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1. Introduction
1.1. Overview

In this paper, we are concerned with the fractional p-Laplacian Choquard logarithmic problems with
exponential critical or subcritical Stein-Weiss type nonlinearity. The features of this paper are the following:

(i) the appearance of the Stein-Weiss convolution term generates the lack of translation invariance;
(ii) the presence of the Choquard logarithmic term with the peculiarity that is unbounded and sign-
changing, generates an unconventional workspace;
(iii) the certain energy level creates a bridge between exponential critical growth case and the compactness
of the fractional p-Laplacian Choquard logarithmic problems;
(iv) the analysis developed in this paper is concerned with the combined effects of the Choquard logarithmic
term and the exponential-subcritical/critical nonlinearity;

Since the contents of the paper are closely concerned with the weighted nonlocal Stein-Weiss problem,
we briefly recall the related background and some pioneering contributions in this field, and we start with
the weighted LP estimates for the fractional integral

/| dy7 0<p<N,

which is a fundamental problem in the field of harmonic analysis and also plays a crucial role in the analysis
developed in our paper. Such weighted L? estimates are generated from quite natural phenomena, which can
be summarized as that the appearance of some suitable symmetry hypotheses, notably radial symmetry,
contribute to improving the classical estimates and some embedding properties of function spaces. For
example, the classical radial estimate by Strauss [43] establishes that all radial functions u € H(R™)(N > 2)
satisfy

2l ¥ u(@)] < CIVulle, fal 2 1,

which implies that the information of gradient in H!(R?) can give a pointwise bound and also reveal the
decay of u. However, this is false in the general case. So such weighted LP estimates have practical significance
in the large wide of mathematical fields.

A series of studies have been done on the weighted L estimates for the fractional integral T},. Historically,
Hardy & Littlewood [23] first considered the weighted LP estimates for the one-dimensional fractional
integral operator 7),, then Sobolev [41] extended it to the N-dimensional case. Later, Stein & Weiss [42]
obtained the following two-weight extension of the Hardy-Littlewood-Sobolev inequality, which is known as
the Stein-Weiss inequality.

Proposition 1. (Doubly weighted Hardy-Littlewood-Sobolev inequality) Let t,s > 1 and 0 < p < N with
9+ 5 >0, % + W + % =2,9< t—]\,[, B < %, g1 € LY(RYN) and go € L*(RY), where t' and s' denote the
Hélder conjugate of t and s, respectively. Then there exists a constant C(N, u, 9, B8,t,s), independent of g1,
go such that

y)
dady < C(N, 1,9, B, t, . 1
//|$—y|“|y79 z|P Y (N, 1,9, 8,1, 8) |9 |l g2 (1)
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For 9 = =0, it is reduced to the Hartree type (also called the Choquard type) nonlinearity, which is driven
by the classical Hardy-Littlewood-Sobolev inequality (See [30]).

The Stein-Weiss inequality provides quantitative information to characterize integrability for integral
operators and is intrinsically determined by their dilation character. The study and understanding of the
Stein-Weiss inequality have aroused an increasing interest among many scholars due to its importance in
applications to problems in harmonic analysis and partial differential equations. Now, we take a look into
the related applications concerning with Stein-Weiss term. Giacomoni et al. [8] studied the polyharmonic
Kirchhoff equations involving the critical Choquard type exponential nonlinearity with singular weights. It
is worth mentioning the beautiful work of Du et al. [18], where they investigated the following equation,

1 2, .
TRE (u«/ %dy u(z)Ponu,  zeRY,
N

r — ylHy|>

where 2;, | = (2N — 2a — p)/(N — 2). The authors developed a nonlocal version of the concentration-
compactness principle to investigate the existence of solutions and study the regularity, and the symmetry
of positive solutions by moving plane arguments under the critical case, as well as the results under the
subcritical case. By using the moving plane arguments in integral form, Yang et al. [49] obtained the
symmetry, regularity, and asymptotic properties of the weighted nonlocal system with critical exponents
related to the Stein-Weiss inequality. Regarding other related results, we refer to Alves & Shen [7], Biswas
et al. [9], Yang & Zhou [50], Zhang & Tang [53], Zhang, Tang & Rédulescu [54], and the references therein.

Another typical feature of our problem is the appearance of the exponential critical nonlinearities in
the fractional Sobolev space W*P?(R¥Y). We start a short description of the development of this research
with the Trudinger-Moser inequality. There are several results about the Trudinger-Moser inequality in the
Sobolev-Slobodeckij spaces [1,3,20,33,34]. Concerning the N-dimensional fractional p-Laplacian equation,
based on the result [38] and by applying a slightly modified version of the Trudinger-Moser sequence, Parini
& Ruf [37] established the following local fractional Trudinger-Moser inequality.

Lemma 2. Let Q be a bounded, open domain of RN (N > 2) with Lipschitz boundary, and let s € (0,1),
sp = N. Then there exists an exponent « of the fractional Trudinger-Moser inequality such that

sup /exp(a|u|%) < 4o00.
UGW;)p(Q)a[u]S,pflﬂ

Set

= i (s,Q) :=sup q a: sup /exp(a|u|%) < 400

w€WS P (Q),[u]s,p<1 3

Moreover, a, < af;N, where

ANwN) T(p+ 1) X (N+k—-1)! 1 N
oy = N (Nwn)“I'(p + )Z( + ) ’
: N! pors k! (N +2k)P
and for s € (0,1) the Sobolev-Slobodeckij space Wg’p(ﬂ) is defined by the completion of C§°(2) with respect
of the norm
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T =

wis ey = (fullfo + [02,) "

where [u]s p is the Gagliardo seminorm

8,p = (R/ |1'— |N(+s)p| dady

Then Zhang [51] generalized the local fractional Trudinger-Moser inequality [37] to the whole space as

3 =

follows.

Lemma 3. Let s € (0,1) and sp = N. Then for every 0 < a < «, the following inequality

sup / <I>N7s(a\u|%)dm < 400 (2)
uEWS,p(RN)’”uHWs‘p(RN)SIRN
holds, where ® y 4(t) = ! — {iaz z—J, and j, = min{j € N : j > p}. Moreover, for a > o y
N
sup / Oy s(a|u|¥=5)dz = 400,

wEW e RN, ullyys.p ey S
where s € (0,1) and p > 2, the Sobolev space W*P(R™N) is defined by
WeP(RYN) = {u e LP(RV) : [ulf , < +oo}.

Remark 1. As explored by Zhang [51, Remark 1.2], ag y Is just an upper bound of a, but they did not
give the precise value of «.

Based on the Lemma 3, we say that f(x,t) has subcritical exponential growth at ¢t = +oco if it satisfies

(F1) f € C(RYN x R,R), Supgern |s|<¢||f (@, 8)| < +o0 for every ¢ € R, and

, h+m f(z,t) exp(— t%) =0 uniformaly on z € RY for all a > 0.
e

We say that f(z,t) has the critical exponential growth at ¢ = 400 if it satisfies

(F1') f € CRN xR, R), sup,crn |5<|¢/|f(2,5)| < +00 for every ¢ € R, and there exists ag > 0 such that

. hr+n f(z,t) exp(— at%) =0 uniformly on z € RY for all a > ag
—+00

and

. lu_gl f(z,t) exp(— at%) = 400 uniformly on 2 € RY for all a < .
5

Based on the Trudinger-Moser inequalities, many authors considered the existence of weak solutions
for the N-dimensional nonlinear equations as an application. On the bounded domain €2, we refer to de
Freitas [22] for quasilinear problems involving the N-Laplacian operator; Lam & Lu [27] for polyharmonic
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equations; Lam & Lu [28] for elliptic equations and systems. As for the whole space, we refer to Lam & Lu
[26] for N-Laplacian equations and Alves & Figueiredo [5] for quasilinear problems.

Among the investigations into the nonlinear partial differential equation with Stein-Weiss term in the
exponential critical case, to the best of our knowledge, there is the only work Biswas et al. [9]. The authors
considered a kind of quasilinear Schréodinger equations,

~Aw = Av(u+ Vil (R/ W) T R )

where N > 2,0 < < N, 3 >0and 28+ p < N. The potential V : RV — R is a continuous function
satisfying 0 < Vy < V(x) for all z € RY and limy,|_, 400 V(%) = Vio, and the nonlinearity f: RY x R — R
is a continuous function with critical exponential growth in the sense of the Trudinger-Moser inequality.
Different from the condition (f) in [10], they applied the following assumption

(f') assume that
sf(z,s)F(x,s)

to exclude the vanishing case of the Cerami sequence. Then compared with the energy level of the limit

lim =00, uniformly in z € RY,

57T exp (2|8\

equation, which is the equation (3) with V(z) = V., they could verify that equation (3) has a non-trivial
positive weak solution.

For related results on the fractional p-Laplacian equations in R with the nonlinearity satisfying ex-
ponential critical growth, we refer to [10,35,39]. Pei [39] investigated the existence of nontrivial solutions
to a class of quasilinear fractional p-Laplacian problems without Ambrosetti-Rabinowitz (AR) condition.
Nguyen [35] investigated the singular Schrédinger systems involving the fractional p-Laplacian and expo-
nential critical nonlinearities in the sense of the Trudinger-Moser inequality. Recently, Béer & Miyagaki
[10] considered the fractional p-Laplacian Choquard logarithmic equation involving a nonlinearity with the
exponential critical and subcritical growth. In particular, they studied the existence and multiplicity of the
equation

(=A)pu+ [uf 2w+ (n |- [+ [ul”)ul""u = f(u) n RY, (4)

where N = sp, s € (0,1), p> 2 and f: R — R is continuous, with primitive F'(¢ fo 7)d7, and (—A);
denotes the fractional p-Laplace operator. To guarantee that the Cerami sequence and the minimizing
sequence of the ground state energy level satisfy the energy estimation, they relied on following hypothesis

(f) there exist ¢ > 2p and C;; > %pf—i such that F'(t) > C,|t|? for all t € R,
qP i

where the parameters S;, pg > 0 defined in [10, Lemma 3.7] involve the embedding W*?(RY) — LI(RY).
After excluding the vanishing case of the Cerami sequence {u, }, they verified carefully the properties that

@' (i) (i, —u) = 0 and / fin) (i, —u)dr — 0 as n — +oo,

where u is the weak limit of the translated sequence {@,}, and ¢ is the energy functional of equation (4).
These properties contributed to obtaining the convergence @, — w in X', where X’ is the subspace of
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WsP(RYN). Moreover, they verified that there exists a constant C such that ||v(z + y,)||x: < C|lu,||, where
v is an arbitrary element in X’. Then it is easy to check that u is a nontrivial critical point of ¢ in X’. In
the second part of [10], they used the genus theory to prove the multiplicity result. Here, we also refer the
reader to [37,51] and the references therein for the relative progress of such problems.

Finally, it is worth mentioning that there has been increasing interests into the study of fractional p-
Laplacian and non-local operators of elliptic type in recent years. Such type of operators arise in a quite
natural way in many different applications, such as optimization, finance, phase transitions, stratified mate-
rials, anomalous diffusion, crystal dislocation, soft thin films, semipermeable membranes, flame propagation,
conservation laws and water waves. See [21,24,31,47,48] and the references therein for more detailed intro-
ductions and applications on the fractional p-Laplacian. We also refer to the work by Molica Bisci, Radulescu
& Servadei [32] for a comprehensive analysis of nonlocal fractional problems.

1.2. Main goal and difficulties

In this paper, we are concerned with the following fractional p-Laplacian Choquard logarithmic problems
with exponential critical or subcritical Stein-Weiss type nonlinearity,

(~A)5u+ V(@) + (In] | * ful?) [ufP~u = (R/ \y|ﬁ|x_y|u fﬁ[? L rY, )

where N = sp >2,5€(0,1),0<pu <N, >0,28+u <N and (—A); denotes the fractional p-Laplacian
operator, which, up to normalization factors, can be defined as

SN : u(z) — u@)|P*(u(@) — u(y))
(=A)u(r) = C(N,s) ;1{‘% / o — g dy
RN\ Be (z)

for + € RN, where B.(z) := {y € RN : |z — y| < €}. Throughout this paper we omit the normalizing
constant to simplify the expressions. The potential V € C(R¥,[0,00)), and f : RY x R — R is continuous
nonlinearity with exponential critical and subcritical growth, and with primitive F'(z,t) fo x,7)dT.

Here we point out that the Choquard Logarithmic term together with the Steln—Welss type nonlinearity
with the exponential critical growth brings some difficulties in our analysis, which can be summarized as
follows.

i) To overcome the obstacle caused by the sign-changing and unbounded potential
[ [ e - plut@Plutrasdy,
RN RN

following the methods in [12,17,44], we shall use the smaller Hilbert space

X =S uecWwPRN): /[V(x) + In(1 + |z|)]uPder < oo

RN

and the norm || - ||« that will be introduced in Section 2. However, the norm || - ||. lacks translation
invariance. Even if we could overcome this difficulty by applying the symmetric bilinear form

[ [ s le = shlu@l o)l asdy,

RN RN
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this problem still exists due to the appearance of the Stein-Weiss convolution term.
ii) One of the main difficulties comes from dealing with the exponential growth case. We need to verify
that if u,, — u in X, then

nli“éo/ (m/ |y|B|x— |ﬂ FE

converges to

, (y, unly [, un(2))u(z)
. / (m/ ly|7|z — yl“ | o

which was adopted to find the ground state solution of the equation (5). However, our problem is raised
in the exponential growth case, and it does not hold even if u,, — % in L4(RY) for ¢ € [p, +00) since
the inequality introduced in Lemma 2 needs the critical exponent g to be less than .

iii) We will be working with an exponential term. In order to guarantee that the Cerami sequence for
the ground state satisfies the exponential estimates, we need to give a detailed analysis by using the
fractional Trudinger-Moser type inequality in the whole space RY. However due to the appearance of
the Choquard logarithmic term and the Stein-Weiss term, controlling the minimax levels and excluding
the case that the Palais-Smale sequence is vanishing become more complicate and difficult.

When N = 2, p = 2, s = 1, and the nonlinearity term is the general nonlinearity f(z,u), problem (5)
reduces to the following Schrédinger equation

—Au+V(z)u+ (R/ In|z —ylu?(y)dy | u = f(z,u), =R (6)

Similarly, one typical feature of the equation is the appearance of the sign-changing and unbounded loga-
rithmic term, which leads to a situation where the corresponding energy function of equation (6) could not
be well-defined on H'(R?). Inspired by [44], Cingolani & Weth [17] developed a variational framework for
such kinds of problems, that is to consider the smaller Hilbert space

X, ={uec H (R?): /ln(l + |z))u?de < 0o p
R2

which contributes to overcome the difficulty caused by the typical feature of equation (6). After this work, a
series of subsequent studies have been done on the existence and multiplicity of the solutions to the nonlinear
Choquard Logarithmic equations, see for example [13,14,16,19]. For problems with the exponential critical
growth, we refer to [4,6,15,45]. Chen & Tang [15] first obtained the existence of solution with an axially
symmetric setting, instead of radial symmetry. In particular, they investigated equation (6) under the
conditions (Vy) and (F{), where

(Vg) V € C(R%,[0,00)), V(x) = V(z1,22) = V(|21],|x2|) for all 2 € R? and lim inf),) o V() > 0,
(Fp) f(x,t) = f21,22,t) = f(Jo1], |22],2) for all (z,t) € R? x R,
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then they could introduce the following smaller space
H), = {ue H'(R?) : u(z) := u(w1,22) = u(|z1], |22]), Vo € R?}.

With the help of [46, Theorem 1.28], they could show that X, N H;S is a natural constraint of X. Another
advantage of using axially symmetry is that they could control the part of the Logarithmic term

[ [l = sl @)l sdy

R2 R2

from below by a standard term which consists partially of the norm of space X,. Applying certain new
tricks, they obtained the existence of the nontrivial solution, the ground state solution of Nehari-type, and
infinitely many solutions to the above system under some weak assumptions on V and f. Notice that very
recently, Cao, Dai & Zhang [12] considered the following Schrédinger-Newton equation in R?,

L (n(] - ) [uf?) [ulP~%u = blu|?~2u,

—Au+ a(z)u + 5

where infgza > 0, v > 0,0 >0, p > 2 and ¢ > 2. They obtained the existence of ground state solutions
and mountain pass solutions to the above equations for p > 2 and ¢ > 2p — 2 via variational methods.
Inspired by the axially symmetric setting explored in Chen & Tang [15], we make the hypotheses.

(VO) V. e CRM,[0,00)), V(z) = V(z1,22,.c,zn) = V(|z1|,|22|s .0, |20|) for all z € RN and
lim inf |, V(2) > 0.
(FO) f(xat) = f($17$2a mvxnat) = f(l(E1|, |£L'2|, ey |$n|,t) for all (:L',t) € RN x R.

Together with Proposition 6 illustrated in next section, we could avoid the problem i). However, it is far from
understood whether the equation (5) still possesses nontrivial solutions under the exponential subcritical
and critical cases since the appearance of the Stein-Weiss type convolution and whether the variational
method developed in Chen & Tang [15] can be extended to the nonlinear Choquard Logarithmic equation
(5). In particular, although we could rely on the approach explored in [15] to surmount difficulty ii), but
there still exists a problem for verifying whether the fact that

nllnéo/ (R/ g | SR d“/ (R/ P R

holds when wu,, — u in W*P(R™). In order to obtain the above fact, there is the only paper that dealing

with the nonlinear equation with Stein-Weiss convolution term [9], where they used the Radon-Nikodym
theorem to obtain that when u,, — u in W$P(RY),

n“i%o/ (m/ ) d“/ (R/ Pty | e

holds for every ¢ € C5°(RY). However, since the appearance of the Choquard Logarithmic term and since

we can not prove that

n—oo

RN RN RN RN

lim / Iz — y1)lun ()17 ten (1) P2 tn ey — / / In(jz — y]) () Plu(y) P 2uédzdy,
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the arguments explored in [9] is not available in our problem, which implies that we need some new tricks
and approaches.

1.8. Main results

To state our results, at the beginning, we introduce some assumptions. In the subcritical exponential
growth case, namely (F1) holds, in addition to (V0) and (F0), we also assume that f satisfies the following
conditions:

(F2) lim; o —m 5 = 0 uniformly in z € RY;
t N
(F3) there exists 6 > 2p such that f(z,¢)t > 0F(x,t) > 0, for all ¢t > 0.

The first main result in this paper establishes the existence of solutions of (5) in the subcritical case.

Theorem 4. Assume that V and f satisfy (VO) and (F0)-(F3). Then (5) has an azially symmetric solution
ue X \{0}.

In the critical exponential growth case, namely (F1’) holds, in order to find positive solutions of equation
(5), we assume that f € C(RY x R,R) and for a.e. + € RN, f(z,5) =0 for s <0 and f(s) > 0 for s > 0. In
addition to (F0), (F1’) and (F2), we also assume that V and f satisfy:

(V1) V. e CRY,[1,00)), V(z) = V(z1,22,.cszn) = V(|z1|,|22|s...s |20]) for all z € RN and
liminf‘mHoo V(ZL‘) > 0;
(F4) ‘{l(ﬁf)l is nondecreasing on (0, +00);

(F5) there exist My and ¢y > 0 such that for any [t| > to, F(t) < M| f(t)];
N
(F6) liminf; ,., f(t)/e®!" " =k, and  satisfies that

N-—s

- N\ ° 1 (N — 5) + Oy In[Ax2Co(1 + Vo pN AS,,)]
N _
CunVocp (a:’N> 1o <lnn> + $(2N =28 — pu)Inn

N-—s N—s
@
1 e <0,
Oés,N

where n is large enough and A, C, Ve, p, an,s, 6, Will be explained in Section 4.

2agNslnn

B Cza; (N —s) 209N
(2N =26 — p)ag y

Remark 2. By (F3)-(F4), we can obtain that F(z,t) > 0, %f(x, t)t—F(z,t) > 0 and Fg,;t) is nondecreasing
on (—o00,0)U (0, +00). We would like to point out that the conditions (F3)-(F4) can be weakened. However,
we do not involve the weakening conditions in our work, since we are aiming to figure out the feature of
the Choquard Logarithmic term (In | - | * [u|P)|u[P~2u and the feature of exponential critical growth on the
Stein-Weiss nonlinearity, in which weakening conditions (F3)-(F4) do not bring any effective changes to

these aspects.

Remark 3. We shall use the weaker assumption (F6) to control the energy level of the Cerami sequence by
a fine threshold, which needs a more complicated process compared with (f) and (f’), see Lemma 16. This
kind of condition like (F6) somehow reveals more essential features of the exponential critical growth given
in (F1).

Next, we give the second result in the exponential critical case.
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Theorem 5. Assume that V and f satisfy (V1), (F0), (F1'), (F2) and (F4)-(F6). Then (5) has an azxially
symmetric positive solution u € N such that I(u) = m := infy I when 8 < p, where

N :={ue E\{0}: (I'(u),u) =0},
E:=XNW:P and
WP ={ue Ws’p(]RN) cu(x) = ul(xy, xe, . xy) = ul|a], |22, J2N]), V2 € RN}.

Remark 4. In view of the [9, Remark 1.5], we could conclude that if potential term V' satisfies the compact-
coercive case, or radially symmetric case, or asymptotic case of a periodic function, then we could use the
arguments explored in [9]. It is worth mentioning here that by (VO0)(or (V1)) our framework is far from the
radially symmetric case. Compared with the condition (V0), condition (V1) ensures that inf,cg~ V(z) > 1,
which contributes to establish the relationship between two norms illustrated later.

The present paper is organized as follows. In Section 2, we discuss the variational setting and some
preliminary results. Section 3 is devoted to establishing the mountain pass geometry and some analysis
with the mountain pass level. In Section 4, we prove the existence of the axially symmetric solution of the
equation (5) in the exponential subcritical case. In Section 5, we show the existence of the axially symmetric
positive solution of the equation (5) in the exponential critical case after some refined analysis.

Notation. Throughout this paper, we make use of the following notations:

e C,c,Ci,c; (i =1,2,...,) denote positive constants which may vary from line to line.

« For any exponent p > 1, p’ denotes the conjugate of p and is given as p’ = p/(p — 1).

e B,(x) denotes the ball of radius r centered at x € RY.

e The arrows — and — denote the weak convergence and strong convergence, respectively.
o L*(RM)(1 < s < 400) denotes the Lebesgue space with the norm [[ul|s = (g~ |u[*dz)'/*.

2. Preliminary results

In this section we recall some preliminary results. We first recall that the fact 0 < s < 1 and sp = N,
and the Sobolev space W*P(R¥) is defined by

WoP(RYN) = {u € LPRY) : [ully. ,gn) < +00},

where [u]ys» @~y is the Gagliardo seminorm

T

It is well-known that the space (W*P(RY), || - |lyy«.»rx)), where |- ||}, @~y = [, +-15, is an uniformly
convex Banach space, particularly reflexive, and separable. We also remind the reader that Cg"(RN ) is
dense in W*P?(R™), see [2, Theorem 7.38].

Note that if u € W*P(R¥Y) is a weak solution for (5), that is for every v € W*P(RY),

//lu — u(y)|P2(u(z) — (y>)<v(x)_v(y))dxdy+/V(m)|u\p_2uvdx

| ‘QN
RN RN RN
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+ / / In (| — ) u(@) P u(y) P~ 2u(y)o(y)dedy

RN RN

fou(@))o(z) |
/ (m/ |y|ﬂ|x—y|u w00

In this sense, we consider the associated energy functional associated to the problem (5),

R R G R 1)) R Y AUV
= [ [ a5 [V

RN RN RN

1 p P
+ o / / In(|z — ) u(z) P u(y) Pdzdy

RN RN
/ (R/ Sy | s

Then, the critical points of I will be weak solutions for (5). However, one can see that I is not well defined

over the whole space W*P?(R¥) due to the appearance of the Choquard logarithmic term. Hence, following
the ideas introduced by Stubbe [44], we consider the slightly smaller space

X = {uew»(rN): / V(@) + In(1 + o)) |u(@)[Pdz < +00 b | (8)
RN
Let
ol =118 + 1 1050
where [|ully, , = [gx V(2)|ulPdz. We define, for any measurable function w : RY - R
lull« = /111(1 + |z])|u(z)[Pdz € [0, 00]. 9)
RN
Then |[ul|g == (||u]|” + ||ul|2)? is a norm on X. The space (X, ||-||) is uniformly convex and reflexive. Here,

we give the useful embedding properties in X as [9, Proposition 2.1] and [15, Lemma 2.1].
Proposition 6. Assume that (V0) holds, then there exists vo > 0 such that
Yollullwsr@yy < lull,V u e X,

and the space X is continuous embedded in W*P(RN). Moreover, the space X is compactly embedded in
LY (RY), for all w > p.

Next, we consider the property of the continuity of the functional I. The following lemma contributes to
controlling the exponential term.

Lemma 7. Let (¢,) C X and ¢ € X. Then,
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(@) if ¢n — & in WP or ¢, — ¢ in X, then there exists a subsequence (¢n,) C (én) and a function
h € W*P(RN) such that ¢, — ¢(x) a.e. in RN and |¢,, (x)| < h(z) for all k € N and a.e. in RY.

(b) if én, — & in X, then there exists a subsequence (¢n,) C (¢n) and a function h € X such that
b, () = ¢(z) a.e. in RN and |¢,, | < h(z), for all k € N and a.e. in RY.

We define the operators Y : W*?(RY) x W*P(RV) — R by

[ )~ w)P ) —u@) @) o)
T (u,v) —// P dzdy, Yu,v € WOP(RY)

RN RN
and T : W*P(RN) x W*P(RN) — R is defined by

Y(u,v) =T(u,v) + / V(x)ulP2uvdz, Yu,v € WHP(RYN).
RN

One can easily verify that T (u,v) < ||lul[?~||v|| and T(u,u) = ||u|| for all u,v € W*P(RN).
Inspired by [17], we define the following symmetric bilinear forms

(1,0) > A (,0) = / / (1 + |z — yl)ue)o(y)dedy,

RN RN
(u,v) = Aa(u,v) = / / In <1 + ﬁ) u(z)v(y)dady,
RN RN

wis Ao, v) = A (u,v) — Ag(u,0) = / / In(jz — yl)u(z)o(y)dzdy,
RN RN

where the definition is restricted, in each case, to measurable functions u,v : RY — R such that the
corresponding double integral is well defined in Lebesgue sense. Noting that 0 < In(1 +r) < r for r > 0, it
follows from the Hardy-Littlewood-Sobolev inequality that

1
| An(u,0)| < / / @) ey < Csfullany -l ey (10)
RN RN

with a constant C; > 0. Using above three symmetric bilinear forms, we define three auxiliary functions
2Np
Vi WEP(RN) = [0,00), Vo : L28-1(RY) — [0,00) and Vg : WP(RY) — R U {co}, given by
wes Vi) = sl Ju) = [ [ a1+ 12 = ) fute) P uty) Pdady,

RN RN

ws Vo) = Aalu ) = [ [ (14 LY @l lut) pasay
RN RN

w s Vo(u) = Ao(ul?, [ul?) = Vi (u) — Va(u) = / / In (| — y])u() P u(y) Pdady.

RN RN

Remark 5. (i) As a consequence of Hardy-Littlewood-Sobolev Inequality (HLS) [29], with & = 8 = 0 and
A =1, we have % +1+ % = 2. So, making a natural choice for ¢ and ¢, that is ¢ = ¢t = 2N/(2N — 1), we
obtain that
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2N
Va(u)| < Kollul%y, , Vue L==1(RY), (11)

so V, takes finite values over Lo (RN);
(i) Vi(u) < 2|ulZ][ully, since In(1+ [z —y|) < In(1 + |z]) + In(1 +[y]);
(iii) fgey In(1+ |2 = y])|u()Plo(y) Pdedy < [[ulZ[v]l + [ollZ]lull}-

According to the arguments explored in [9] and [10], we can obtain that Vg, V;, Vo are of class C*(X,R),
with

D=2 [ [1nl+]z = s)lu@)Plu@)l uly)o(y)dedy

RN RN

=2 [ [w(1e ) WPl 2t

RN RN

and

From the assumptions (F1)(or (F1’)) and (F2), we obtain that for any € > 0, ¢ > p, there exist positive
constants C(q,e) > 0 and a > 0 (or & > o > 0) such that

(2N-28—p)p

|F(z,s)| <elu| 28 % +C(g,€)]s)? [exp(a|s|%) — Sy, _a(a,s)| forall (z,5) e RN xR, (12)

Thus, in light of the Sobolev embedding, for any u € W*?(RY), F(z,u) € LI(RY) for any ¢ > 2N/(2N —
23 — ). In view of Proposition 1 with ¢ = s and ¢ = 3, we can obtain

/ (R/ Iy\ﬁ\x - y|” F(J[;ng(x))dx < O(N, s DIF () 3w (25 —25—p0)- (13)

By Lemma 3, (12), (13) and the standard arguments, we can obtain that I is well defined and I €
CYH(X,R), and

1) = JllP + 5V / (@/ e | S e e x "
= [ [ el =vr <|x< RUOILCET PRV TR
RN RN RN

+ Ao([ul?, |[ulP~?uv) — / (R/ |y|5|xfy|l‘ f(x,u;Tﬁ))v(x)d% YVu,ve X, (15)

and

(I'(w),u) = [[ul]” + Vo(u / (R/ M%W f“’jg;)“(x)dx,vuex. (16)

Hence, the solutions of the equation (5) are the critical points of the functional (7).
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3. Mountain pass geometry and technical results

In this section we will investigate the geometry of I and provide some technical results. First, we give the
following version of the mountain pass Theorem, by which we can verify the mountain pass geometry of I.

Lemma 8. Let Y be a real Banach space and let I € C1(Y,R). Let S be a closed subset of Y which disconnects
(archwise) Y in distinct connect components Y1 and Ya. Suppose further that I(0) =0 and

(i) 0 € Y1 and there is a > 0 such that I|s > «,

(ii) there is e € Ya such that I(e) < 0.

Then I possesses a (Ce). sequence with ¢ > a > 0 given by

= inf I(y(t
¢ = Inf max (v(t))

where

I'={yeC([0,1,Y) : 7(0) = 0,7(1) = e}.

Now we choose wy € E \ {0}, then it is easy to show that lim; o I(twp) = —oo due to (F3). To make
the notation concise, we set, for « > 0 and ¢t € R,

+0oo k
N 67 Nk
H(a,t) = exp(alt|v==) — Sk, —2(a,t) = g —7 [t~
k=k,—1

where Sy, _2(a,t) = ZZ’;BQ O‘k—’:|t|1\1f\%k and k, = min{k € N; k > p}.

Lemma 9. Assume that (V0), (F0), (F1) (or (F1')), (F2) and (F3) hold, then there exist a constant ¢ €
(0,8up; > ®(two)] and a sequence {u,} C E satisfying

O(un) = ¢ |2 (un)llp+ (1 + lunlle) — 0. (17)

Proof. By Proposition 6, the embedding X < L¥(R¥) is continuous for w € [p,o0), which implies that
there exists v, > 0 such that

lullw < yolull, VueX.

By (F1)(or (F1')) and (F2), for each € > 0, there exists some constants o > 0, ¢ > p and C: > 0 such
that
~26-)p

1F(z, )| < elul =25 4 Oluli%(a, ).

In view of Lemma 3, for all ||u||ws.» satisfies

N
ANl ¥ g

< ay,
ON 25— ¢
we have
2N—28—pu
ANal|ul| Vo w
/ Wer@®TY) “ dx < +o00.
2N =28 —p flullwsp ey
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Hence, jointly with the Sobolev embedding, we can obtain that

/ (m/ |y|ﬁ|$ - yl” F(alj;:llbﬁ(x))dx

@eN-— 2/3 “)p

+ Celu|"H (v, u)’ ’

C(N,u,B) H5|u| L= my

C(N, . B) | 292 { ool / julPda:
RN

2N __2Ng 2Na
re B [t (20— ) o
RN

2N—-28—p
N

2N—28—pn
2N

< (N (2N=26-up 2 2 4Na d
< Ci(N,p, B,€) ||U||Lp(]RN) +||u||L2N§g§7“(RN) / 2N—25—,u7u z
N

_ 2N—28—p
2N
(2N—28—p)p 2[3 wp 4NO[||U||Ws,p(RN) U
< Co(N, i B,) [l + P / , s
2N =28 —p " ullwer @y
(2N — 25 w)p
< Cy(N, 1, B,¢) (HuII + [lul)
N-—s
— — N
Using (11) and the Sobolev embedding, we have that for ||y s»@~y) < (W) , then
1 1 F(x,u(x
I(u) = ~[lull” + 5= [Va(u) - / 5 e
p 2p vl Iw—y\“ ]
2N-26-p)p
> Jull - (N ) (||u|| R 20 — O .
. (2N —28—p)a. % : _
Hence, there exists ko > 0 and 0 < p < (" such that I(u) > o for all u € E with ||ul| = p.
Since lim;_, o I (twg) = —o0, we can choose T' > 0 such that e = Twy € Yy := {u € E : |lu|]| > p} and

I(e) < 0, then in view of Lemma 8 with Y = F and Y} := {u € E : ||u|]| < p}, we deduce that there exist
¢ € [Ko,sup;>ol (two)] and a sequence {u, } C E satisfying (17). O

Lemma 10. Let (u,) C X satisfying (17). Then, the sequence {un} is bounded in X.

Proof. From (17) and (F3), we have

1

[ o u(@)ul@) - pPle.ule)
> gl + / (R/ |y|ﬁ|x—y\u P d (18)

1
aplunll”

d+o(1) > I(u,)—

Y
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for all n € N. Therefore, {u,} is bounded in X. 0O
Next, to find the ground state solutions for (5), we shall establish the following inequality.

Lemma 11. Assume that (VO0), (F0), (F1) (or (F1')) and (F4) hold, then

1—t%p (1—1tr)2

I(u) > I(tu) + o (I'(u),u) + o ] [P (19)
forallu e E and t > 0.
Proof. First, we can verify that
_ - lu(z) — u(y)|
I(u) — I(tu) / |x— By d deri/ x)|uPdx
1—¢%
/ / In(ja — yl) () P u(y) Py
RN RN
F F
L[ [ s - Pt )
le |z — ||yl
RN RN
11—t (1=t
=3 (' (u),u) + THUH

L1 P )
/ / W%ywﬁ dedy

Fy, tu(y))F(z, tu(z)) — F(y,u(y))F(z,u(x))
+// dzdy

|z|P e — y|*|y|®

RN RN

To verify the Lemma 11, next, we just need to claim that for any ¢t > 0 and any u € W*P(R"), we have

o(t,u) 1—t2p// (y, u (@)@ §g,

leﬁlx —y\"\ylf*

RN RN

F(y, tu(y))F(z, tu(z)) — F(y, u(y))F(z, u(z))
+ / / dzxdy > 0.

|||z — y[#|y]?

RN RN

Indeed, by (F4) and Remark 2, we can obtain that

7@ t,u) / / —t2P= L (y, u(y)) f(z, U(x))u(x)d:cdy

|z]]z — y|#|y|?

RN RN
F(y,t t
/ (y, tu(y v (=, tu(z ﬁ))U(x)dxdy
|| Ix = yl"lyl
RN RN

_ - 1//| o ‘ - F(y7tU(y))( [l tu(z) f(wau(af)))dxdy
r x—y“y -

er \ P u(a)r
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D) [, u@) [Flutuy)  Flyul)
o / / |x|ﬁ|xfywy|ﬁ[ @Rt | 2olu(g) ~ Ju()Pe | Y

dp—1 2p— 1 (y,u s u())u(z) r
A // P

>0, t=21;
<0, 0<t<1,

which implies that ®(¢,u) > ®(1,u) = 0 for ¢ > 0. From Remark 2, we can easily know

F(y,u(y))[g, f(x, u(@))u(z) — F(z,u(z))]
|z]Blz — y|#|y|?

O(0,u) =
RN RN

dxdy > 0.

This shows that ®(¢,u) > 0 holds for ¢ > 0. Therefore, for any u € E and any ¢t > 0, we have

11—t (1 —tr)?

()~ I(tu) > =5 (' (w),) + =

[l
We have completed the proof. O

Lemma 12. Assume that (V0), (FO0), (F1) (or (F1')) and (F4) hold, then for every u € N,

> .
I(u) > max I(tu)
Lemma 13. Assume that (VO0), (F0), (F1) (or (F1')) and (F4) hold. Then for any u € E \ {0}, there exists
a unique t > 0 such that tu € N.

Proof. Let u € E\ {0} be fixed and define a function ¥ (t) := (I’ (tu), tu) on [0, 00). It is easy to verify that
¥0(0) = 0, Jo(t) > 0 for ¢t > 0 small and Jy(t) < 0 for ¢ large. Therefore, there exists ¢t = ¢, > 0 such that
Yo(ty) =0 and t,u € N.

We can conclude that ¢, is unique for any v € E \ {0}. In fact, for any given v € E'\ {0}, let ¢t1,t2 > 0
such that 9¢(t1) = Jo(t2) = 0. By (19) for all t > 0, u € E \ {0}, taking t = t5/t1, one has

Ity) > I(tgu) + =127 “p 2 e

> It + “%,fnunp O e,
which implies that t; =t5. O
In view of Lemmas 12 and 13, we obtain that
inf I( y:=m= inf maxI(tu). (20)

ueN u€E\{0} t>0

For any u € N, it is easy to verify that I(tu) < 0 for large ¢ > 0 by (F1’). Hence, we can prove the
following lemma by the standard argument explored by [14, Lemma 3.2].
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Lemma 14. Assume that (V0), (FO0), (F1'), (F2) and (F4) hold. Then there exist a constant ¢, € (0,m) and
a sequence {u,} C E satisfying

I(un) = cor ([T (un)]

p-(1+[lunlg) = 0, (21)
where m is defined in Theorem 5.
4. Subcritical case

This section is devoted to proving the Theorem 4. We first give the following property, which contributes
to proving the boundedness of the sequence in E, in the sense of the norm || - ||..

Lemma 15. Assume that (VO) holds. Then

1
Ar(lul?, o) 2 g lulpllvlly, ¥ u,v e E. (22)

Proof. Let 10152 in) = {(y wy, ... x,) € RY 21 (i1), 22(i2), ..., 70 (in) }, and

) xz; >0, wheni; =1,
j(iy) =

x; <0, when i;

|
I
_

where j = 1,...,n. Then it follows from the definition of E that

A o) = [ [ a0+ o = yDlu(o)l?o(o)Pdsdy

RN RN
> Y / fu(y)Pdy / In(1 + |z — y|)o(x)Pde
i E{=11} =1y ig i) [(—i1,—ig,..ci—in)
> ¥ / ()P dy / In(1 + [z])o(z) P dz
ije{-11}j=1,.., Mp(ig,ig,..  in) I(=i1,—ig,.., —in)
1
> o [ lwlPay [ 1+ lalete)ras
RN RN
1
> ol ¥ v e 2.

We have completed the proof. O

Proof of Theorem 4. Applying Lemmas 9 and 10, we deduce that there exists a bounded sequence {u, } C E
satisfying (17). Thus there exists a constant C' > 0 such that ||u,||, < C. If § := limsup,,_, ||un|l, = 0,
then from the Gagliardo-Nirenberg inequality explored in [36, Proposition, page 261]:

lunlld < CollunllBlI(=A) 2 un |37, (23)

we derive that u, — 0 in LI(RY) for ¢ € [p, +00).
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Taking « enough small in (12), and then it follows from the arbitrariness of the e that

) fem@)u @)

Iy\ﬂlw— I“ |z|#
2

(2N — 2/3 np
+C |'U/n‘ H(Oé un) L%(RI\’)

aNu,\M%|
N, B) |28 { e [ Ju o
RN
2N-28—pu
2N N N
SN 5E q 2N«
C€2N—26—u n # s Un d
+ /|u| v eH 2N—23—Mu T
RN
2N — 2/3
< 4e?Cy(N, i, B) (R/ |un|Pda
2N-28—pu 2N-28—pu
2N N 2N
4
a un>}dx

2 2N—2B8—n oA on
+4O4(N7M76)CE /|Un| NeEnde /{H (2]\[_2&_,“47

(2N— 2/3 n)p
2N—28—p
2NV

< 4e®Cy (N, p, 5)H“n||p
4N«
(avogs—m) o

2\

+ 404(N7M76)082Hun”2q$
2N —-28—pn

9 @N-— 2/3 n)p
= 4" Cu(N, 1, B)|unllp
2N—28—p
) ANOful ¥y ”
N1 B el sy | [ , dr
w-zi=w | J —28—p 7 lunllwer @y
< S+oll)
Now from the inequality (11), one has
c+o(1)
L
= I(un) - _<I (Un)aun>
1 1
Y, Un 5 (@ un(@))un () — 5F (2, un(2))
3plVan) = i) /EQ/|mmx—m~ P o
5 +o(1).
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This contradiction show that dy > 0. By (11), (16), (17) and (18), one has

(o u(a) ()
Viltin) < Valun) / ([R/ P | T o <c.

which together with Lemma 15, implies that {||u, ||} is bounded, and thus {u,} is bounded in E. We may
thus assume, passing to a subsequence again if necessary, that u,, — u in E, u,, — @ in LY(RY), q € [p, +00)

and u, — @ a.e. on RY.
By Proposition 1, we have

/ / (@) (un(2) — @) |
P 7

/ / (5.00(0)) | () (0 () — (2))
o 7

/ (R [ Eio) - Pt o, ) fotm@lnl) ~ i),

Iylﬁlx —yln BE

/ / (f(z,a(@)) = f(@, un(@))) (un(z) - u(2)) ,
|y|5|$ - y\“ |z|#

< N, BIF (9 5(w)) — F ()21 (2)) (ot (2) — )]z

+ C(N, 1, B) I F (y, uly)) | M (@, a(@)) = f i, un(@))) (un(x) — ul@)))]|

2N — 2[3 2N — 2B "

In particular, by (F1), we can take enough small « in (12), and then we have

1E(y, u(y)) = F(y, un ()]l (@ un (@) (un () = u(z))]]

2N
IN— 2[3 IN-28—n

/ Am i e n s (a4 )

g 2N«
421\/ Zﬁ 02N 2‘3 2 *ﬁ =T &
+ [|u| H 2N—25—M’u

2Ng 2N«
i (2% ) )
[unl 2N — 28— p

2N —28—pu
4N
(2N—28—p)
’ (R/ ‘€|un| 2 p71+cs|un‘q717{(aaun)
N

2N—-28—p
4N
_ AN
X |, —u|2V=26-rdx
N

2N -28—p)p @N=26-u)p __ 2Ng 2N« B
N

2N—28—p
2N

AN
IN-28—n

dx

2N—-28—p
2N

IN
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2N-—28—pu
N 2N
__2Ng 2N«
w0 | [ it (g o
N
(2N 2B w)
3 (N—25-p) —1
B =l s {CFlunly
2N—28—p
4N
4N(q—1) 4N«
w0t | [l F (g )4
N
_(@N-28-p)p (2N—=28—u)p _ AN o N
N
2N-28—pu
N 4N
4N«
C2 _ d
Ol g | [ # (g —iin ) d
N
@eN 2/3 )
3 @N-26-m) 4
B =l s {CFlunly
2N—28—pu
8N

+C4||u’ﬂHq8N(q 1) /H <2N2ﬁ p un) dx
N

< Cle, N, o, B, p)|lun — _=o(1).

4N — 26

Similarly, we can deduce that

1 Cys w2 (f (2, a(@) = f (2, un (@) (un (@) — w(@))]] 20 = o(1).

IN-28—n IN-28

To prove our results, we need to recall the well-known Simon inequality
(|a[P~2a — b|P~2b)(a — b) > kpla — bJP, k, >0, Ya,beR
for p > 2. By the Simon inequality, we thus have
T (U, U, — w) — L(u, up —w) > kY (un — w, up — u) = kplu, —ul?
and

/ V(@) (Jun P 2un — |uP~2u) (u, — u)dz >k, / V(x)|un — ulPdz.

RN RN

It follows from (15) that
o(1) = (I'(un) — I'(t), un — u)

= Y (upn,un —a) — V(,u, — )+ / V(gc)(|un|p_2un — |ﬂ\p_2ﬂ)(un —u)dz
]RN

+ Ao ([unl?, [un [P~ un (un — ) = Ao(|al?, [alP*u(un — u))

2N—-28—p
iN

21
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/ / (om0 ;| £ ) 0) — (2
\ywm—yw
£ (1)) (n (2) — ()
/ (R/ \y|ﬁ|x—y|ﬂ ) d

kil
2 kpllun — ull” + kp A (Junl?, [un — af?)

+ Ar(lun P, [alP 2 a(un — ) — Ar([al?, @~ a(u, — @))

— Aa(|unl, ‘un‘p_2un(un —u)) + As(|ul, |ﬁ|p_2ﬂ(un —u)) +o(1)
It is easy to verify that

|Av (Jun ()P, [a(y) [P~ a(y) (un(y) — @(y)))|

/ / (1 + |z — y)lun (@) [a(y) P~ 25(y) (un () — a(y))dady

N RN

< //[1n(1+|33|)+1n(1+\yl)]Iun(x)l”\ﬂ(y)lp’zﬂ(y)(un(y)—ﬂ(y))dxdy

RN RN
< Nlunllll@lly ™ un = allp + llunll} / (1 + Jy])|a(y) P~ fun(y) — w(y)|dy

RN

< Nunllllally™ lun = allp + lunll5 n(1 + R) @) 15~ un —

p—1
S T In(1 + [y]) a(y)|"dy
RN\Br(0)

< Junll i@l n — @lly +0n(1) +0r(1), asn— o0, R — o0

Similarly,
As(jal?, [aP~2a(un — 0))] = o(1).

By Holder inequality and (10), we have

(il ftn P21 (s = ) < Kt P2t = D) g = 0(1)

Similarly,

Az([af?, [alP~*a(u, —a) = o(1).
Thus, by Lemma 15,

o(1) = (I'"(un) = I'(w), un — 1)

vV

kpllun — all” + kp Ay (Junl?; [un — al?) + o(1)

vV

_ k. _
Fpllun = all” + 5 lunl[flun = allZ + o(1),
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which together with §y = limsup,,_, . ||un ||, > 0, implies that u,, — @ in E. Hence, 0 < ¢ = lim,,—, oo [ (u,) =
I(u) and I'(u) = 0.

Next, we point out that the u we obtained on F is actually the critical point of I on X. We define a set
{as1, ..., as, } where as; is the reflection at the coordinate axis z; for i = 1,...,n. Let G = P({as1, ...,as,}),
which means that G is the power set of {asi,...,as,}, and then define a map © on the set A = {F1, ..., F,,},
where F;(i = 1,2,...,n) are maps.

O(A) = 2V F.
Thus, G = |J,c ©(0) is a transform group. The action of G on W*P?(RY) is defined by
g(u)(@) = u(g~'a).

Then it is easy to verify that for any g1, g2,9 € G and u € W*P(RN),

(id)u =u, (9192)u = gi(gau), ur> guislinear, [gullwsrmryy) = |[ullws»@y);
Fix(G) := {u € W*P(RY) : gu = u,¥ g € G} = W:P(RN).

In virtue of (V0) and (F0), we have I(gu) = I(u) for all g € G and u € W*P(RY). Therefore, in view of
[46, Theorem 1.28], one has that if u is a critical point of I restricted to E, then w is a critical point of I on
X, which shows that E is a natural constraint of X. Thus, we have completed the proof of Theorem 4. O

5. Exponential critical

In this Section, we shall consider the problem (5) in the exponential critical case. In the previous work
[25], Kozono et al. proved that for all & > 0 and u € W= (RY), there holds

N ip=2 73.1:75
alt| N=s ol [t|¥
e — — dz < oo,
EN =0 7

where j, = min{j € N : j > p}. Moreover, there exist positive constants ay s and Cn s depending on N
and s such that

W R ot ¥
/ et — Z T de < Cns, Yae (0,ans), (24)
RN j:O ’

for all u € WN/$(RV) with [wllwsv/emay < 1. The inequality (24) is better for us to consider the behaviors
of a sequence compared with Lemma 3, and it is obvious that ay s < a. < af y.
Let p € (0,1/2). Similar to [37, Section 5], we define the Moser type functions wy,(z) supported in B,(0)

as follows:
s [Iln[%if 2] < £,
N
wna) = i if 2 < |z| <
Oé;N \1nn|% n = =P
0 if |z| = p,

which belong to W;P(RY). For s € (0,1), as explored in [37], we cannot expect that [w,]s , is constant.
Following the estimation in [37] and after some basic calculations, we know that
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1 1 (logn)P—!
[wn]z{jVs-,p(RN) = 1+O(0g > —|—O< jiam 1) +O(n—N

1
<14+0 25
+0 (1) @)
and
N = (lnn)NﬁS (lnn)Nﬂ
[ v@lwa@pds < wyVep® (a: N) Ny
RN ’
k+1 N _ N Inn
1 s —m ~ - — k + 1
- Z Cm (N, s)wN% + CN,S# / t5 (kD) =Nt gy
n N
m=2 0
N-—s B N
N ° (Inn) s (Inn) =
N
< wnyVp (a:)N) N — Wy N
k41 N
(Inn)s—m™
- Z Cm(Na 8) nN
m=2
N-—s
~ N ° 1
Oz9 N Inn
where Vo, := sup|,|<, V(z), and k = [£], which implies that & — (k4 1) < 0. Thus we have
N—s
~ N ° 1
[[wn [P <1+ CwNVOOpN< - ) +1 (’)(—>
ag N Inn
N-—s
~ N s
=1+ Cwn Vo pV - Ons (27)
as,N
N-—s
where §,, = (1 + L) @ (ﬁ)
Cwn Voo p

Following the arguments explored by [9], we know that
/ / dedy > C(u, g, N) (2) 77
= 0 2)
\xlﬁlymx —yl
p/n(o) p/n 0)

where C(u, 8, N) is a positive constant. Inspired by the work [40,52], we have the following lemma.

Lemma 16. Assume that (F1'), (V0), (F0), (F2) and (F5)-(F6) hold. Then there exists n € N such that

N-—s
s [@2N-=28—wans| =
max I(twy) < N 5Nag . (28)

Proof. Let us argue by contradiction and suppose (28) does not hold, so that for all n let ¢, > 0 be such
that
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s
I(t,wy) = max I(tw,) > N {

N—s
ON — 28— pan,] "
o } , (29)

where t,, satisfies EI (twy,) | .—, = 0 and together with the estimation (27), then we have

N—s

N—s

~ N : 2N — 2 — 1

[ 14 CunVp™ [ = 5 ZF b ”)O‘Nﬂ . (30)
as,N 2NO[0

From now on, in the sequel, all inequalities hold for large n € N, and it is obvious t,w, > t. under this
condition. From (F6) and (29) we have

N-—s

- N s
[54 1+CwNVoopN< p ) On,

Oés,N

> th|[wnl]”

ya nwn ) f(xvtnwn(x))tnwn(x)
/ (R/ Pl -yl EE a

F(yutnwn(y)) f(xvtnwn(w))tnwn(x) T
=[] WP —gln Y [2]? d

Bp/n(o) Bp/ﬂ(o)

N
N —2s —2s N)(N — s)p?N=28-n 2Nagtn *

> (k—e)%,"* (Inn) N2 C(M»ﬁazs )( 8)?\,725 exp 0‘+ Inn| n—CN-28-u)

N~ ap(ag y) = as,N
N-—2s o5 (O N)(N — 2N—25—p 2 tn SNI

= (w2t gy O MW =)o 7778 ) 200t TNINR oy 95y nn

N¥ap(af y) = N
which implies that there exists a constant C; > 0 such that
2 tn NN
200t N (on — 28— p) | mn < Oy,
s,N
that is
(2N =28 - paiy] © C
AP Hag N |t 2
< : 1 . 31
" [ 2Nayg ] ( +logn) (31)
Combining (30) with (31), one can obtain that for any small € > 0 we have
(2N =28 — pans] * (2N — 28— paiy] *
1—-g) <ttt < 1
R (1-e) <t < o (1+2),

then we have

R AT / / bt )P brtin(2)) g g,

|22yl | =yl
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N-—s

~ N °
< -t 114 Cwn Voo pN ( - ) On
as,N

L[ BebmoFetee),,

|z[Py|P |z — y|»

—_

3

B, /n(0) B,/n(0)

N—s

1 ~ N\
< =t? | 14 CunVaop™ | —— bn
p as,N

N

(N — 8)2 (p)QN—QB—H (k _ 5)2 200t ° N(al y) 'Inn

B 2 2 = : .
2N QQC<M7B7N) tTJLVQ’S <Q£VN) N (lnn)Qﬁs

N-—s
1 ~ N :
< —tt | 1+ CunVoep™ | — 5
p as,N
N
(N —5)? (p)szzﬁf,t (k —)2e 2a0ts *N(al y) tlnn
2R N2 N O, B, N)2N — 28— ¥ 1 (Inn) ¥

and now we take the following notations.

Let
N-—s
~ N s
A:=Cun | —
Oés,N
and
B (N 5)2p2N72ﬁ7u
2R N20) VO B N)2N — 28— ¥
Thus,

N
N—s N
(k 78)262a0tn N(O‘s,N) nn

(Inn) ¥ n2N-26-n

3

1
p(tn) = ];tfl(l + AVoopNén) —

and there exists £, such that ¢(£,) = 0. Thus we have
N S
(k 5)2 200t SN(ai n)~ Ylnn 20[0N2 1nntATZlV—s

N-—s
tns (14 AV p™o,) = 7
nt p6n) (Inn) ¥ n2N-28-p o n(N —s)

which implies that

N—s

fu® (L4 AVapNS,) (Inn) ¥ n2N =280 | (N — 5)
B(k —€)?2a9N?1n nty "

N
620“)57{\775 N(oz:,N)f1 Inn _

Thus,



S. Yuan et al. / J. Math. Anal. Appl. 526 (2023) 127214 27

N—s
A~ T(2N=28- .“)O‘:,N] : {1 N (N — s)C1In[A(k — €)72Ca(1 + Voo p™N Ady,)]
"= 20[0N

ty <
s(2N — 28 —p)Inn ’

sN(N )

SBag N7 . Furthermore, one has

where A =

R 1. tn” _Ns_s(l + AV pNop)ak y (N = s)
= P (14 AVopNé,) — cl
Plin) ptn( T AVocp™0n) 209N21nn
1, Csa (N —s)
< P A A Ny 3% N T8
< pt P(1+ AVioop™d,) — (14 AV p™N6,) S0 NZInn
1 Cga N —s)
= —(1+ AVp" >
p( + AVoop™0n) {t 2a9Nslnn ]
2N—2/3 waiy]
< N
< (1+AVoop o) [ 200N ]
1+ —5)Cy In[A(k — ) 72Co(1 + Vo pNV A5,,)] B Csa y(N — )
$(2N =28 — p)Inn 209Nslnn
1 [@N =28 —paly] "
== 1+ AVep™n
p{ o] (1 AV
— 8)C1 In[A(k — &) 7202 (1 + Voo p™ Ady)]
$(2N — 28 — p)Inn

N-—s
Czal (N —s) 2agN ’
2a0Nslnn (2N — 28 — ,u)oz;N

N=s
1 (2N =28 —p)ag N ° B Csal n(N —s) 1[(2N=28—p)ajy
P 200N 200N

N=s
- A 0 N(Sn
200N21nn P } Vocr

1 {(2N —25 - u)aZ,N} TN = 9)ChIn[A(k — &) "2Ca(1 + Ve pN A5,))] Lo ( 1 )

200N 8(2N — 26 — /J) Inn ]Qg2 n

(@N =28 —paty ] T
|: QOéON :l

(N —5) 4+ C1In[A(k — £)72Co(1 4 Voo pN Ab),)]
$(2N =28 — p)Inn
1
(@) .
i <1Og2n)
N-—s

Recall that 0, = (14 —2=x) = )¢ (zX-). From (F6) and taking suitable p € (0,1/2) we know
CwnNVoopVN s

that there exists € enough small such that

1
p
{1 + AV p™ 6y, +

N—s

_030‘:,N(N_3) l 209N ] ’

200Nslnn | (2N —28 — p)at 5

N 1 N — In[A(k — )~2C5(1 N A
Cuog Vo™ (a* 0 (i) + Lot Cublate o) 2Co0 4 Vap )

$(2N =28 — p)Inn
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N—s N—s
Czoy (N —s) 200N ’ o [ ons : 1
209Nslnn | (2N =23 — p)af y ok N ’

then we have

2N -2 — o
I(tywy) < p(ty) < % {( 2§0Nﬂ)a1v, ] 7

which is a contradiction with (29). Therefore we have finished this Lemma. 0O
From Lemmas 13, 16 and the definition of m, we have the following corollary immediately.

Corollary 17. Assume that (F1’), (V0), (F0), (F2) and (F5)-(F6) hold. Then
N-—s
s {(ZN —20—pwans]| *

N QNOZO

To finish the proof of Theorem 5, we need the following two Lemmas.

Lemma 18. Assume that {uy} is bounded in E, u,, — u in E and

’un f(l‘, un(x))un(x)
/ ({R/ Sl e e =C (32

Then we have

/ (lm/ |y|g|7xui yl Y (x| u\g e / (R/ Iylﬁleylu F(alj;ctl;(x))dl‘-

Lemma 19. Under the same condition as Lemma 18, we have

. (oun) | Fun()ute)
nhféo/ (“/ iR

f (o, u(@)u()
/ (“/ \y|ﬁ|x—y|ﬂ R (33)

To prove the Lemma 19, we need the following

Lemma 20. Assume that § < pu, u, — u in E and

o)) .\ £l (@) un(a)
/ (R/ WPl - |ﬂ 0=k

for some constant IKC > 0. Then for every ¢ € C°(RY), we have

n“i%o/ (R/ e g | FE / (R/ gy )
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Proof. By the Fatou’s Lemma we have

£ (o, u())u(z)
/ (m/ |y|ﬁ|x—y|ﬂ S

Take ) = supp ¢, for any given £ > 0, let M, := K||@||coe ™!, then it follows that for n large enough,

/ (r.0n9)) |\ S un(@)@) |
e [2]?
(lun|=M: U(IUI M)

25 y7un f(xvun(x))u'ﬂ(x)
=K (ﬂ/ | dr =2

g fyw EE

and

/ uw) | o],
|y|ﬁ|$ — Y ||
|u|>M,

e £z, u(z))u(z)
<K (“/ \y|ﬁ|:c—y|~ EEEE

|u|>M,

Since | f(z, un)|X|unj<m. — [ (T, u)|X|uj<rr. ae. in Q\ D, where D, = {x € Q : |u(z)| = M.}, and

|f(xaun)|X|un|§M6 < |t|rnSa1\}/§e |f(xat)| < 00, Ve Qa

the Lebesgue dominated convergence theorem leads to

[ e [ )

n—oo
(\De)Uf[un|<Mc} (N\D)U{|u|<Mc}

Here, we choose K. > ty such that

2N—28—p
N

MoK : __2N
ll¢>lloo( IR ) 2Co / | (w)| 77257 da ce
Q

g

and

dz < e.

F(y,“(y))X\MZKE |f(x,u(x))¢|
||</M [ Pl — gl dy] EE

With the help of the Cauchy-Schwartz inequality introduced in [40], we have

Fy, un(y ))Xlun|>K5d |f (@, un(2)) 9|

dz
y|P |z — y|# ||

(lunZ2Me)N(Ju[#M:) RN
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1
2
yvun Xur, >K. F(xvun(x))x n|>Ke
<[1¢lloo / / - Wunlzre g, 2R gy
ylPlz —ylt |z

/ (R | (Y5 wn ()X @\ Do) {un | < M- g ) |f (2, un(2))[X @\ Do) {un | <M. D 4y ]

=

[y|7|z =yl ||

then from (F5) and Proposition 1, one has

F(y, un(Y)X|un|> K. |f (2, un (7))@
5 d 5 dz
lylPlz — y|» ||
(\un\zMs)ﬂ(lu\#Ms) N

(y, un(y F(z,up(x))
00 d
<liel / (R/ 1Pz — y|~ R

|u"|2K5

[N

[y|P e — y|~ |[?

/ ({R |f (s wn (9)) X @\ Do) { Jun |[< M. y ) | f (2, un (2))1X @\ Do) {un | <M. SN

Y, Un F(;L’,un(z))

<

<li@lloe / (ﬂ/ |y|ﬁ|xy|ﬂ) PR
[un|>Ke ]

L 2N-28-pu
2N

% |C(N, 1, 8) / 1 ()| 757
(Q\Ds)m{‘un‘SMs}

MO yv un f(xv un(x))un(x)
< el d
<ol | 72 (R/ |y\ﬂ|w—y|u EE v
Jun|>Ke

x | 2C(N, u, B) / |f<u>|7w—2%—wdx+o<1>}
Q
</l (M“:C ) 2C(N. 1, B) / |f(u)|72N—2§Vﬁ—udx] Fo(l) <+ o1).
Q

For any z € RY | define (,(z) and ((z) as follows,

/|F Y, un(y ‘X|un\<K d
ly|P |z — y|»

and

/lF |X\u|<K d
Ble — ylK
ly| Iw Yl
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Let us first point out some relationships here. For fixed z € RY, we consider the term
1
——dy.
/ yPie =y
lz—y|<R
When x € RV /Byg(0), y € Br(x), thus |z —y| < |y|. Select p; such that (uz+ 8)p; < N, and thus we have,
b gy< S,V (RN ‘(“+B>P1>
|y|PP1 |z — ylupr 7 = |z — y|(rtB)p ’
le—y|<R le—y|<R
When z € Byr(0), one has
1 1 1 _ N—(p+8)p1
/1 e — g Y S t/ |m0Hﬁnndy+' t/ |x_4ﬁw+um1dy“c)(R )'
lz—y|<R ly|I<R |lz—y|<3R
That is
1 N
dy <0 (R (u+/3)p1) )
|y|PPr|a — y|per =7 =
lz—y|<R

Choosing ¢ such that ¢ < N < uq, one has

1
—d
/ ly[Pajz — ylra Y

|z—y|>R
1 1
= e dy + e dy
/ |y|B(I|J;—y|MQ ‘y|BQ|x—y‘ﬂq
(RN\BR(z))NBr(0) (RN\Br(z))N(RN\Br(0))
1 1 1 1
<— — d . =0 (RN—(/3+u)q) .
— Rra / | |Bq y+R / |x_y‘uq Y
ly|[<R RN\Bg(z)

Then from (12), we have

[[1F (Y, un ()X un | <rc. — [F(y,u(y)) .
|§n |< 3 P dy
ly|fle — y|
L]
Py
<| [ PG e~ 1F@as "
lz—y|<R
1
pP1
1
X — d
/ lylPr e — yleer Y
z—y|<R
_ 1
ql
4 / IF () X <k, — [P @ Pxgai<x. | dy
_|zfy|>R
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1
x S S—
/ lylPa|z — y|ra

z—y|>R

s

pll dy

=0 (RN/pliﬁiﬂ) / ||F(un)|x|un|§Ks - |F(ﬁ)|X|ﬁ\§KE
lz—y|<R

+0 (RN/q_ﬁ_N) / |1 F (un) Xjun i< k. — |F (@) Ty
z—y|>R
<0 (RN/M_B_H) / [1E ()X <. — |F (@) |7 dy

lz—y|<R

(2N—28—p)p (2N—28—p)p :|

O N [ s e s e
<O (RN/Plfﬁ*lL) on(1)+ 0O (RN/qufu) . ¥V zeRY,

which implies that for any z € RV, we have (,(z) — ((z). For any z € RY, we know that

|F (@, un ()| X|u, | < K.
[Gnl)] < / T
ly[Plz — y|
i P2
/ 1
P2
< / ’F(ﬂfvun(x))anlsKa dy / |y|ﬂp2|x _ y‘p«pz dy
lz—y|<R lz—y|<R
1
Pé P3
/ ].
pP3
+ / | B, un () - dy / 1P = g
lz—y|>R lz—y|>R
NS N N w
S ((.U(N)R )pz O(R /p2=F— 'u) ‘I|11<34X |F($ t)|—|—CO (R /Pa=p— H) ||un||(2N 2/3 n)prh
! (2N-28—p)pph
< C.
It follows that
n s Un [ ’t C/
G (@) (2, (2)) ()Xl <. | _ c’¢(x)max't'§Mf (= ”’ < Ve

|| || e
By 8 < N, it is easy to verify that - |B € LL _(RN). Therefore, together with ¢, (z) — ((z) and the Lebesgue

dominated convergence theorem, we have

Bz, un(z ))Xlun|<K5d |f (@, un(2))p(2)|

dx
ly| |z — y|» ||?

(lun|<M)N(|T|#M:) RN
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X\u|<K5 |f (2, u(x))p()]
(;/‘ |ywrr—-yw W w0
|a| <M.

From the arguments above all and by the arbitrariness of € > 0, we can conclude this Lemma.

33

The proof of Lemma 18. In view of Proposition 6, we know u,, — u in LI(R¥), where ¢ > p. By [46,

Theorem A.1], there exists g € LZ(R™) such that

[un(2)| < g(x), |u(@)] < g(z), ae zeRY.

For any given € € (0, My/tp), it follows from (F5) that

/ (Y, un(y F(l‘vun(l’))dx
| »M 1 e | S
Un, 0E™

L/‘ ) | | e m @)l
| PM 1 e |
Un 0E™

| /\

| /\

Similarly, one has

|u|>Mpe—1

Now, we can choose R. > 0 such that

CJfMHx—MMy wp |

RN\Bg,

and

u(z)|9
dx < e.
(R/ \ylﬁlfﬂ—yl“ |z|#

Let C be the constant in (32) and choose K > max{CMy/e,to} such that

RN\Bg,

/ Fy,u(y)) 4 | Flzu@)
4 B
y|?|z =yl ]
|u|<Mpe—1 u|>K

By (F5), one has

/ yyun f(xa un($))un($) dz < Ce.
| DM } T e

@/WWx—yw EE

dx < e.

(34)
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F F(z, up,

/ (g,un(y)) dy (z,u (B))XBRE d
[ylP |z —y|» ||

lun | <Moe=t \(un]|>K

1 F(yvun(y))un(y) F(xaun( ))XBRE
/ | T EE

[tn | <Moe—1 wn | >K

B Fn@)unlw) o | Pl ),
K Iylﬁlw - yl“ kil
lun|<Moe=t \un|>2K
/ / (y, un(y f (@, un(2))un(2) de < e. (35)
lyl? e — yl" || -
By (F2), we know that there exist C' > 0 and § > W such that for all z € RV, |t| < K,
P, 1)] < Clefi+, (36)

Thus we have

/ F(y () g | P @) ),
ly|Plx —y[# ||
{RN\Bgr, }{|un|<Moe=1} \un|<K

< [ | ] uir” LA
h Pl v’ | TP

RN\Brg, Un | <K

gq+1 g¢7+1

<C / / dz < Ck,
Pl | TP
RN\Brg, Un | <K

which leads to

/ yaun F(xvun(x))
ly| |z — yl“ ||#
RN\BRE}O{\unKMOe—l}

Pz, u(x))
(m/ WPl —yw wp |

S / ) g | Floin(a))
PRI BT
RN\Bg, }ﬁ{\un\<M05—1}

Fz,u(z))
* (R/ P yw .

RN\Bg, }ﬁ{\un\<Moe—1}
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F F
[y|P |z —yl|» ||
{RN\Bg, }n{|un|<Moe=1} un | <K
F(y,un(y)) F(z, un(z))
+ / / dy de < (2+C
MHEErD a]? 2+ Ce

{RM\Bgr }N{|un|<Moe1} \un|2K

On the other hand,

/ yvun LE Un / F(I,U(l‘)) dz
|y|5\$*y|“ || |y\5|=’5*y|" |z|?

= 2cet (|y|?x_§iwd ) R

RrRe N{|un|<Moe—1}

) ( Fy,uly)) > Fz,uz)) 4 1

97|z = yl” ||
B, N{|ul<Moe 1}

It remains to prove that as n — oo,

/ (y, un(y F(x,upn(x ))XBREd

3
Iylﬁlx—yl” ||
{\un\<M05*1}

F(r, u(2) X,
(@/ |y|ﬁ\x—y|u FE

Combining (34) with (35), we can see that

{\u|<Mos '}

/ F(y,un(y)) 4 F(@un(@)XBs,

Y
lylPlz —yl» |z|?
U |<Moe~1 |un|>K

F
/(5 RTENH GRS
|$—y|“ ||
|lu|>K

In order to prove (37), it remains to verify that as n — +oo there holds

/ F(yaun(y>)d F(x, up(z ))XBRE da

y
lylPlz — y|» ||?
(Jun<Moe=1} \unl<K

F(y,u(y)) F(z,u(x))XBg
— d e dx.
/ [Pl — gyl Y EE
{lu|<Moe—1} \ul|<K

35
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Indeed, it can be easily verified that as n — oo,

/ F(y,un(y)) ;. | F2,un(2))

T [ R ni o
Un|>

F(y,u(y)) F(z,u(x)) o
- - ¢ ..
/ \y|5|x—y|ﬂ mg X{Bg,N|u|<Mye—1} Pomtwise a.e

u_

From (36), we have

F n F y 'n

/ (é/,u W) 4, | £ Uﬂ(x))dx
yl?le — y|* ||

Br. N|uy|<Moe=!  \jun|<K

()7L ()7
<
= / /’|mmz—ywdy I

Br N|up|<Moe—?! Up | <K

un ()T () ) Jua ()]
<C/ dy dx
(R lylPla —y| | [P

2 1
<C-C(N, o B)llun gl — C - O, A)llul’Siigls,  as m = oo
B

—2B8—p N—-28—p

From [11, Theorem 4.9], there exists 7 € L*(R”) such that up to a subsequence, still denoted by {u,}, for
each n € N, we have

/ Fly,un(y)) o | £z, ual(z))

X{Br, Nfun|<Moe-1}| < |F(@)].
[ylPle =yl EE

up|<

So, using the Lebesgue dominated convergence theorem, we can conclude our proof of Lemma 18. 0O

The proof of Lemma 19. For any given £ > 0, noting that u € E, we can choose ¢. € C5°(R™) N E such
that ||¢. — u||r < e. Hence, from and the fact that {|u,||%} is bounded, we have

o(1) = (I'(un), de — u)
[tn () — un () [P~2 (un () — un (1)) (6 — w)(x) — (b — U)(y))dxdy

|z —y[?N

+ / V(x)|un|p_2un(¢6 —u)dz + A1(|un|p, ‘unlp_Qun((bE - u))

P P24 Y, Un f(x un( ))((¢6_u)( )) T
= Az(funl? fun] /)Q/|yﬁzM# 2]? d

< Jlunl P~ ée — ul
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n / / (1 + [a]) + (L + [y)] et ()Pt (9) P a0 ()| 62 (1) — ()| drly

RN RN

+Cl||un||p2Np ||un||p2Np ¢ — u”z’j\erl

/ / (y, un(y (@, un (@) (9 —w)(2)) |
ly|P|z — yl" ||P

< NualP=Hlide = ull + llunlZlunlp e = ullp + lunlplunl2™ lIée — ull«

+Cl||un||p2Np ||“n||p2Np |pe — ul| 2Np.

/ / (y, un(y f (@, un (@) (9 — w)()) | -
ly| Pz — yl“ ||P

That is

/ / (5,un)) | ()6 — w)(2))
P e ol

< unlP7Y|0e — ul| + Ce + 0(1) < Ce 4 o(1).

It is easy to verify that

/ / r, u@) (9= — w)@) |
= a]?

By Lemma 20, we can obtain that for any ¢ € C5°(RY),

@) - Fla e £ (&, u(z)u(z)
/(@/ Iylﬁlx—yl” ) leﬁ /(R/ Iylﬁlx—y\“ ) |z|8 dr
/ / .0 0) | F (@) (6 —w)@)

|y|ﬁ|:c—y|~ EE
F (e u(@))(6e — u)(x)
* / (R/ |y|6|xfyw ) 2]? d
W un(®)) .\ £ un(2))ela)
* / (R/ |y|ﬁ|x—yw ) EE
f (&, u(x))x ()
/ (R/ \y|ﬁ|x—y|~ ) EE

Thus, we have concluded the proof of Lemma 19. 0O

< Ce.

IN

< 2Ce + o(1).

Proof of Theorem 5. Note that by Lemmas 10 and 14, we can deduce that there exists a sequence {u,} C E
satisfying ||u,| < Cy. It follows from (F3) and (18) that
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yuun QPF(%Un / / y>un f(x,un(x))un(x)
dz < C,.
/ (“/ |y|ﬂ|w—y|ﬂ EE \ywm—yw ] re

where u;} = max{u,(z),0} and u,, = —min{u,(x),0}. Since f(z,t) = 0 for all ¢t <0,
by taking v, = —u;, and using the fact that {u,} satisfies (17), we obtain

Let uy, = ub — u,

mn

on(1) =(1"(1n), —107)
[ ) ) )0 ) =1 0,
@

|2N

RN RN
- / V(@) [un P2t i — Ao (fun P, [P 2
]RN

> lus

s

where we have used that w,},u; > 0. Thus, ||u,, || = 0, as n — co. Hence, we have that

t/(/'W* WP (uf (@) — uf (1) (uy () — uy (1))

o — PN dzdy — 0, as n — oo,

RN RN

which implies that ||u, || = ||u;|[|+0n,(1). Therefore, {u; } also satisfies (17). For this reason, we may suppose,
without loss of generality, that {u,} is a nonnegative sequence.
If §p := limsup,,_, . ||unl||p = 0, then from the Gagliardo-Nirenberg inequality explored in [36, Proposition]:

1 < Collun Bl (=) 2un |37, (38)

we derive that u,, — 01in L4(RY) for q € [p, +00). For any given € € (0, MyCs/ty), we choose M. > MyCa /e,
then it follows from (F5) that

n F b) n
/‘ ?u L (wu;@hm
| DM \MII—yV |z|
Unp

(. un(®) ;| S () ()
<3 | (R/ [yl7le - yw FI

|un|>M.

Using (F1’) and (F2), we have

n 2 F b) n
/‘ Au 4 p(wz(@hm
‘ KM IMIx—yV |z|
Un
ﬂ — B r
. KM |w|x m |z

(2N—=28—p)p

/ yaun ‘un(x” 2N dx
| KM IMQw—mM |z|#
Un, €
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Iylﬁlw - y\“ |z[#
| (2N 2/3 wp | ( )| (2N—-28—p)p %
u'n, Un T 2N
d d
/ |y|ﬁ\x —y 27 !

\/CQC C(N, B, ) @N-26-pw)p
. Junly
2

Nl=

o(1).

Due to the arbitrariness of € > 0, thus we obtain

Feu),
/ (R/ \y|ﬂ|:c—y|u . or =)

Hence,

1
lunll” <llun [ + 5 A (junl®, [unl”)
1
< pm+ S Az(|unl?, [unl?) +o(1)

s

2N — 28 — pwanys| °
< pm—|—Ko||un||2§N,, +o(l)=pm+o(1) < ( B = man,
2N —1

{— 3z
SNay (1-38) +

Now, we choose 7 € (1, 2) satisfying that

(1+8)(1 — 36)y

1.
1-¢ <

By (F1’), there exists Cs > 0 such that

|f (2, )] < Calt|"H (ao(1+&),t), VxeRN, [t >1,

s (R/ |y|ﬁ|x—y|u N
yvun F(xvun(x))
(@/ (@/ |y|ﬂ|x—y\~ A N

/ fl@, un(y))un(y) o | F(2,un(@))un(@)

y dz
\ylﬁlfﬂ - yl" ||#

=

Nl=

Up|>1 upn|>1

< CEC(N, 1, B) 2 | f(, |

2N — 2[3

2N—28—p
2N

1 q 2Nag(l + &
N

o(1).

39
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2N-28—pu
_ N/(N—s) v -
=ciew.n )} | [ caul =S ool Oy de
A —28—p [ lws.p VY
N2 25 u N/(N—s) 2N2—135—u
2N040’Y 1+€)Hun||wsp (RN) Up,
|u |2N B de dz .
2N =28 —p lwnllwss @)
By (V1), we have
Y2 ONagy(1+ &) funl|
l[unllf < [@N =28 - wan,(A=3)] = il RWEPRY) c1-¢
mIWerRY) = 2Nag 2N — 28— '

Then we have

o)) .\ £ un(@))un (@)
(m/ |y\ﬂ|x—y|ﬂ wp oo < Colluall
[un|>1

2Ngy'
2N —-28—pn

and it is easy to verify

) |\ e
/ (R/ Tz -y Y dz = of1).

]
lun|<1

Therefore, we get

/ (m/ |y\’3|x—yl“dy EE dz = o(1).

Thus we have

ev + (1) = I(un) — %<I’<un>,un>

1
g Al funl?) + pAz(\unlp [unl?)

/ / (y, tn (y S f (@, un (@) )un (2) — 3 F (2, up(2))
lyl Pz — yl“

Pk dz < o(1),

and this contradiction means that dg > 0. Furthermore, we can obtain that

(Y, un(y F(x, un(z))
n < n P n n 1 S 9
Vi(un) < [lunl[” + Vi(un) = Va(u / (‘R/ |y|,8‘x_y|u 2] dz +o(1) < C7

which together with (22) implies that {|lu,|«} is bounded. Hence, {u,} is bounded in E. We may thus

assume passing to a subsequence again if necessary, that u, — u > 0 in E, u, — u in LY(RY) for
q € [p, +00) and u,(x) — u(z) a.e. on RY.
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From (11), we can obtain
As(Jun?, (Jun [P~ 1 — [ulP~*u)u) = o(1) and  Ag(|un[” — [ul?, [ul?) = o(1).
Inspired by the arguments in [51], we could know that for any ¢ € C°(RY), we have

[t (%) — wn () [P~2 (un (2) — un (1)) (0(2) — (y))

nh—>néo |z — y|?N dzdy
RN RN
[ [ 10 )~ ) =),
[z — y2N
RN RN

and

lim /V(x)\un\pﬁungpdx: /V(x)|u|p72ug0dx.

n—oo

RN RN

Recalling Lemma 7 and the property that T (u,v) < |lu|[’?~'||v||, together with the Lemma 19 and the
Fatou’s lemma, we can obtain

ol1) = (I'(un), )
[ fke) = o) ) =D
| n n

2N
yl
RN RN RN

+ Ax(Junl?, ‘unlp_Qunu) — A (lunl?, |un|p_2unu)

pen(@) | F@une)ute)
/Q/mm yn Y FE

= [ [ sy [ V@luPds s A unl el - Ax(ul )
RN RN Y RN

f (o, u(@))u(z)
/uﬁ/wwm—yu et oll)

(7 (7
//ngﬁﬂmm+/v|wm+mwmw»Amwwm
RN RN

f (o, u(z))u(z)
/“Q/wwn—yu e e told)

= (I'(u), u) + o(1),

which implies that (I'(u),u) < 0. Since u > 0, it follows from Lemma 13 that there exists ¢, > 0 such that
tyu € N. Noting that (I’(u),u) <0, then by the weak continuity of the norm and Fatou’s lemma, we have

1
m > c, = lim |I(up)— 2—<Il(un)7un>
p

n—oo
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z,u T, Up (2))un(z) — F(x,u,(x
i { Lo+ /(@/' W@\ 2 @) (o) = Flou @)

|8z —y\“ |z|P

by 55 f (x,u(@))u(z) — F(z,u(z))
2 gl + / (R/ PE —yw Ek 4
=I(U)—%< "(u), w)

2P

> I(tyu) — ;—pU’(u),w

2p
>m— 2—“p<['(u),u> >m,

which implies that
I(w) =m, (I'(u),u) = 0.

Next, we verify that Vi (|u,|P, [u[P"2u(u, — u)) = 0,(1). Indeed, from the boundedness of {||u,||+} and
{||un]|}, we can easily know

/ In(1+ [y u(y) P~ u(y)[lun (y) — u(y)|dy

RN

<In(1+ R)ull5 un — ullp + lJun — ull« / In(1 + [y)u(y)[*dy
RN\Br(0)

=o0,(1) + 0r(1), as n— oo, R — o0,

which implies

/ (1 + Jy])lu(y) [P~ |u(y)[lun (y) — u(y)ldy = o(1).
RN
By ||uy, — u|lp — 0, we have

Vi (lual?, a2l — ul)|

< / / 1+ []) + (L -+ [y)] i (@) P (w) P2 10 1 () — ()|l

RN RN
< Nl Bl lun = ullp + llunll} / In(1+ [yD)[u(m) P~ [uy)llun(y) — uly)|dy
RN
= o0,(1).

Then by Fatou’s lemma and the Simon inequality, we know that

Ar(funl?; un[?) = Ax(ful?, [u]”)

= A1(|un|p7 |Un|p) — Ay (Junl?, |u|p72unu) — Ay (Junl?, |un\p72unu) + Al(‘unlpa |u|p)
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+ Ax(Jun P, JulP 2 unu) + Ax(Jun P, [un P 2unu) = Ay (Jua |, [ulP) = Ax(Juf?, [ul?)
kpA1(|un|, |un — ulP) + A1 (Jun|?, |u|p_2u(un —u)) + A1 (Jun|?, |un|p_2un“) — Ay (lul?, [ul?)

k _
2_11\)’||U7LH£Hun —ullf + Ar(Junl?, [un|? 2unu) — Ar([ul?, [ul”) + 0n(1)

v

v

k
o lunlpllun = ullf + 0n(1).

Y

By (10) and a simple calculation, we know that
As([unl?, [unl”) = Aa(ful?, [u”) = on(1).
From (22), and the Brezis-Lieb Lemma, we then derive that

m+o(1) > e +0(1) = I(uy)

_ Py (y, un(y F(z,u,(x))
_ ||un|| m(un  Va(un)] /(m/ |y‘5‘xiy|ﬂ e

) F(a,u(z))
—IIuH +—[V1( = Va(u /(R/ |y\5|a:—y|” ||? 4

1
+ —llun —ull” + —[Ar(Junl?, [un?) = Ar(Jul?, [ul?
p|| I 2p[ (lunl”; [un]?) (lul?, [uf?)]

| V

+ %p[AQ(|u|p7 |ul?) = Az(Jun|?, [un[")] + o(1)

1
> I(U)+5Hun—UH”+ [unll[un = ullZ + o1)

P
N+,

1
=m+ Ellun —ull” + [[un[pllun — ullZ 4 o(1),

2N+1
which implies that u, — u in E. Hence, I(u) = m and I'(u) =0. O
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