), we see that {mε(un)}n∈N ⊂ Xε is a Palais-Smale

sequence for Jε at the level c. Then, by Lemma 2.5, we deduce that Jε satisfies the (PS)c condition
in Xε and thus there exists u ∈ S+ε such that, up to a subsequence, mε(un) → mε(u) in Xε. By
Lemma 2.2-(iii), we obtain that un → u in S+ε . □

We end this section by proving an existence result for (2.1).

Theorem 2.1. Suppose that (V1)-(V2) and (f1)-(f4) hold. Then, for any ε > 0, (2.1) has a
positive ground state solution.

Proof. In view of Lemma 2.1, Remark 2.2 and Lemma 2.5, we can apply the mountain pass theorem
[7] to deduce that, for all ε > 0, there exists a nontrivial critical point uε ∈ Xε for Jε. Since
⟨J ′
ε (uε), u

−
ε ⟩ = 0, where u−ε = min{uε, 0}, g(ε ·, t) = 0 for t ≤ 0, we can see that ∥u−ε ∥

p
Vε,p

+

∥u−ε ∥
q
Vε,q

= 0 which implies that u−ε = 0, that is uε ≥ 0 in RN. By the regularity results in [24], we
have that uε ∈ L∞(RN) ∩ C1,αloc(RN) and uε(x) → 0 as |x| → ∞. Using the Harnack inequality [42],
we deduce that uε > 0 in RN. □

3. The autonomous problem

Since we are interested in giving a multiplicity result for the auxiliary problem (2.1), it is impor-
tant to analyze the limiting problem associated with (1.1), namely{

−∆pu− ∆qu+ V0(u
p−1 + uq−1) = f(u) + γuq

∗−1 in RN,
u ∈W1,p(RN) ∩W1,q(RN), u > 0 in RN,

(3.1)

whose energy functional LV0 : YV0 → R is given by

LV0(u) =
1

p
∥u∥pV0,p +

1

q
∥u∥qV0,q −

∫
RN

(
F(u) +

γ

q∗
(u+)q

)
dx,

and YV0 =W1,p(RN) ∩W1,q(RN) is equipped with the norm ∥u∥YV0
= ∥u∥V0,p + ∥u∥V0,q, where

∥u∥V0,t =
(
|∇u|tt + V0|u|tt

) 1
t ∀t ∈ {p, q}.

For t ∈ {p, q}, we set

⟨u,φ⟩V0,t =
∫
RN

|∇u|t−2∇u · ∇φdx+
∫
RN

V0|u|
t−2uφdx ∀u,φ ∈ YV0 .

Standard arguments show that LV0 ∈ C1(YV0 ,R) and that

⟨L ′
V0
(u), φ⟩ = ⟨u,φ⟩V0,p + ⟨u,φ⟩V0,q −

∫
RN

(f(u) + γ(u+)q
∗−1)φdx

for any u,φ ∈ YV0 . We also consider the Nehari manifold MV0 associated with LV0 , that is
MV0 = {u ∈ YV0 \ {0} : ⟨L ′

V0
(u), u⟩ = 0}, and we set dV0 = infu∈MV0

LV0(u). Now we define
Y+
V0

= {u ∈ YV0 : | supp(u+)| > 0}, and S+V0 = SV0 ∩ Y+
V0

, where SV0 is the unit sphere of YV0 . As
in section 2, S+V0 is an incomplete C1,1-manifold of codimension one and contained in Y+

V0
. Thus,

YV0 = TuS+V0 ⊕ Ru for each u ∈ S+V0 , where

TuS+V0 = {v ∈ YV0 : ⟨u, v⟩V0,p + ⟨u, v⟩V0,q = 0} .

In the sequel we state without proofs the following results which can be obtained arguing as in
section 2.
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Lemma 3.1. The following properties hold:
(i) For each u ∈ Y+

V0
, let h : R+ → R be defined by hu(t) = LV0(tu). Then, there is a unique

tu > 0 such that h ′
u(t) > 0 for all t ∈ (0, tu) and h ′

u(t) < 0 for all t ∈ (tu,∞).
(ii) There exists τ > 0 independent of u such that tu ≥ τ for any u ∈ S+V0. Moreover, for each

compact set K ⊂ S+V0 there is a positive constant CK such that tu ≤ CK for any u ∈ K.
(iii) The map m̂V0 : Y+

V0
→ MV0 given by m̂V0(u) = tuu is continuous and mV0 = m̂V0 |S+V0

is a

homeomorphism between S+V0 and MV0. Moreover m−1
V0
(u) = u

∥u∥YV0

.

(iv) If there is a sequence {un}n∈N ⊂ S+V0 such that dist(un, ∂S+V0) → 0 then ∥mV0(un)∥YV0
→ ∞

and LV0(mV0(un)) → ∞.

Let us consider the maps ψ̂V0 : Y+
V0

→ R and ψV0 : S+V0 → R given by by ψ̂V0(u) = LV0(m̂V0(u))

and ψV0 = ψ̂V0 |S+V0

, respectively.

Proposition 3.1. The following properties hold:
(a) ψ̂V0 ∈ C1(Y+

V0
,R) and

⟨ψ̂ ′
V0
(u), v⟩ =

∥m̂V0(u)∥YV0

∥u∥YV0

⟨L ′
V0
(m̂V0(u)), v⟩ ∀u ∈ Y+

V0
, ∀v ∈ YV0 .

(b) ψV0 ∈ C1(S+V0 ,R) and

⟨ψ ′
V0
(u), v⟩ = ∥mV0(u)∥YV0

⟨L ′
V0
(mV0(u)), v⟩ ∀v ∈ TuS+V0 .

(c) If {un}n∈N is a (PS)d sequence for ψV0, then {mV0(un)}n∈N is a (PS)d sequence for LV0. If
{un}n∈N ⊂ MV0 is a bounded (PS)d sequence for LV0, then {m−1

V0
(un)}n∈N is a (PS)d sequence

for ψV0.
(d) u is a critical point of ψV0 if, and only if, mV0(u) is a nontrivial critical point for LV0.

Moreover, the corresponding critical values coincide and

inf
u∈S+V0

ψV0(u) = inf
u∈MV0

LV0(u).

Remark 3.1. As in section 2, we have the following characterization of the infimum of LV0
over MV0:

0 < dV0 = inf
u∈MV0

LV0(u) = inf
u∈Y+

V0

max
t>0

LV0(tu) = inf
u∈S+V0

max
t>0

LV0(tu).

Moreover, when γ = 1, we can argue as in the proof of Lemma 2.3 to see that 0 < dV0 <
1
NS

N
q
∗ .

The next lemma allows us to assume that the weak limit of a (PS)dV0
sequence of LV0 is nontrivial.

Lemma 3.2. Let {un}n∈N ⊂ YV0 be a (PS)dV0
sequence for LV0 such that un ⇀ 0 in YV0. Then,

(a) either un → 0 in YV0, or
(b) there is a sequence {yn}n∈N ⊂ RN and constants R, β > 0 such that

lim inf
n→∞

∫
BR(yn)

|un|
q dx ≥ β.

Proof. Assume that (b) does not true. Since {un}n∈N is bounded in YV0 , we can apply Lions
Lemma [28] to see that un → 0 in Lr(RN) for all r ∈ (p, q∗). In particular, by (f1)-(f2), we have
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that
∫
RN F(un)dx =

∫
RN f(un)un dx = on(1) as n→ ∞. Recalling that ⟨L ′

V0
(un), un⟩ = on(1), we

have

∥un∥pV0,p + ∥un∥qV0,q =

∫
RN

f(un)un dx+ γ|u
+
n |
q∗

q∗ = on(1) + γ|u
+
n |
q∗

q∗ .

When γ = 0, we have ∥un∥YV0
→ 0 as n → ∞ and the item (a) holds true. Now we consider the

case γ = 1. Then, up to a subsequence, there exists ℓ ≥ 0 such that ∥un∥pV0,p + ∥un∥qV0,q → ℓ and
|u+n |

q∗

q∗ → ℓ. Assume by contradiction that ℓ > 0. Since LV0(un) → dV0 , ⟨L ′
V0
(un), un⟩ = 0 and

q > p, we deduce that

dV0 + on(1) = LV0(un) −
1

q
⟨L ′
V0
(un), un⟩

=

(
1

p
−
1

q

)
∥un∥pV0,p + on(1) +

(
1

q
−
1

q∗

)
|u+n |

q∗

q∗ ≥ 1

N
ℓ+ on(1),

which implies that dV0 ≥ 1
Nℓ. Using the Sobolev inequality, we see that

∥un∥pV0,p + ∥un∥qV0,q ≥ S∗|un|qq∗ ≥ S∗(|u+n |
q∗

q∗)
q
q∗

and taking the limit as n → ∞ we get ℓ ≥ S∗ℓ
q
q∗ that is ℓ ≥ S

N
q
∗ . Consequently, dV0 ≥ 1

Nℓ ≥
1
NS

N
q
∗

and this contradicts Remark 3.1. □

Remark 3.2. As it has been mentioned earlier, if u is the weak limit of a (PS)dV0
sequence

for LV0, then we can assume u ̸= 0. Otherwise, un ⇀ 0 and, if un ↛ 0 in YV0, we conclude
from the Lemma 3.2 that there are {yn}n∈N ⊂ RN and R, β > 0 such that

lim inf
n→∞

∫
BR(yn)

|un|
q dx ≥ β.

Set vn(x) = un(x+ yn). Then, using the invariance of RN by translation, we see that {vn}n∈N
is a bounded (PS)dV0

sequence for LV0 such that vn ⇀ v in YV0 with v ̸= 0.

In the next result we obtain a positive ground state solution for the autonomous problem (3.1).

Theorem 3.1. Problem (3.1) admits a positive ground state solution.

Proof. Using a variant of the mountain-pass theorem without (PS)-condition (see [44]), there exists
a Palais-Smale sequence {un}n∈N ⊂ YV0 for LV0 at the level dV0 . Proceeding as in the proof of
Lemma 2.5, we can prove that {un}n∈N is bounded in YV0 so, going if necessary to a subsequence,
we may assume that un ⇀ u in YV0 and un → u in Lrloc(RN) for all r ∈ [1, q∗). Standard arguments
(see proof of Lemma 2.5) show that L ′

V0
(u) = 0. From Remark 3.2, we may assume that u ̸= 0. On

the other hand, by Fatou’s lemma and (f3), we can see that

LV0(u) −
1

q
⟨L ′
V0
(u), u⟩ ≤ lim inf

n→∞
(
LV0(un) −

1

q
⟨L ′
V0
(un), un⟩

)
= dV0

which yields dV0 = LV0(u). Finally, arguing as at the end of the proof of Theorem 2.1, we can prove
that uε > 0 in RN. □

The next lemma is a compactness result on autonomous problem which we will use later.

Lemma 3.3. Let {un}n∈N ⊂ MV0 be a sequence such that LV0(un) → dV0. Then, {un}n∈N has a
convergent subsequence in YV0.
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Proof. Since {un}n∈N ⊂ MV0 and LV0(un) → dV0 , it follows from Lemma 3.1-(iii), Proposition
3.1-(d) and the definition of dV0 that vn = m−1

V0
(un) =

un
∥un∥YV0

∈ S+V0 for all n ∈ N, and ψV0(vn) =

LV0(un) → dV0 = infv∈S+V0

ψV0(v). Let us define G : S+V0 → R ∪ {∞} as G(u) = ψV0(u) if u ∈ S+V0 ,

and G(u) = ∞ if u ∈ ∂S+V0 . Note that (S+V0 , δV0), where δV0(u, v) = ∥u − v∥YV0
, is a complete

metric space, G ∈ C(S+V0 ,R ∪ {∞}) (by Lemma 3.1-(iv)), G is bounded below (by Proposition 3.1-
(d)). Hence, applying the Ekeland variational principle to G, there exists {v̂n}n∈N ⊂ S+V0 such that
{v̂n}n∈N is a (PS)dV0

sequence for ψV0 at the level dV0 and ∥v̂n−vn∥YV0
= on(1). Now the remainder

of the proof follows from Proposition 3.1, Theorem 3.1, and arguing as in the proof of Corollary
2.1. □

We conclude this section by showing the following useful relation between the minimax levels cε
and dV0 .

Lemma 3.4. It holds limε→0 cε = dV0.
Proof. Let ωε(x) = ψε(x)ω(x), where ω is a positive ground state of (3.1) which is given by
Theorem 3.1, and ψε(x) = ψ(ε x) with ψ ∈ C∞

c (RN) such that 0 ≤ ψ ≤ 1, ψ(x) = 1 if |x| ≤ r and
ψ(x) = 0 if |x| ≥ 2r. For simplicity, we assume that supp(ψ) ⊂ B2r ⊂ Λ for some r > 0. Using the
dominated convergence theorem we see that

ωε → ω in W and LV0(ωε) → LV0(ω) = dV0 (3.2)

as ε→ 0. Now, for each ε > 0 there exists tε > 0 such that Jε(tεωε) = maxt≥0 Jε(tωε). Therefore,
⟨J ′
ε (tεωε),ωε⟩ = 0 and this implies that

tpε∥ωε∥
p
Vε,p

+ tqε∥ωε∥
q
Vε,q

=

∫
RN

(
f(tεωε)tεωε + γ(tεωε)

q∗
)
dx.

If tε → ∞ then

tp−qε ∥ωε∥pVε,p + ∥ωε∥qVε,q =

∫
RN

f(tεωε) + γ(tεωε)
q∗−1

(tεωε)q−1
ωqε dx, (3.3)

and using (3.2), p < q and (f3), we obtain that ∥ω∥qV0,q = ∞ which gives a contradiction. Then
tε → t0 ∈ [0,∞). If t0 = 0, using (f1), (f2) and (f ′2), we see that for ζ ∈ (0, V0), it holds(

1−
ζ

V0

)
∥ωε∥pVε,p + tq−pε ∥ωε∥qVε,q ≤ Cζtq−pε ∥ωε∥q

∗

Vε,q

which yields ∥ω∥pV0,p = 0 and this is an absurd. Hence, tε → t0 > 0. Taking the limit as ε → 0 in
(3.3) we get

t
p−q
0 ∥ω∥pV0,p + ∥ω∥qV0,q =

∫
RN

f(t0ω) + γ(t0ω)q
∗−1

(t0ω)q−1
ωq dx

which together with (f4) and ω ∈ MV0 implies that t0 = 1. On the other hand, we can note that

cε ≤ max
t≥0

Jε(tωε) = Jε(tεωε) = LV0(tεωε) +
t
p
ε

p

∫
RN

(Vε(x) − V0)ω
p
ε dx+

t
q
ε

q

∫
RN

(Vε(x) − V0)ω
q
ε dx.

Since V(ε ·) is bounded on the support of ωε, we use the dominated convergence theorem, (3.2) and
the above inequality to obtain that lim supε→0 cε ≤ dV0 . By (V1) we deduce that lim infε→0 cε ≥ dV0
and thus limε→0 cε = dV0 . This ends the proof of the lemma. □
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4. Multiplicity of solutions to (2.1)

In this section we collect some technical results which will be used to implement the barycenter
machinery below. Let δ > 0 be such that

Mδ = {x ∈ RN : dist(x,M) ≤ δ} ⊂ Λ, (4.1)

and w ∈ YV0 be a positive ground state solution to the autonomous problem (3.1) which exists by
virtue of Theorem 3.1. Let η ∈ C∞([0,∞), [0, 1]) be a non increasing function satisfying η(t) = 1 if
0 ≤ t ≤ δ

2 , η(t) = 0 if t ≥ δ and |η ′(t)| ≤ c for some c > 0. For any y ∈M, we define

Ψε,y(x) = η(| ε x− y|)w

(
ε x− y

ε

)
,

and Φε : M → Nε given by Φε(y) = tεΨε,y, where tε > 0 satisfies maxt≥0 Jε(tΨε,y) = Jε(tεΨε,y).
By construction, Φε(y) has compact support for any y ∈M.

Lemma 4.1. The functional Φε verifies the following limit:

lim
ε→0Jε(Φε(y)) = dV0 uniformly in y ∈M.

Proof. Suppose that the thesis of the lemma is false. Then we can find δ0 > 0, {yn}n∈N ⊂ M and
εn → 0 such that

|Jεn(Φεn(yn)) − dV0 | ≥ δ0. (4.2)

Now, for each n ∈ N and for all z ∈ B δ
εn

(0), we have εn z ∈ Bδ(0), and thus εn z + yn ∈ Bδ(yn) ⊂
Mδ ⊂ Λ. Taking the change of variable z = εn x−yn

εn
and using the fact that G(x, t) = F(x, t)+ γ

q∗ t
q∗

for (x, t) ∈ Λ× [0,∞), we can write

Jεn(Φεn(yn)) =
t
p
εn

p
∥Ψεn,yn∥

p
Vεn ,p

+
t
q
εn

q
∥Ψεn,yn∥

q
Vεn ,q

−

∫
RN

G(εn x, tεnΨεn,yn)dx

=
t
p
εn

p

(
|∇(η(| εn ·|)w)|pp +

∫
RN

V(εn z+ yn)(η(| εn z|)w(z))
p dz

)
+
t
q
εn

q

(
|∇(η(| εn ·|)w)|qq +

∫
RN

V(εn z+ yn)(η(| εn z|)w(z))
q dz

)
−

∫
RN

(
F(tεnη(| εn z|)w(z)) +

γ

q∗
(tεnη(| εn z|)w(z))

q∗
)
dz. (4.3)

We claim that tεn → 1 as εn → 0. We start by proving that tεn → t0 ∈ [0,∞). Since
⟨J ′
εn(Φεn(yn)), Φεn(yn)⟩ = 0 and g = f on Λ× R, we have

1

t
q−p
εn

∥Ψεn,yn∥
p
Vεn ,p

+ ∥Ψεn,yn∥
q
Vεn ,q

=

∫
RN

(
f(tεnη(| εn z|)w(z)) + γ(tεnη(| εn z|)w(z))

q∗−1

(tεnη(| εn z|)w(z))
q−1

)
(η(| εn z|)w(z))

q dz. (4.4)

Observing that η(|x|) = 1 for x ∈ B δ
2
(0) and B δ

2
(0) ⊂ B δ

εn

(0) for all n large enough, the identity

(4.4) yields

tp−qεn ∥Ψεn,yn∥
p
Vεn ,p

+ ∥Ψεn,yn∥
q
Vεn ,q

≥
∫
B δ

2
(0)

(
f(tεnw(z)) + γ(tεnw(z))

q∗−1

(tεnw(z))
q−1

)
(w(z))q dz,
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which combined with (f4) gives

tp−qεn ∥Ψεn,yn∥
p
Vεn ,p

+ ∥Ψεn,yn∥
q
Vεn ,q

≥
((

f(tεnw(ẑ))

(tεnw(ẑ))
q−1

)
(w(ẑ))q + γtq

∗−q
εn (w(ẑ))q

∗
)
|B δ

2
(0)|, (4.5)

wherew(ẑ) = minz∈B δ
2
(0)w(z) > 0 (we remark thatw is continuous and positive in RN). If tεn → ∞,

using the fact that q > p and that the dominated convergence theorem yields

∥Ψεn,yn∥Vεn ,r → ∥w∥V0,r ∈ (0,∞) ∀r ∈ {p, q}, (4.6)

we find

tp−qεn ∥Ψεn,yn∥
p
Vεn ,p

+ ∥Ψεn,yn∥
q
Vεn ,q

→ ∥w∥qV0,q. (4.7)

On the other hand, by (f3), we get

lim
n→∞ f(tεnw(ẑ))

(tεnw(ẑ))
q−1

= ∞. (4.8)

Gathering (4.5), (4.7), (4.8) and using q∗ > q, we achieve a contradiction. Consequently, {tεn}n∈N
is bounded and we may suppose that tεn → t0 for some t0 ≥ 0. From (4.4), (4.6), (f1)-(f2), we can
see that t0 > 0. Now we claim that t0 = 1. Passing to the limit as n→ ∞ in (4.4), and using (4.6)
and the dominated convergence theorem, we have that

t
p−q
0 ∥w∥pV0,p + ∥w∥qV0,q =

∫
RN

f(t0w) + γ(t0w)
q∗−1

(t0w)q−1
wq dx.

Recalling that w ∈ MV0 , we obtain

(tp−q0 − 1)∥w∥pV0,p =
∫
RN

(
f(t0w)

(t0w)q−1
−
f(w)

wq−1

)
wq dx+ γ(tq

∗−q
0 − 1)|w|q

∗

q∗ .

Using assumption (f4), we conclude that t0 = 1. Therefore, letting n→ ∞ in (4.3), we deduce that
limn→∞ Jεn(Φεn,yn) = LV0(w) = dV0 , which contradicts (4.2). □

For any δ > 0 given by (4.1), let ρ = ρ(δ) > 0 be such that Mδ ⊂ Bρ(0). Define Υ : RN → RN

by setting Υ(x) = x if |x| < ρ and Υ(x) = ρx
|x|

if |x| ≥ ρ. Let us consider the barycenter map
βε : Nε → RN given by

βε(u) =

∫
RN Υ(ε x)(|u(x)|

p + |u(x)|q)dx∫
RN(|u(x)|p + |u(x)|q)dx

.

Since M ⊂ Bρ(0), by the definition of Υ and applying the dominated convergence theorem, we
conclude that

lim
ε→0βε(Φε(y)) = y uniformly in y ∈M. (4.9)

The next compactness result plays an important role to verify that the solutions of the modified
problem are also solutions of the original one.

Lemma 4.2. Let εn → 0 and {un}n∈N ⊂ Nεn be such that Jεn(un) → dV0. Then there exists
{ỹn}n∈N ⊂ RN such that vn(x) = un(x + ỹn) has a convergent subsequence in YV0. Moreover,
up to a subsequence, {yn}n∈N = {εn ỹn}n∈N is such that yn → y0 ∈M.
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Proof. Proceeding as in the proof of Lemma 2.4, it is easy to see that {un}n∈N is bounded in
YV0 . Clearly, ∥un∥Xεn

↛ 0 since dV0 > 0. Consequently, we can argue as in the proof of
Lemma 3.2 and Remark 3.2, to obtain a sequence {ỹn}n∈N ⊂ RN and constants R, β > 0 such
that lim infn→∞ ∫

BR(ỹn)
|un|

qdx ≥ β. Set vn(x) = un(x + ỹn). Then, {vn}n∈N is bounded in YV0 ,
and, going if necessary to a subsequence, we may suppose that vn ⇀ v ̸≡ 0 in YV0 . Take tn > 0
such that ṽn = tnvn ∈ MV0 and set yn = εn ỹn. Using un ∈ Nεn and (g2), we have

dV0 ≤ LV0(ṽn) ≤
1

p
|∇ṽn|pp +

1

q
|∇ṽn|qq +

∫
RN

V(εn x+ yn)

(
1

p
|ṽn|

p +
1

q
|ṽn|

q

)
dx

−

∫
RN

(
F(ṽn) +

γ

q∗
(ṽ+n)

q∗
)
dx

≤ t
p
n

p
∥un∥pVεn ,p +

t
q
n

q
∥un∥qVεn ,q −

∫
RN

G(εn x, tnun)dx

= Jεn(tnun) ≤ Jεn(un) = dV0 + on(1),

which implies that

LV0(ṽn) → dV0 and {ṽn}n∈N ⊂ MV0 . (4.10)

Moreover, {ṽn}n∈N is bounded in YV0 and thus ṽn ⇀ ṽ in YV0 . We may assume that tn → t0 > 0.
From the uniqueness of the weak limit, we have ṽ = t0v ̸≡ 0. By Lemma 3.3, we have ṽn → ṽ in YV0 ,
and so vn → v in YV0 . Moreover, LV0(ṽ) = dV0 and ⟨L ′

V0
(ṽ), ṽ⟩ = 0. Next we show that {yn}n∈N

admits a bounded subsequence. Indeed, suppose by contradiction that there is a subsequence of
{yn}n∈N, still denoted by itself, such that |yn| → ∞. Choose R > 0 such that Λ ⊂ BR(0). Then, for
n large enough, |yn| > 2R, and for each x ∈ BR/ εn(0) we have | εn x+yn| ≥ |yn|− | εn x| > R. Hence,
using vn → v in YV0 , the definition of g, and the dominated convergence theorem, we obtain

∥vn∥pV0,p + ∥vn∥qV0,q ≤
∫
RN

g(εn x+ yn, vn)vn dx

≤
∫
BR/ εn (0)

f̃(vn)vn dx+

∫
Bc
R/ εn

(0)

(
f(vn)vn + γ(v

+
n)
q∗
)
dx

≤ 1

K

∫
BR/ εn (0)

V0(|vn|
p + |vn|

q)dx+ on(1)

which implies that
(
1− 1

K

)
(∥vn∥pV0,p + ∥vn∥qV0,q) ≤ on(1). Since vn → v ̸≡ 0 in YV0 and K > 1, we

get a contradiction. Hence, {yn}n∈N is bounded in RN and, up to a subsequence, we can assume
that yn → y0. If y0 /∈ Λ, we can proceed as above to get vn → 0 in YV0 . Then we have y ∈ Λ. Now,
assume by contradiction that V(y0) > V0. Using ṽn → ṽ in YV0 , Fatou’s lemma and the invariance
of RN by translations, we have

dV0 = LV0(ṽ) < lim inf
n→∞

(
1

p
|∇ṽn|pp +

1

q
|∇ṽn|qq +

∫
RN

V(εn x+ yn)

(
1

p
|ṽn|

p +
1

q
|ṽn|

q

)
dx

−

∫
RN

(
F(ṽn) +

γ

q∗
(ṽ+n)

q∗
)
dx

)
≤ lim inf

n→∞ Jεn(tnun) ≤ lim inf
n→∞ Jεn(un) = dV0

which leads to a contradiction. Therefore, V(y0) = V0 and y0 ∈ M. The assumption (V2) shows
that y0 /∈ ∂M and thus y0 ∈M. □
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Let us define Ñε = {u ∈ Nε : Jε(u) ≤ dV0 + π(ε)}, where π(ε) = supy∈M |Jε(Φε(y)) − dV0 |. By
Lemma 4.1, we know that π(ε) → 0 as ε→ 0. By the definition of π(ε), we have that, for all y ∈M
and ε > 0, Φε(y) ∈ Ñε and thus Ñε ̸= ∅. We present below an interesting relation between Ñε and
the barycenter map.

Lemma 4.3. For any δ > 0, there holds that

lim
ε→0 sup

u∈Ñε

dist(βε(u),Mδ) = 0.

Proof. Let εn → 0 as n→ ∞. Then we can find {un}n∈N ⊂ Ñεn such that

dist(βεn(un),Mδ) = sup
u∈Ñεn

dist(βεn(u),Mδ) + on(1).

Then, it suffices to find {yn}n∈N ⊂ Mδ such that limn→∞ |βεn(un) − yn| = 0. From LV0(tun) ≤
Jεn(tun) and {un}n∈N ⊂ Ñεn ⊂ Nεn , we obtain dV0 ≤ cεn ≤ Jεn(un) ≤ dV0 + h(εn) which leads to
Jεn(un) → dV0 . By invoking Lemma 4.2, we can find {ỹn} ⊂ RN such that yn = εn ỹn ∈Mδ for n
large enough. Hence,

βεn(un) = yn +

∫
RN (Υ(εn z+ yn) − yn) (|un(z+ ỹn)|

p + |un(z+ ỹn)|
q)dz∫

RN(|un(z+ ỹn)|p + |un(z+ ỹn)|q)dz
.

Taking into account that un(· + ỹn) strongly converges in YV0 and εn z + yn → y ∈ Mδ for all
z ∈ RN, we can see that βεn(un) = yn + on(1). The proof of the lemma is now complete. □

We finalize the section by presenting a relation between the topology of M and the number of
solutions of the modified problem (2.1). Since S+ε is not a complete metric space, we cannot use
directly an abstract result as in [4–6]. However, we can invoke the abstract category result in [41]
to achieve our purpose.

Theorem 4.1. Assume that (V1)-(V2) and (f1)-(f4) are in force. Then, for any given δ > 0

such that Mδ ⊂ Λ, there exists ε̄δ > 0 such that, for any ε ∈ (0, ε̄δ), problem (2.1) has at least
catMδ

(M) positive solutions.

Proof. For each ε > 0, we define the map αε : M → S+ε by setting αε(y) = m−1
ε (Φε(y)). From

Lemma 4.1 we see that

lim
ε→0ψε(αε(y)) = lim

ε→0Jε(Φε(y)) = dV0 uniformly in y ∈M. (4.11)

Hence, there is a number ε̂ > 0 such that the set S̃+
ε = {w ∈ S+ε : ψε(w) ≤ dV0 +π0(ε)} is nonempty

for all ε ∈ (0, ε̂), since ψε(M) ⊂ S̃+
ε . Here π0(ε) = supy∈M |ψε(αε(y)) − dV0 | → 0 as ε → 0. From

the above considerations, and taking into account Lemma 4.1, Lemma 2.2-(iii), Lemma 4.3 and
(4.9), we can find ε̄ = ε̄δ > 0 such that the following diagram is well defined for any ε ∈ (0, ε̄):

M
Φε→ Φε(M)

m−1
ε→ αε(M)

mε→ Φε(M)
βε→Mδ.

From (4.9), we can choose a function θ(ε, y) with |θ(ε, y)| < δ
2 uniformly in y ∈ M and for all

ε ∈ (0, ε̄), such that βε(Φε(y)) = y+θ(ε, y) for all y ∈M. Define H(t, y) = y+(1− t)θ(ε, y), with
(t, y) ∈ [0, 1] ×M. Then H : [0, 1] ×M → Mδ is continuous. Obviously, H(0, y) = βε(Φε(y)) and
H(1, y) = y for all y ∈M. That is H(t, y) is a homotopy between βε ◦Φε = (βε ◦mε) ◦ (m−1

ε ◦Φε)
and the inclusion map id :M→Mδ. This fact implies that

catαε(M)αε(M) ≥ catMδ
(M). (4.12)
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It follows from Corollary 2.1, Lemma 3.4, and Theorem 27 in [41], with c = cε ≤ dV0+π0(ε) = d and
K = αε(M), that ψε has at least catαε(M)αε(M) critical points on S̃+

ε . Therefore, by Proposition
2.1-(d) and (4.12), we conclude that Jε admits at least catMδ

(M) critical points in Ñε. □

5. Proof of Theorem 1.1

This section is devoted to the proof of Theorem 1.1. We start with the following lemma which
plays a fundamental role in the study of behavior of the maximum points of solutions to (1.1).

Lemma 5.1. Let εn → 0 and un ∈ Ñεn be a solution to (2.1). Then Jεn(un) → dV0, and there
exists {ỹn}n∈N ⊂ RN such that vn = un(·+ ỹn) ∈ L∞(RN) and for some C > 0 it holds

|vn|∞ ≤ C for all n ∈ N.

Moreover,

vn(x) → 0 as |x| → ∞ uniformly in n ∈ N. (5.1)

Proof. Observing that Jεn(un) ≤ dV0 + π(εn) with π(εn) → 0 as n → ∞, we can repeat the
same arguments used in the proof of Lemma 4.3 to show that Jεn(un) → dV0 . Then, applying
Lemma 4.2, there exists {ỹn}n∈N ⊂ RN such that vn = un(· + ỹn) strongly converges in YV0 and
εn ỹn → y0 ∈M.

In what follows, we obtain a suitable L∞-estimate by using some arguments found in [2, 23, 26].
Let x0 ∈ RN, R0 > 1, 0 < t < s < 1 < R0 and ξ ∈ C∞

c (RN) be such that 0 ≤ ξ ≤ 1, supp ξ ⊂ Bs(x0),
ξ ≡ 1 on Bt(x0), |∇ξ| ≤ 2

s−t . For ζ ≥ 1, set An,ζ,ρ = {x ∈ Bρ(x0) : vn(x) > ζ} and

Qn =

∫
An,ζ,s

(|∇vn|p + |∇vn|q) ξq dx.

Note that vn satisfies ∫
RN

|∇vn|p−2∇vn · ∇ηdx+
∫
RN

|∇vn|q−2∇vn · ∇ηdx

+

∫
RN

Vn(x)(v
p−1
n + vq−1n )ηdx =

∫
RN

gn(x, vn)ηdx,

for all η ∈ Xε. Using ηn = ξq(vn − ζ)+ as test function, we obtain

q

∫
An,ζ,s

ξq−1(vn − ζ)+|∇vn|p−2∇vn · ∇ξdx+
∫
An,ζ,s

ξq|∇vn|p dx

+ q

∫
An,ζ,s

ξq−1(vn − ζ)+|∇vn|q−2∇vn · ∇ξdx+
∫
An,ζ,s

ξq|∇vn|q dx

+

∫
An,ζ,s

Vn(v
p−1
n + vq−1n )ξq(vn − ζ)+ dx =

∫
An,ζ,s

gn(x, vn)ξ
q(vn − ζ)+ dx,

which combined with (V1) yields

Qn ≤ C
∫
An,ζ,s

ξq−1(vn − ζ)+|∇ξ|
(
|∇vn|p−1 + |∇vn|q−1

)
dx

−

∫
An,ζ,s

V0ξ
q−1(vn − ζ)+(v

p−1
n + vq−1n )dx+

∫
An,ζ,s

gn(x, vn)ξ
q(vn − ζ)+ dx.
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By (2.2), choosing ζ > 0 sufficiently small, we find

Qn ≤ C
∫
An,ζ,s

ξq−1(vn − ζ)+|∇ξ|
(
|∇vn|p−1 + |∇vn|q−1

)
dx+

∫
An,ζ,s

vq
∗−1
n ξq(vn − ζ)+ dx.

Proceeding similarly to Lemma 3.4 in [2], we obtain

Qn ≤ C

(∫
An,ζ,s

∣∣∣∣vn − ζs− t

∣∣∣∣q∗ dx+ (ζq
∗
+ 1)|An,ζ,s|

)
.

Exploiting the definition of ξ we can infer∫
An,ζ,t

|∇vn|q dx ≤ C

(∫
An,ζ,s

∣∣∣∣vn − ζs− t

∣∣∣∣q∗ dx+ (ζq
∗
+ 1)|An,ζ,s|

)
,

where C > 0 does not depend on ζ and ζ ≥ ζ0 ≥ 1, for some constant ζ0.
Fix R1 > 0 and define σj = R1

2

(
1+ 1

2j

)
, σ̄j = 1

2 (σj + σj+1), ζj = ζ0
2

(
1− 1

2j+1

)
, and Qj,n =∫

An,ζj,σj

((vn − ζj)+)
q∗ dx. Then, arguing as in Step 1 in Lemma 3.5 in [2], we can see that for each

n ∈ N,
Qj+1,n ≤ CAτQ1+τj,n for all j ∈ N ∪ {0},

where C, τ > 0 are independent of n and A > 1. Since vn → v in YV0 , we have

lim sup
ζ0→∞

(
lim sup
n→∞ Q0,n

)
= lim sup

ζ0→∞
(

lim sup
n→∞

∫
An,ζ0,σ0

((
vn −

ζ0
4

)
+

)q∗
dx

)
= 0.

Hence, there exists n0 ∈ N and ζ∗0 > 0 such that Q0,n ≤ C
1
τA

− 1

τ2 for n ≥ n0 and ζ0 ≥ ζ∗0. Exploiting
Lemma 4.7 in [26], limj→∞Qj,n = 0 for n ≥ n0. On the other hand,

lim
j→∞Qj,n = lim

j→∞
∫
An,ζj,σj

((vn − ζj)+)
q∗ dx =

∫
An,

ζ0
2
,
R1
2

((
vn −

ζ0
2

)
+

)q∗
dx.

Then, ∫
An,

ζ0
2
,
R1
2

((
vn −

ζ0
2

)
+

)q∗
dx = 0 for all n ≥ n0,

and so vn(x) ≤ ζ0
2 for a.e. x ∈ BR1

2

(x0) and for all n ≥ n0. From the arbitrariness of x0 ∈ RN,

we deduce that vn(x) ≤ ζ0
2 for a.e. x ∈ RN and for all n ≥ n0, that is |vn|∞ ≤ ζ0

2 for all n ≥ n0.

Setting C = max
{
ζ0
2 , |v1|∞, . . . , |vn0−1|∞

}
, we get |vn|∞ ≤ C for all n ∈ N. Then, combining this

estimate with the regularity results in [24], we obtain that {vn}n∈N ⊂ C1,αloc(RN). Finally, we show
that vn(x) → 0 as |x| → ∞ uniformly in n ∈ N. Arguing as before, we can see that for each δ > 0
we have that

lim sup
|x0|→∞

(
lim sup
n→∞ Q0,n

)
= lim sup

|x0|→∞
(

lim sup
n→∞

∫
An,ζ0,σ0

((
vn −

δ

4

)
+

)q∗
dx

)
= 0.

Therefore, applying lemma Lemma 4.7 in [26], there exist R∗ > 0 and n0 ∈ N such that limj→∞Qj,n =

0 if |x0| > R∗ and for n ≥ n0, which yields vn(x) ≤ δ
4 for x ∈ BR1

2

(x0) and |x0| > R∗, for all n ≥ n0.

Now, increasing R∗ if necessary, it holds vn(x) ≤ δ
4 for |x| > R∗ and for all n ∈ N, and this completes

the proof of lemma. □
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5.1. Proof of Theorem 1.1. Take δ > 0 such that Mδ ⊂ Λ. We first show that there exists ε̃δ > 0
such that for any ε ∈ (0, ε̃δ) and any solution uε ∈ Ñε of (2.1), it holds

|uε|L∞(Λc
ε)
< a. (5.2)

In order to prove the claim we argue by contradiction. Suppose that for some sequence εn → 0 we
can obtain un = uεn ∈ Ñεn such that J ′

εn(uεn) = 0 and

|un|L∞(Λc
εn

) ≥ a. (5.3)

As in Lemma 4.2, we have that Jεn(un) → dV0 and therefore we can apply Lemma 4.2 to obtain a
sequence {ỹn}n∈N ⊂ RN such that vn = un(·+ ỹn) → v in YV0 and εn ỹn → y0 ∈M.

Choosing r > 0 such that Br(y0) ⊂ B2r(y0) ⊂ Λ, we have B r
εn
(y0εn ) ⊂ Λεn . Moreover, for any

y ∈ B r
εn
(ỹn), it holds∣∣∣∣y−

y0
εn

∣∣∣∣ ≤ |y− ỹn|+

∣∣∣∣ỹn − y0
εn

∣∣∣∣ < 1

εn
(r+ on(1)) <

2r

εn
for n sufficiently large.

For these values of n, we have Λcεn ⊂ Bcr
εn

(ỹn). By using (5.1), there exists R > 0 such that

vn(x) < a for any |x| ≥ R and n ∈ N, and thus un(x) < a for any x ∈ BcR(ỹn) and n ∈ N. On the
other hand, there exists ν ∈ N such that for any n ≥ ν it holds Λcεn ⊂ Bcr

εn

(ỹn) ⊂ BcR(ỹn). Hence,

un(x) < a for any x ∈ Λcεn and n ≥ ν, which is in contrast with (5.3).
Let ε̄δ > 0 be given by Theorem 4.1 and set εδ = min{ε̃δ, ε̄δ}. Take ε ∈ (0, εδ). By Theorem 4.1

we get at least catMδ
(M) positive solutions to (2.1). If uε is one of these solutions, we have that

uε ∈ Ñε, and we can use (5.2) and the definition of g to deduce that g(ε x, uε) = f(uε) + γu
q∗−1
ε .

This means that uε is also a solution of (1.1). Consequently, (1.1) admits at least catMδ
(M) positive

solutions. Now we consider εn → 0 and take a sequence {un}n∈N ⊂ Xεn of solutions to (2.1) as
above. In order to study the behavior of the maximum points of un, we first note that, by the
definition of g and (g1), there exists σ ∈ (0, a) sufficiently small such that

g(ε x, t)t ≤ V0
K
(tp + tq) ∀(x, t) ∈ RN × [0, σ]. (5.4)

As before, we can take R > 0 such that

|un|L∞(BcR(ỹn))
< σ. (5.5)

Up to a subsequence, we may also assume that

|un|L∞(BR(ỹn)) ≥ σ. (5.6)

Otherwise, if this is not the case, we have |un|∞ < σ. Then, using ⟨J ′
εn(un), un⟩ = 0 and (5.4), we

find

∥un∥pVεn ,p + ∥un∥qVεn ,q ≤
∫
RN

g(εn x, un)un dx ≤
V0
K

∫
RN

(|un|
p + |un|

q)dx

which leads to a contradiction. Therefore, (5.6) is satisfied. In view of (5.5) and (5.6), we can
deduce that if pn is a global maximum point of un, then pn = ỹn + qn for some qn ∈ BR(0).
Since εn ỹn → y0 ∈ M and {qn}n∈N ⊂ BR(0), we obtain that εn pn → y0 which together with the
continuity of V yields limn→∞ V(εn pn) = V(y0) = V0. Finally, we prove the decay estimate for un.
Since vn(x) → 0 as |x| → ∞ uniformly in n ∈ N, and using (g1), we can find R > 0 such that

gn(x, vn(x)) ≤
V0
2
(vp−1n (x) + vq−1n (x)) ∀|x| ≥ R.
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Then, by using (V1), we obtain

−∆pvn − ∆qvn +
V0
2
(vp−1n + vq−1n ) = gn(x, vn) −

(
Vn −

V0
2

)
(vp−1n + vq−1n )

≤ gn(x, vn) −
V0
2
(vp−1n + vq−1n ) ≤ 0 ∀|x| ≥ R.

(5.7)

Let ϕ(x) =Me−c|x| with c,M > 0 such that cp(p− 1) < V0
2 , cq(q− 1) < V0

2 and Me−cR ≥ vn(x) for
all |x| = R. We can see that

− ∆pϕ− ∆qϕ+
V0
2
(ϕp−1 + ϕq−1)

= ϕp−1
(
V0
2

− cp(p− 1) +
N− 1

|x|
cp−1

)
+ ϕq−1

(
V0
2

− cq(q− 1) +
N− 1

|x|
cq−1

)
> 0 ∀|x| ≥ R.

(5.8)

Using η = (vn − ϕ)
+ ∈W1,q

0 (RN \ BR) as test function in (5.7) and (5.8), we find

0 ≥
∫
{|x|≥R}∩{vn>ϕ}

((
(|∇vn|p−2∇vn − |∇ϕ|p−2∇ϕ) · ∇η+ (|∇vn|q−2∇vn − |∇ϕ|q−2∇ϕ) · ∇η

)
+
V0
2

(
(vp−1n − ϕp−1) + (vq−1n − ϕq−1)

)
η

)
dx.

Recalling that for t > 1 it holds (|x|t−2x − |y|t−2y) · (x − y) ≥ 0 for all x, y ∈ RN (see formula
(2.10) in [40]), and that ϕ, vn are continuous in RN, we deduce that vn(x) ≤ ϕ(x) for all |x| ≥ R.
Recalling that {vn}n∈N is uniformly bounded in L∞(RN) and that un(x) = vn(x − ỹn), we obtain
that un(x) ≤ C1e−C2|x−pn| for all x ∈ RN. This completes the proof of Theorem 1.1. □

6. The supercritical case

In this last section we focus our attention on (1.7). Firstly, we truncate the nonlinearity ϕ(u) =
us−1+µuτ−1 in a suitable way. Let K > 0 be a real number, whose value will be fixed later, and set

ϕµ(t) =


0 if t < 0,

ts−1 + µtτ−1 if 0 ≤ t < K,

(1+ µKτ−s)ts−1 if t ≥ K.

Clearly, ϕµ verifies the assumptions (f1)-(f4) ((f3) with ϑ = s > q). Moreover,

ϕµ(t) ≤ (1+ µKτ−s)ts−1 ∀t ≥ 0. (6.1)

Now, we can introduce the following truncated problem{
−∆pu− ∆qu+ V(ε x)(up−1 + uq−1) = ϕµ(u) in RN,
u ∈W1,p(RN) ∩W1,q(RN), u > 0 in RN.

(6.2)

It is easy to check that weak solutions of (6.2) are critical points of the energy functional Jε,µ :

Xε → R defined by

Jε,µ(u) =
1

p
∥u∥pVε,p +

1

q
∥u∥qVε,q −

∫
RN

Φµ(u)dx,
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where Φµ(t) =
∫t
0ϕµ(s)ds. We also consider the autonomous functional

J0,µ(u) =
1

p
∥u∥pV0,p +

1

q
∥u∥qV0,q −

∫
RN

Φµ(u)dx.

Using Theorem 1.1, we know that for any µ ≥ 0 and δ > 0, there exists ε̄(δ, µ) > 0 such that, for
any ε ∈ (0, ε̄(δ, µ)), problem (6.2) admits at least catMδ

(M) positive solutions uε,µ. Now, we prove
that it is possible to estimate the W1,q-norm of these solutions uniformly with respect to µ. More
precisely:

Lemma 6.1. There exists C̄ > 0 such that ∥uε,µ∥Vε,q ≤ C̄ for any ε > 0 sufficiently small and
uniformly in µ.

Proof. A simple inspection of the proof of Theorem 1.1 shows that any solution uε,µ of (6.2) satisfies
the following inequality Jε,µ(uε,µ) ≤ c0,µ + hµ(ε), where c0,µ is the mountain pass level related to
the functional J0,µ, and hµ(ε) → 0 as ε→ 0. Then, decreasing ε̄(δ, µ) if necessary, we may suppose
that Jε,µ(uε,µ) ≤ c0,µ + 1 for any ε ∈ (0, ε̄(δ, µ)). Using the fact that c0,µ ≤ c0,0 for any µ ≥ 0, we
can deduce that

Jε,µ(uε,µ) ≤ c0,0 + 1 (6.3)

for any ε ∈ (0, ε̄(δ, µ)). On the other hand,

Jε,µ(uε,µ) = Jε,µ(uε,µ) −
1

s
⟨J ′
ε,µ(uε,µ), uε,µ⟩

=

(
1

p
−
1

s

)
∥uε,µ∥pVε,p +

(
1

q
−
1

s

)
∥uε,µ∥qVε,q +

∫
RN

(
1

s
ϕµ(uε,µ)uε,µ −Φµ(uε,µ)

)
dx

≥
(
1

p
−
1

s

)
∥uε,µ∥pVε,p +

(
1

q
−
1

s

)
∥uε,µ∥qVε,q, (6.4)

where in the last inequality we have used assumption (f3). Putting together (6.3) and (6.4), we can

infer that ∥uε,µ∥Vε,q ≤
((

sq
s−q

)
(c0,0 + 1)

) 1
q
= C̄ for any ε ∈ (0, ε̄(δ, µ)). □

Now, our plan is to prove that uε,µ is a solution of the original problem (1.7) for µ sufficiently
small. To this end, we will show that we can find K0 > 0 such that for any K ≥ K0, there exists
µ0 = µ0(K) > 0 such that

|uε,µ|∞ ≤ K ∀µ ∈ [0, µ0]. (6.5)

In order to achieve our goal, we develop a suitable Moser iteration technique [33]. For simplicity,
we set u = uε,µ. For any L > 0, we define uL = min{u, L} ≥ 0, where β > 1 will be chosen later,
and let wL = uu

β−1
L . Taking zL = u

q(β−1)
L u in (6.2), we see that∫

RN

(|∇u|p + |∇u|q)uq(β−1)L dx+

∫
{u≤L}

q(β− 1)uq(β−1)(|∇u|p + |∇u|q)dx

+

∫
RN

V(ε x)(up + uq)u
q(β−1)
L dx =

∫
RN

ϕµ(u)uu
q(β−1)
L dx. (6.6)

Putting together (6.6), (6.1) and (V1), we get∫
RN

|∇u|quq(β−1)L dx ≤ Cµ,K
∫
RN

usu
q(β−1)
L dx, (6.7)
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where Cµ,K = 1 + µKτ−s. On the other hand, by the Sobolev inequality, (a + b)q ≤ 2q−1(aq + bq)

for all a, b > 0, and β > 1, we have

|wL|
q
q∗ ≤ S−1∗

∫
RN

|∇wL|q dx = S−1∗
∫
RN

|∇(uβ−1L u)|q dx

≤ S−1∗ 2q−1
(∫

RN

(β− 1)qu
q(β−1)
L |∇u|q dx+

∫
RN

u
q(β−1)
L |∇uL|q dx

)
≤ S−1∗ 2q−1((β− 1)q + 1)

∫
RN

u
q(β−1)
L |∇u|q dx

≤ S−1∗ 2q−1βq
((

β− 1

β

)q
+
1

βq

) ∫
RN

u
q(β−1)
L |∇u|q dx

≤ C1βq
∫
RN

u
q(β−1)
L |∇u|q dx, (6.8)

with C1 = 2qS−1∗ > 0. Taking into account (6.7) and (6.8), and using the Hölder inequality, we
deduce that

|wL|
q
q∗ ≤ C1Cµ,Kβq

∫
RN

usu
q(β−1)
L dx = C1Cµ,Kβ

q

∫
RN

us−qw
q
L dx ≤ C1β

qCµ,K|u|
s−q
q∗ |wL|

q
α∗ , (6.9)

where α∗ = qq∗

q∗−(s−q) . In view of Lemma 6.1, the embedding W1,q(RN) ↪→ Lq
∗
(RN) and (6.9), we

see that

|wL|
q
q∗ ≤ C2βqCµ,K|wL|qα∗ , (6.10)

where C2 = C1S
− s−q

q
∗ C̄s−q is independent of ε and µ. Now, we observe that if uβ ∈ Lα∗

(RN), it
follows from the definition of wL, that uL ≤ u, and (6.10), that it holds

|wL|
q
q∗ ≤ C2βqCµ,K|u|qββα∗ <∞. (6.11)

Letting L→ ∞ in (6.11), the Fatou Lemma yields

|u|q∗β ≤ (C2Cµ,K)
1
qββ

1
β |u|βα∗ (6.12)

whenever uβα
∗ ∈ L1(RN). Now, we set β = q∗

α∗ > 1, and observe that, since u ∈ Lq∗(RN), the above
inequality holds for this choice of β. Then, using the fact that β2α∗ = q∗β, it follows that (6.12)
holds with β replaced by β2. Consequently,

|u|q∗β2 ≤ (C2Cµ,K)
1

qβ2 β
2

β2 |u|β2α∗ ≤ (C2Cµ,K)
1
q

(
1
β
+ 1

β2

)
β

1
β
+ 2

β2 |u|βα∗ .

Iterating this process and recalling that βα∗ = q∗, we infer that, for every m ∈ N,

|u|q∗βm ≤ (C2Cµ,K)
∑m

j=1
1

qβj β
∑m

j=1 jβ
−j

|u|q∗ . (6.13)

Sending m→ ∞ in (6.13) and using Lemma 6.1, we obtain

|u|∞ ≤ (C2Cµ,K)
γ1βγ2C3, (6.14)

where C3 = S
− 1

q
∗ C̄, γ1 = 1

q

∑∞
j=1

1
βj < ∞, and γ2 =

∑∞
j=1

j
βj < ∞. Next, we will find some suitable

values of K and µ such that the following inequality holds (C2Cµ,K)
γ1βγ2C3 ≤ K, or equivalently,

1+ µKτ−s ≤ C−1
2 β

−
γ2
γ1 (KC−1

3 )
1
γ1 .
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Take K > 0 such that (KC−1
3 )

1
γ1 > C2β

γ2
γ1 , and fix µ0 > 0 satisfying

µ ≤ µ0 ≤

(KC−1
3 )

1
γ1

C2β
γ2
γ1

− 1

 1

Kτ−s
.

Then, in view of (6.14), we see that (6.5) is satisfied, that is u = uε,µ is a solution of (1.7). This
completes the proof of Theorem 1.2.

Acknowledgements. The first author was partly supported by the GNAMPA Project 2020 en-
titled: Studi di Problemi Frazionari Nonlocali tramite Tecniche Variazionali. The research of
V.D. Rădulescu was supported by the grant “Nonlinear Differential Systems in Applied Sciences" of
the Romanian Ministry of Research, Innovation and Digitization, within PNRR-III-C9-2022-I8/22.

References

[1] C.O. Alves and A.R. da Silva, Multiplicity and concentration behavior of solutions for a quasilinear problem
involving N-functions via penalization method, Electron. J. Differential Equations 2016, Paper No. 158, 24
pp.

[2] C.O. Alves and A.R. da Silva, Multiplicity and concentration of positive solutions for a class of quasilinear
problems through Orlicz–Sobolev space, J. Math. Phys. 57 (2016), no. 11, 111502, 22 pp.

[3] C.O. Alves and J.M. do Ó, and M.A.S. Souto, Local mountain-pass for a class of elliptic problems in RN

involving critical growth, Nonlinear Analysis 46 (2001) 495–510.
[4] C.O. Alves and G.M. Figueiredo, Multiplicity of positive solutions for a quasilinear problem in RN via penal-

ization method, Adv. Nonlinear Stud. 5 (2005), no. 4, 551–572.
[5] C.O. Alves and G.M. Figueiredo, Existence and multiplicity of positive solutions to a p-Laplacian equation

in RN, Differential Integral Equations 19 (2006), no. 2, 143–162.
[6] C.O. Alves and G.M. Figueiredo, Multiplicity and concentration of positive solutions for a class of quasilinear

problems, Adv. Nonlinear Stud. 11 (2011), no. 2, 265–294.
[7] A. Ambrosetti and P.H. Rabinowitz, Dual variational methods in critical point theory and applications, J.

Functional Analysis 14 (1973), 349–381.
[8] V. Ambrosio and V.D. Rădulescu, Fractional double-phase patterns: concentration and multiplicity of solu-

tions, J. Math. Pures Appl. (9) 142 (2020), 101–145.
[9] V. Ambrosio and D. Repovš, Multiplicity and concentration results for a (p,q)-Laplacian problem in RN, Z.

Angew. Math. Phys. 72 (2021), no. 1, 33.
[10] L. Beck, G. Mingione, Lipschitz bounds and non-uniform ellipticity, Comm. Pure Appl. Math. 73 (2020),

944-1034.
[11] V. Benci and G. Cerami, Multiple positive solutions of some elliptic problems via the Morse theory and the

domain topology, Calc. Var. Partial Differential Equations 2 (1994), 29–48.
[12] H. Brézis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev expo-

nents, Comm. Pure Appl. Math. 36 (1983), no. 4, 437–477.
[13] J. Chabrowski and J. Yang, Existence theorems for elliptic equations involving supercritical Sobolev exponent,

Adv. Differential Equations 2 (1997), no. 2, 231–256.
[14] L. Cherfils and V. Il’yasov, On the stationary solutions of generalized reaction difusion equations with p&q-

Laplacian, Commun. Pure Appl. Anal. 1 (4), 1–14 (2004).
[15] S. Cingolani and M. Lazzo, Multiple semiclassical standing waves for a class of nonlinear Schrödinger equa-

tions, Topol. Methods Nonlinear Anal. 10 (1997), no. 1, 1–13.
[16] M. Colombo and G. Mingione, Regularity for double phase variational problems, Arch. Ration. Mech. Anal.

215 (2015), no. 2, 443–496.
[17] M. Del Pino and P.L. Felmer, Local mountain passes for semilinear elliptic problems in unbounded domains,

Calc. Var. Partial Differential Equations 4 (1996), 121–137.
[18] J.M. do Ó, On existence and concentration of positive bound states of p-Laplacian equations in RN involving

critical growth, Nonlinear Anal. 62 (2005), 777–801.
[19] G.M. Figueiredo, Existence of positive solutions for a class of p&q elliptic problems with critical growth on

RN, J. Math. Anal. Appl. 378 (2011), 507–518.



NONLINEAR (p, q)-SCHRÖDINGER EQUATIONS WITH LACK OF COMPACTNESS 31

[20] G.M. Figueiredo and M. Furtado, Positive solutions for some quasilinear equations with critical and super-
critical growth, Nonlinear Anal. 66 (2007), no. 7, 1600–1616.

[21] G.M. Figueiredo and M. Furtado, Positive solutions for a quasilinear Schrödinger equation with critical
growth, J. Dynam. Differential Equations 24 (2012), no. 1, 13–28.

[22] G.M. Figueiredo and J.R. Santos, Multiplicity and concentration behavior of positive solutions for a
Schrödinger-Kirchhoff type problem via penalization method, ESAIM Control Optim. Calc. Var. 20 (2014),
no. 2, 389–415.

[23] N. Fusco and C. Sbordone, Some remarks on the regularity of minima of anisotropic integrals, Comm. Partial
Differential Equations 18 (1993), no. 1-2, 153–167.

[24] C. He and G. Li, The regularity of weak solutions to nonlinear scalar field elliptic equations containing
p&q-Laplacians, Ann. Acad. Sci. Fenn. Math. 33 (2008), no. 2, 337–371.

[25] C. He and G. Li, The existence of a nontrivial solution to the p&q-Laplacian problem with nonlinearity
asymptotic to up−1 at infinity in RN, Nonlinear Anal. 68 (2008), no. 5, 1100–1119.

[26] O.A. Ladyzhenskaya and N.N. Ural’tseva, Linear and Quasilinear Elliptic Equations, (Academic Press, 1968).
[27] G. Li and G. Zhang, Multiple solutions for the p&q-Laplacian problem with critical exponent, Acta Math.

Sci. Ser. B Engl. Ed. 29 (4) (2009), 903–918.
[28] P.-L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case.

II, Ann. Inst. H. Poincaré, Anal. Non Linéaire 1 (1984), no. 4, 223–283.
[29] P.-L. Lions, The concentration-compactness principle in the calculus of variations. The limit case. I, Rev.

Mat. Iberoamericana 1 (1985) 145–201.
[30] P. Marcellini, Regularity under general and p, q-growth conditions, Discrete Contin. Dyn. Syst. Ser. S 13

(2020), no. 7, 2009–2031.
[31] P. Marcellini, Growth conditions and regularity for weak solutions to nonlinear elliptic pdes, J. Math. Anal.

Appl. 501 (2021), no. 1, Paper No. 124408, 32 pp.
[32] G. Mingione and V.D. Rădulescu, Recent developments in problems with nonstandard growth and nonuniform

ellipticity, J. Math. Anal. Appl. 501 (2021), no. 1, Paper No. 125197, 41 pp.
[33] J. Moser, A new proof of De Giorgi’s theorem concerning the regularity problem for elliptic differential

equations, Comm. Pure Appl. Math. 13 (1960), 457–468.
[34] D. Mugnai and N.S. Papageorgiou, Wang’s multiplicity result for superlinear (p, q)-equations without the

Ambrosetti-Rabinowitz condition, Trans. Amer. Math. Soc. 366 (9) (2014), 4919–4937.
[35] N. Papageorgiou and V.D. Rădulescu, Resonant (p, 2)-equations with asymmetric reaction, Anal. Appl. (Sin-

gap.) 13 (2015), no. 5, 481–506.
[36] N.S. Papageorgiou, V.D. Rădulescu, and D.D. Repovš, On a class of parametric (p, 2)-equations, Appl. Math.

Optim. 75 (2017), no. 2, 193–228.
[37] N.S. Papageorgiou, V.D. Rădulescu, and D.D. Repovš, Double-phase problems with reaction of arbitrary

growth Z. Angew. Math. Phys. 69 (2018), no. 4, Art. 108, 21 pp.
[38] P.H. Rabinowitz, Variational methods for nonlinear elliptic eigenvalue problems, Indiana Univ. Math. J. 23

(1973/74), 729–754.
[39] P.H. Rabinowitz, On a class of nonlinear Schrödinger equations Z. Angew. Math. Phys. 43 (1992), no. 2,

270–291.
[40] J. Simon, Régularité de la solution d’un problème aux limites non linéaires, Ann. Fac. Sci. Toulouse Math. 3

(1981), 247–274.
[41] A. Szulkin and T. Weth, The method of Nehari manifold, in Handbook of Nonconvex Analysis and Applications,

edited by D. Y. Gao and D. Motreanu (International Press, Boston, 2010), pp. 597–632.
[42] N.S. Trudinger, On Harnack type inequalities and their application to quasilinear elliptic equations, Comm.

Pure Appl. Math. 20 (1967), 721–747.
[43] X. Wang, On concentration of positive bound states of nonlinear Schrödinger equations, Comm. Math. Phys.

53 (1993), 229–244.
[44] M. Willem, Minimax Theorems, Progress in Nonlinear Differential Equations and their Applications, vol. 24,

Birkhäuser Boston, Inc., Boston, MA, 1996.
[45] V.V. Zhikov, Averaging of functionals of the calculus of variations and elasticity theory, Izv. Akad. Nauk

SSSR Ser. Mat. 50 (1986), no. 4, 675–710; English translation in Math. USSR-Izv. 29 (1987), no. 1, 33–66.



32 V. AMBROSIO AND V.D. RĂDULESCU

Vincenzo Ambrosio
Dipartimento di Ingegneria Industriale e Scienze Matematiche
Università Politecnica delle Marche
Via Brecce Bianche, 12
60131 Ancona (Italy)
Email address : v.ambrosio@univpm.it

Vicenţiu D. Radulescu
Faculty of Applied Mathematics
AGH University of Kraków
al. Mickiewicza 30
30-059 Kraków (Poland)
&
Department of Mathematics
University of Craiova
200585 Craiova (Romania)
Email address : radulescu@inf.ucv.ro


	1. Introduction
	Notations:

	2. The modified problem
	3. The autonomous problem
	4. Multiplicity of solutions to (2.1)
	5. Proof of Theorem 1.1
	5.1. Proof of Theorem 1.1

	6. The supercritical case
	Acknowledgements

	References

